Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 4 (2009), 15 -- 39

CONTROLLABILITY RESULTS FOR SEMILINEAR FUNCTIONAL AND NEUTRAL FUNCTIONAL EVOLUTION EQUATIONS WITH INFINITE DELAY

Selma Baghli, Mouffak Benchohra and Khalil Ezzinbi

Abstract. In this paper sufficient conditions are given ensuring the controllability of mild solutions defined on a bounded interval for two classes of first order semilinear functional and neutral functional differential equations involving evolution operators when the delay is infinite using the nonlinear alternative of Leray-Schauder type.

2000 Mathematics Subject Classification: 34G20; 34K40; 93B05.
Keywords: controllability; existence; semilinear functional; neutral functional differential evolution equations; mild solution; fixed-point; evolution system; infinite delay.

Full text

References

  1. M. Adimy, H. Bouzahir and Kh. Ezzinbi, Existence for a class of partial functional differential equations with infinite delay, Nonlinear Anal. 46 (2001), 91-112. MR1845579(2002e:34126). Zbl 1003.34068

  2. M. Adimy, H. Bouzahir and Kh. Ezzinbi, Local existence and stability for some partial functional differential equations with infinite delay, Nonlinear Anal. 48 (2002), 323-348. MR1869515(2003e:34145). Zbl 0996.35080

  3. M. Adimy, H. Bouzahir and Kh. Ezzinbi, Existence and stability for some partial neutral functional differential equations with infinite delay, J. Math. Anal. Appl. 294 (2004), 438-461. MR2061336(2005b:35280). Zbl 1050.35119

  4. N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series 246 Longman Scientific & Technical, Harlow John Wiley & Sons, Inc., New York, 1991. MR1100706(92e:47069). Zbl 0727.47026

  5. N.U. Ahmed, Dynamic Systems and Control with Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. MR2257896(2007m:93001). Zbl 1127.93001

  6. A. Arara, M. Benchohra, L. Górniewicz and A. Ouahab, Controllability results for semilinear functional differential inclusions with unbounded delay, Math. Bulletin 3 (2006), 157-183. Zbl 1150.34594

  7. S. Baghli and M. Benchohra, Uniqueness results for partial functional differential equations in Fréchet spaces, Fixed Point Theory 9(2) (2008), 395-406. MR2464126.

  8. S. Baghli and M. Benchohra, Existence results for semilinear neutral functional differential equations involving evolution operators in Fréchet spaces, Georgian Math. J., to appear.

  9. S. Baghli and M. Benchohra, Uniqueness results for evolution equations with infinite delay in Fréchet spaces, submitted.

  10. K. Balachandran and J. P. Dauer, Controllability of nonlinear systems in Banach spaces: A survey. Dedicated to Professor Wolfram Stadler, J. Optim. Theory Appl. 115 (2002), 7--28. MR1937343(2004b:93011). Zbl 1023.93010

  11. M. Belmekki, M. Benchohra, K. Ezzinbi and S. K. Ntouyas, Existence results for some partial functional differential equations with unbounded delay, Nonlinear Stud., (to appear).

  12. M. Benchohra, E. P. Gatsori, L. Górniewicz and S. K. Ntouyas, Controllability results for evolution inclusions with non-local conditions, Z. Anal. Anwendungen 22(2) (2003), 411-431. MR2000275(2004f:93009). Zbl 1052.34073

  13. M. Benchohra, L. Górniewicz, S. K. Ntouyas and A. Ouahab, Controllability results for nondensely semilinear functional differential equations, Z. Anal. Anwendungen 25 (2006), 311-325. MR2251956(2007e:93012). Zbl 1101.93007

  14. M. Benchohra, L. Górniewicz and S. K. Ntouyas, Controllability of Some Nonlinear Systems in Banach spaces: The fixed point theory approach, Pawel Wlodkowicz University College, Plock, 2003. Zbl 1059.49001

  15. M. Benchohra, L. Górniewicz and S. K. Ntouyas, Controllability of neutral functional differential and integrodifferential inclusions in Banach spaces with nonlocal conditions, Nonlinear Anal. Forum 7 (2002), 39--54. MR1959931(2004a:93008). Zbl 1040.93005

  16. M. Benchohra, L. Górniewicz and S. K. Ntouyas, Controllability results for multivalued semilinear differential equations with nonlocal conditions, Dynam. Systems Appl. 11 (2002), 403--414. MR1941759(2003k:93005). Zbl 1028.34013

  17. M. Benchohra and S. K. Ntouyas, Controllability results for multivalued semilinear neutral functional equations, Math. Sci. Res. J. 6 (2002), 65--77. MR1901589(2003d:93010). Zbl 1036.34092

  18. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimension Systems, Vol. 2, Systems and Control: Foundations and Applications, Birkhauser, Boston, 1993. MR1246331(94m:49001). Zbl 0790.93016

  19. E.N. Chukwu and S.M. Lenhart, Controllability questions for nonlinear systems in abstract spaces. J. Optim. Theory Appl. 68(3) (1991), 437--462. MR1097312(92d:93022). Zbl 0697.49040

  20. C. Corduneanu and V. Lakshmikantham, Equations with unbounded delay, Nonlinear Anal., 4 (1980), 831-877. MR586852(81i:34061). Zbl 0449.34048

  21. R. Curtain and H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New-Yok, 1995. MR1351248(96i:93001). Zbl 0839.93001

