Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 5 (2010), 135 -- 149

DYNAMIC SHORTFALL CONSTRAINTS FOR OPTIMAL PORTFOLIOS

Daniel Akume, Bernd Luderer and Ralf Wunderlich

Abstract. We consider a portfolio problem when a Tail Conditional Expectation constraint is imposed. The financial market is composed of n risky assets driven by geometric Brownian motion and one risk-free asset. The Tail Conditional Expectation is calculated for short intervals of time and imposed as risk constraint dynamically. The method of Lagrange multipliers is combined with the Hamilton-Jacobi-Bellman equation to insert the constraint into the resolution framework. A numerical method is applied to obtain an approximate solution to the problem. We find that the imposition of the Tail Conditional Expectation constraint when risky assets evolve following a log-normal distribution, curbs investment in the risky assets and diverts the wealth to consumption.

2010 Mathematics Subject Classification: 91G10, 93E20, 91B30, 37N40.
Keywords: Portfolio optimization; Risk management; Dynamic risk constraints; Tail Conditional Expectation.

Full text

References

  1. D. Akume, Risk-Constrained Dynamic Portfolio Management, PhD thesis, Department of Mathematics, University of Yaounde I, Cameroon, 2008.

  2. P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent Measures of Risk, Mathematical Finance, 9 (3) (1999), 203-228. MR1850791(2002d:91056). Zbl 0980.91042.

  3. D. Cuoco, H. He, S. Isaenko, Optimal Dynamic Trading Strategies with Risk Limits, Operations Resaerch, 56 (2) (2008), 358-368. MR2410311. Zbl 1167.91365.

  4. W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, Berlin, 1975. MR0454768(56#13016). Zbl 0323.49001.

  5. A. Gabih, W. Grecksch and R. Wunderlich, Dynamic portfolio optimization with bounded shortfall risks, Stochastic Analysis and Applications 23 (2005), 579--594. MR2140978(2006b:91069). Zbl 1121.91046.

  6. A. Gabih, J. Sass and R. Wunderlich, Utility maximization under bounded expected loss, Stochastic Models , 3 (25) (2009), 2009. MR2548057. Zbl pre05604648.

  7. R. Gerrard, S. Haberman and E. Vigna, Optimal Investment Choices Post Retirement in a Defined Contribution Pension Scheme, Insurance: Mathematics and Economics, 35 (2004), 321-342. MR2328631(2005g:91119). Zbl 1093.91027.

  8. H. He and N. Pearson, Consumption and Portfolio Policies with Incomplete Markets and Short-Sale constraints: The Finite Dimensional Case, Mathematical Finance, 1 (1991), 1-10. MR1122311(92j:90009). Zbl 0900.90142.

  9. E. Isaacson and H.B. Keller, Analysis of Numerical Methods, Dover Publications, New York, 1994. MR0201039(34#924). Zbl 0254.65001.

  10. P. Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill Publishers, 1996.

  11. R. Korn, Optimal Portfolios: Stochastic models for optimal investment and risk management in continuous time, World Scientific, Singapore, 1997. MR1467390(98g:49021). Zbl 0931.91017.

  12. H. M. Markowitz, Portfolio Selection, The Journal of Finance, 7 (1) (1952), 77-91. MR2547483. Zbl 1173.01013.

  13. A. J. McNeil, R. Frey and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press, 2005. MR2175089(2006d:91005). Zbl 1089.91037.

  14. J. Nocedal and S. Wright, Numerical Optimization, Springer Verlag, Heidelberg, 2006. MR2244940(2007a:90001). Zbl 1104.65059.

  15. T. A. Pirvu, Portfolio Optimization Under the Value-at-Risk Constraint, Quantitative Finance 2 (7), (2007), 125-136. MR2325660(2008f:91119). Zbl 1180.91273.

  16. W. Putschögl and J. Sass, Optimal Investment under Dynamic Risk Constraints and Partial Information, Quantitative Finance, to appear.

  17. R. T. Rockafellar and S. Uryasev, Conditional value-at-risk: optimization approach, Dordrecht: Kluwer Academic Publishers. Appl. Optim., 54 (2001), 411-435. MR1835507(2002f:90073). Zbl 0989.91052.

  18. K. F. C. Yiu, Optimal Portfolios under a Value-at-Risk Constraint, Journal of Economic Dynamics and Control, 28 (2004), 1317-1334. MR2047993(2005f:91081). Zbl pre05362800.




Daniel Akume Bernd Luderer
Mathematics Department, Faculty of Mathematics,
University of Buea, Chemnitz University of Technology,
P.O Box 63 Buea, Cameroon. 09107, Chemnitz, Germany.
e-mail: d-akume@yahoo.ca e-mail: b.luderer@mathematik.tu-chemnitz.de

Ralf Wunderlich
Mathematics Department,
Zwickau University of Applied Sciences,
08012, Zwickau, Germany.
e-mail: ralf.wunderlich@fh-zwickau.de


http://www.utgjiu.ro/math/sma