Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843 - 7265 (print)
Volume 3 (2008), 79 -- 110

CONSIDERATIONS ON SOME ALGEBRAIC PROPERTIES OF FEYNMAN INTEGRALS

Lucian M. Ionescu

Abstract. Some algebraic properties of integrals over configuration spaces are investigated in order to better understand quantization and the Connes-Kreimer algebraic approach to renormalization.
In order to isolate the mathematical-physics interface to quantum field theory independent from the specifics of the various implementations, the sigma model of Kontsevich is investigated in more detail. Due to the convergence of the configuration space integrals, the model allows to study the Feynman rules independently, from an axiomatic point of view, avoiding the intricacies of renormalization, unavoidable within the traditional quantum field theory.
As an application, a combinatorial approach to constructing the coefficients of formality morphisms is suggested, as an alternative to the analytical approach used by Kontsevich. These coefficients are ``Feynman integrals'', although not quite typical since they do converge.
A second example of ``Feynman integrals'', defined as state-sum model, is investigated. Integration is understood here as formal categorical integration, or better as a duality structure on the corresponding category. The connection with a related TQFT is mentioned, supplementing the Feynman path integral interpretation of Kontsevich formula.
A categorical formulation for the Feynman path integral quantization is sketched, towards Feynman Processes, i.e. representations of dg-categories with duality, thought of as complexified Markov processes.

2000 Mathematics Subject Classification: 18G55, 81Q30, 81T18
Keywords: Feynman integrals; quantization; Hopf algebra; configuration spaces.

Full text

References

  1. M. Alexandrov, M. Konstsevich, A. Schwarz, and O. Zaboronsky, The geometry of the master equation and topological quantum field theory. Internat. J. Modern Phys. A 12 (1997), no. 7, 1405--1429. MR1432574(98a:81235). Zbl 1073.81655. hep-th/9502010.

  2. D. Arnal, D. Manchon, and M. Masmoudi, Choix des signes pour la formalite de M. Kontsevich, Pacific J. Math., 203(1):23--66, 2002. MR1895924(2003k:53123). Zbl 1055.53066. math/0003003.

  3. S. Axelrod and I.M. Singer, Chern-Simons perturbation theory II. MR1258919(95b:58163). Zbl 0889.53053. hep-th/9304087 v1.

  4. I. Batalin and G. Vilkovisky, Gauge algebra and quantization, Phys. Lett. 102B, 27 (1981). MR0616572(82j:81047).

  5. R. Bott and C. Taubes, On self-linking of knots, J. Math. Phys. 35 (10), October 1994, 5247-5287. MR1295465(95g:57008). Zbl 0863.57004.

  6. A. S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212 (2000), no. 3, 591--611. MR1779159(2002b:53141). Zbl 1038.53088. math.QA/9902090.

  7. J. Conant and K. Voghtmann, Infinitezimal operations on graphs and graph homology, Math. Ann. 327 (2003), no. 3, 545--573. MR2021029(2004m:17026). Zbl 1092.17014. math.QA/0111198 v2.

  8. A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I, Comm. Math. Phys. 210 (2000), no. 1, 249--273. MR1748177(2002f:81070). Zbl 1032.81026. hep-th/9912092.

  9. A. Connes and D. Kreimer, Insertion and Elimination: the doubly infinite Lie algebra of Feynman graphs, Ann. Henri Poincaré 3 (2002), no. 3, 411--433. MR1915297(2003j:81118). Zbl 1033.81061. hep-th/0201157.

  10. J. F. Davis and P. Kirk, Lecture notes in algebraic topology, Graduate studies in mathematics Vol. 35, American Mathematical Society, Providence, RI, 2001. xvi+367 pp. ISBN: 0-8218-2160-1. MR1841974(2002f:55001). Zbl 1018.55001.

  11. D. Fiorenza and L. M. Ionescu, Graph complexes in deformation quantization, Lett. Math. Phys. 73 (2005), no. 3, 193--208. MR2188293(2007d:53153). Zbl 1101.53058. math/0505410 v2.

  12. M. Gerstenhaber and S. Schack, Algebraic cohomology and deformation theory, Deformation theory of algebras and structures and applications, M. Hazewinkel and M. Gerstenhaber (eds.), 11-264, 1988, Kluwer Academic Publishers. MR0981619(90c:16016). Zbl 0676.16022.

  13. V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff, Perturbation theory in differential homological algebra II, Ill. J. Math. Vol. 35, No.3, Fall 1991, p.357-373. MR1103672(93e:55018). Zbl 0727.55012.

  14. L. M. Ionescu, Perturbative quantum field theory and integrals on configuration spaces, hep-th/0307062.

  15. L. M. Ionescu, Cohomology of Feynman graphs and perturbative Quantum Field Theory, Focus on Quantum Field Theory, Nova Publishers Inc., O. Kovras (editor), ISBN: 1-59454-126-4, 2004, 17 pages. math.QA/0506142.