  22. K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. MR1721989(2000i:47075). Zbl 0952.47036

  23. K. Ezzinbi, Existence and stability for some partial functional differential equations with infinite delay, Electron. J. Differential Equations, 2003(116) (2003), 1-13. MR2022064(2005f:34210). Zbl 1070.34103

  24. A. Friedman, Partial Differential Equations, Holt, Rinehat and Winston, New York, 1969. MR0445088(56 #3433). Zbl 0224.35002

  25. X. Fu, Controllability of neutral functional differential systems in abstract space, Appl. Math. Comput. 141 (2003), 281--296. MR1972908(2004a:93010). Zbl 01981452

  26. X. Fu, Controllability of abstract neutral functional differential systems with unbounded delay, Appl. Math. Comput. 151 (2004), 299--314. MR2044202(2004k:34158). Zbl 1044.93008

  27. X. Fu and K. Ezzinbi, Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear Anal. 54 (2003), 215-227. MR1979731(2004d:34169). Zbl 1034.34096

  28. E. P. Gatsori, Controllability results for nondensely defined evolution differential inclusions with nonlocal conditions, J. Math. Anal. Appl., 297 (2004), 194-211. MR2080376(2004d:34169). Zbl 1059.34037

  29. A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. MR1987179(2004d:58012). Zbl 1025.47002

  30. J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41. MR0492721(58 #11793). Zbl 0383.34055

  31. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences 99, Springer-Verlag, New York, 1993. MR1243878(94m:34169). Zbl 0787.34002

  32. H. R. Henriquez, Existence of periodic solutions of neutral functional differential equations with unbounded delay, Proyecciones 19(3) (2000), 305-329. MR1808725(2001k:35283).

  33. E. Hernandez, Regularity of solutions of partial neutral functional differential equations with unbounded delay, Proyecciones 21(1) (2002), 65-95. MR1909696(2003d:34169).

  34. E. Hernandez, A Massera type criterion for a partial neutral functional differential equation, Electron. J. Differerential Equations 2002(40) (2002), 1-17. MR1907716(2003f:34150). Zbl 0999.35100

  35. Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Unbounded Delay, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. MR1122588(92g:34088). Zbl 0732.34051

  36. F. Kappel, W. Schappacher, Some considerations to the fundamental theory of infinite delay equation, J. Differential Equations 37 (1980), 141-183. MR587220(81j:34117). Zbl 0466.34036

  37. V. Kolmanovskii, and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999. MR1680144(2000c:34164). Zbl 0917.34001

  38. Y.C. Kwun, J.Y. Park and J.W. Ryu, Approximate controllability and controllability for delay Volterra system, Bull. Korean Math. Soc. 28 (2) (1991), 131--145. MR1127732(92k:93023). Zbl 0770.93009

  39. L. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems, Appl. Math. Optimiz. 23 (1991), 109-154. MR1086465(92a:93021). Zbl 0729.93023

  40. G. Li, Sh. Song and Ch. Wu, Controllability of evolution inclusions with nonlocal conditions, J. Systems Sci. Complexity, 18(1) (2005), 35-42. MR2122874(2005k:93016). Zbl 1119.93018

  41. G. Li and X. Xue, Controllability of evolution inclusions with nonlocal conditions, Appl. Math. Comput., 141, (2003), 375-384. MR1972917(2004d:93014). Zbl 1029.93003

  42. X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhauser, Berlin, 1995. MR1312364(96k:49004). Zbl 0817.49001

  43. K. Naito, On controllability for a nonlinear Volterra equation, Nonlinear Anal. 18 (1) (1992), 99--108. MR1138645(93a:93019). Zbl 0768.93011

  44. S. Nakagiri and R. Yamamoto, Controllability and observability for linear retarded systems in Banach space, Inter. J. Control 49(5) (1989), 1489-1504. MR998053(90h:93014). Zbl 0676.93029

  45. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. MR710486(85g:47061). Zbl 0516.47023

  46. M.D. Quinn and N. Carmichael, An approach to nonlinear control problems using the fixed point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984-1985), 197-219. MR767382(86e:58019). Zbl 0563.93013

  47. K. Schumacher, Existence and continuous dependence for differential equations with unbounded delay, Arch. Rational Mech. Anal. 64 (1978), 315-335. MR0477379(57 #16908). Zbl 0383.34052

  48. R. Triggiani, On the stabilizability problem in Banach space, J. Math. Anal. Appl. 52(3) (1975), 383--403. MR0445388(56 #3730). Zbl 0326.93023

  49. J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences 119, Springer-Verlag, New York, 1996. MR1415838(98a:35135). Zbl 0870.35116

  50. K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin, 1980. MR617913(82i:46002). Zbl 0435.46002

  51. J. Zabczyk, Mathematical Control Theory, Birkhauser, Berlin, 1992. MR1193920(93h:49001). Zbl 1071.93500



Selma Baghli Mouffak Benchohra
Laboratoire de Mathématiques, Laboratoire de Mathématiques,
Université de Sidi Bel-Abbès, Université de Sidi Bel-Abbès,
BP 89, 22000 Sidi Bel-Abbès, Algérie. BP 89, 22000 Sidi Bel-Abbès, Algérie.
e-mail: selma_baghli@yahoo.fr e-mail: benchohra@univ-sba.dz

Khalil Ezzinbi
Laboratoire de Mathématiques,
Faculté des Sciences de Semlalia,
BP 2390, Marrakech, Morocco.
e-mail: ezzinbi@ucam.ac.ma


http://www.utgjiu.ro/math/sma