Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843 - 7265 (print)
Volume 3 (2008), 13 -- 25

NEUMANN SYSTEM AND HYPERELLIPTIC AL FUNCTIONS

Shigeki Matsutani

Abstract. This article shows that the Neumann dynamical system is described well in terms of the Weierstrass hyperelliptic al functions. The descriptions are very primitive; their proofs are provided only by residual computations but don't require any theta functions.

2000 Mathematics Subject Classification: Primary 37K20, 14H81; Secondary 14K20, 14H70.
Keywords: Neumann system; Weierstrass hyperelliptic al functions.

Full text

References

  1. M. R. Adams, J. Harnad, and E. Previato, Isospectal Hamiltonian Flows in Finite and Infinite Dimensions, Comm. Math. Phys., 117 (1988), 451--500. MR0953833(89k:58112). Zbl 0659.58022.

  2. H. F. Baker, Abelian functions. Abel's theorem and the allied theory of the theta functions., Cambridge Univ. Press, 1897, republication 1995. MR1386644(97b:14038). Zbl 0848.14012.

  3. H. F. Baker, On the hyperelliptic sigma functions, Amer. J. of Math., XX (1898), 301--384. MR1505779 . JFM 29.0394.03

  4. H. F. Baker, On a system of differential equations leading to periodic functions, Acta Math., 27, (1903), 135--156. MR1554977. JFM 34.0464.03.

  5. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, Kleinian Functions, Hyperelliptic Jacobians and Applications, Reviews in Mathematics and Mathematical Physics (London). S. P. Novikov and I. M. Krichever, Gordon and Breach, India, (1997), 1--125. Zbl 0911.14019.

  6. J. Dieudonné, Abrégé d'histoire des mathématiques, Hermann, Peris, 1978. MR504183 (80k:01002b). Zbl 0656.01001.

  7. H. R. Dullin, P.H. Richter, A. P. Veselov, and H Waalkens, Actions of the Neumann systems via Picard-Fuchs equations, Physica D, 155 (2001) 159-183. MR1855358 (2002m:37080). Zbl 1001.70013.

  8. V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge, Cambridge 1984. MR770935 (86f:58054). Zbl 0576.58012.

  9. R. Hartshorne, Algebraic Geometry, Springer Berlin, 1977. MR463157 (57 #3116). Zbl 0531.14001.

  10. F. Klein, Ueber hyperelliptische Sigmafunctionen, Math. Ann., 27 (1886), 431--464. MR1510386. JFM 18.0418.02.

  11. C. G. J. Jacobi, Über ein neue Methode zur Integration der hyperelliptischen differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen, Crelle J. für die reine und ang. Math., 32 (1846), 220--226. ERAM 032.0923cj

  12. S. Matsutani, Explicit Hyperelliptic Solutions of Modified Korteweg-de Vries Equation: Essentials of Miura Transformation, J. Phys. A., 35 (2002), 4321--4333. MR1910215 (2003c:37105). Zbl 1040.37063.

  13. S. Matsutani, Hyperelliptic Function Solutions of Sine-Gordon Equation, New Developments in Mathematical Physics Research ed. by C. V. Benton 177-200, Nova Science Publ., New York, 2004. . MR2076278 (2005c:37140).

  14. J. Moser, Geometry of quadrics and spectral theory, The chern symposium, 147--188, Springer Berlin 1980. MR609560 (82j:58064). Zbl 0455.58018.

  15. D. Mumford, Tata Lectures on Theta II Birkhäuser, Boston, 1984. MR742776 (86b:14017). Zbl 0549.14014.

  16. C. Neumann, De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur, Crelle J. für die reine und ang. Math., 56(1859), 46--63. ERAM 056.1472cj.

  17. R. J. Schilling, Generalizations of the Neumann System I, Comm. Pure Appl. Math., XL (1987) 455-522. MR890174 (88k:58059). Zbl 0662.35083.

  18. M. Toda, Daen-kansu-Nyumon (Introduction to Elliptic Function) Nihonhyouron-sha, 1976 (in japanese).

  19. K. Weierstrass, Zur Theorie der Abelschen Functionen, Crelle J. für die reine und ang. Math., 47 (1854), 289--306. ERAM 047.1271cj.

  20. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge, Cambridge univ., 1927. MR178117 (31 #2375). Zbl 0951.30002.




8-21-1 Higashi-Linkan, Sagamihara, 228-0811,
Japan.
e-mail: rxb01142@nifty.com


http://www.utgjiu.ro/math/sma