  16. L. M. Ionescu, The Feynman Legacy, math.QA/0701069.

  17. L. M. Ionescu, Perturbative Quantum Field Theory and L-infinity Algebras, Advances in Topological Quantum Field Theory, Proceedings of the NATO ARW on New Techniques in Topological Quantum Field Theory, editor J. Bryden, Kluwer Academic Publishers, 2004, 243--252. MR2147421(2006h:81088).

  18. L. M. Ionescu, Remarks on quantum theory and noncommutative geometry, Int. J. Pure and Applied Math., Vol. 11, No.4, 2004, pp.363-376. math.HO/0006024.

  19. L. M. Ionescu, Non-associative algebras: a Framework for Differential Geometry, Int. J. Math. Math. Sci., Vol. 2003, No.60. math.DG/9910016.

  20. L. M. Ionescu, Connections between Kontsevich's Formality Theorem and Connes-Kreimer renormalization, in preparation.

  21. B. Keller, An introduction to A-∞-algebras, Homology Homotopy Appl. 3 (2001), no. 1, 1--35 (electronic). MR1854636(2004a:18008a). Zbl 0989.18009. math.RA/9910179.

  22. V. Kodiyalam and V. S. Sunder, Topological quantum field theories from subfactors, Research Notes in Mathematics Series, Chapman & Hall/CRC, 2001. MR1870810(2003a:57024). Zbl 1050.46038.

  23. M. Kontsevich, Deformation quantization of Poisson manifolds I, First European Congress of Mathematics, Vol. II (Paris, 1992), 97--121, Progr. Math., 120, Birkhäuser, Basel, 1994. MR1341841(96h:57027). Zbl 1058.53065. q-alg/9709040

  24. M. Kontsevich, Formality conjecture, Deformation theory and symplectic geometry, (Ascona, 1996), 139--156, Math. Phys. Stud., 20, Kluwer Acad. Publ., Dordrecht, 1997. MR1480721(98m:58044).

  25. M. Kontsevich, Operads and Motives in Deformation Quantization, Moshé Flato (1937--1998). Lett. Math. Phys. 48 (1999), no. 1, 35--72. MR1718044(2000j:53119). Zbl 0945.18008. math.QA/9904055.

  26. M. Kontsevich, Feynman diagrams and low-dimensional topology, Joseph, A. (ed.) et al., First European congress of mathematics (ECM), Paris, France, July 6-10, 1992. Volume II: Invited lectures (Part 2). Basel: Birkhäuser. Prog. Math. 120, 97-121 (1994). MR1341841(96h:57027). Zbl 0872.57001.

  27. D. Kreimer, Structures in Feynman Graphs - Hopf algebras and symmetries, Graphs and patterns in mathematics and theoretical physics, 43--78, Proc. Sympos. Pure Math., 73, Amer. Math. Soc., Providence, RI, 2005. MR2131011(2006b:81178). Zbl 1088.81077. hep-th/0202110

  28. S. Lang, Algebra, Addison-Wesley series in mathematics, Addison-Wesley Publishing Co., 1965. MR1878556(2003e:00003). Zbl 0984.00001.

  29. M. Markl, A cohomology theory for A(m)-algebras and applications, JPAA 83 (1992) 141-175. MR1191090(94a:18012). Zbl 0801.55004.

  30. V. Rivasseau, An introduction to renormalization, Seminaire Poincare, Vol. 2 (2002), 1--29. MR2169912(2006f:81118). Zbl 1052.81072.

  31. D. Tamarkin, Another proof of M. Kontsevich formality theorem, math/9803025.

  32. D. Tanre, Homotopie rationnelle, L.N.M. 1025, 1983. MR0764769(86b:55010). Zbl 0594.55013.

  33. V. Turaev, Quantum invariants of knots and 3-manifolds, Walter de Gruyer, Berlin - Ney York, 1994. MR1292673(95k:57014). Zbl 0812.57003.

  34. A. A. Voronov, Topological field theories, string backgrounds and homotopy algebras, Differential geometric methods in theoretical physics (Ixtapa-Zihuatanejo, 1993). Adv. Appl. Clifford Algebras 4 (1994), Suppl. 1, 167--178. MR1337702(96k:81245). Zbl 0864.57035. hep-th/9401023.

  35. A. A. Voronov, Lecture 9: The A operad and A algebras, http://www.math.umn.edu/~voronov/8390/.



Lucian M. Ionescu
Illinois State University, Mathematics Department
School Street,
Normal, IL 61790-4520, USA.
e-mail: lmiones@ilstu.edu
http://www.ilstu.edu/~lmiones/

http://www.utgjiu.ro/math/sma