Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 5 (2010), 333 -- 344MULTIPLE PERIODIC SOLUTIONS FOR A FOURTH-ORDER DISCRETE HAMILTONIAN SYSTEM
Jianwen Zhou and Yongkun Li
Abstract. By means of a three critical points theorem proposed by Brezis and Nirenberg and a general version of Mountain Pass Theorem, we obtain some multiplicity results for periodic solutions of a fourth-order discrete Hamiltonian system
Δ4u(t-2)+∇ F(t,u(t))=0 for all t∈ Z. 2010 Mathematics Subject Classification: 39A23.
Keywords: Discrete Hamiltonian systems; Periodic solutions; Critical points.
References
C. D. Ahlbrandt, Equivalence of discrete Euler equations and discrete Hamiltonian systems, J. Math. Anal. Appl. 180(2) (1993), 498-517. MR1251872(94i:39001). Zbl 0802.39005.
M. Bohner, Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions, J. Math. Anal. Appl. 199 (1996), 804-826. MR1386607(97a:39003). Zbl 0855.39018.
B. G. Zhang and G.D. Chen, Oscillation of certain second order nonlinear difference equations, J. Math. Anal. Appl. 199(3) (1996), 827-841. MR1386608(97b:39031). Zbl 0855.39011.
S. Elaydi and S. Zhang, Stability and periodicity of difference equations with finite delay, Funkcial. Ekvac. 37(3) (1994), 401-413. MR1311552(96a:39004).
Z. M. Gou and J.S. Yu, The existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A 46 (2003), 506-515. MR2014482(2004g:39002)
Y. F. Xue and C. L. Tang, Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. Math. Comput. 196 (2008), 494-500. MR2388705(2009a:37119). Zbl 1153.39024.
R. P. Agarwal, Difference Equations and Inequalities Theory, Methods and Applications, Marcel Dekker, New York, 1992. MR1155840(92m:39002). Zbl 0925.39001.
B. Smith and W. E. Taylor, Jr., Oscillatory and asympototic behavior of fourth order difference equations, Rocky Mountain J. Math. 16 (1986), 401-406.
E. Thandapan\i and I. M. Arock\i asamy, Fourth-order nonlinear oscillations of difference equations, Comput. Math. Appl. 42 (2001), 357-368. MR1837997(2002e:39009). Zbl 1003.39005.
X. C. Cai, J. S. YU and Z. M. Guo, Existence of periodic Solutions for fourth-Order difference equations, Comput. Math. Appl. 50 (2005), 49-55. MR2157277(2006d:39009). Zbl 1086.39002.
H. Brezis, L. Nirenberg, Remarks on finding critical points, Commun. Pure Appl. Math. 44(8-9) (1991), 939-963. MR1127041(92i:58032). Zbl 0751.58006.
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMSReg. Conf. Ser. Math. vol. 65, Amer. Math. Soc. Providence, RI, 1986. MR 0845785(87j:58024). Zbl 0609.58002.
Jianwen Zhou Yongkun Li Department of Mathematics, Department of Mathematics, Yunnan University, Yunnan University, Kunming, Yunnan 650091, China. Kunming, Yunnan 650091, China. e-mail: zhoujianwen2007@126.com e-mail: yklie@ynu.edu.cn