">
Surveys in Mathematics and its Applications
ISSN 1842-6298
Volume 2 (2007), 59 - 89SHOCK WAVES IN GAS DYNAMICS
Abdolrahman Razani
Abstract. Shock wave theory was studied in literature by many authors. This article presents a survey with references about various topics related to shock waves: Hyperbolic conservation laws, Well-posedness theory, Compactness theory, Shock and reaction-diffusion wave, The CJ and ZND theory, Existence of detonation in Majda's model, Premixed laminar flame, Multidimensional gas flows, Multidimensional Riemann problem.
2000 Mathematics Subject Classification: 35L67, 76L05, 35L65, 35L05.Acknowledgments
Keywords: shock wave, conservation law.
This paper was prepared while the author was visiting the Royal Institute of Technology (KTH), Stockholm, in the period of his sabbatical leave. It would be a pleasure to thank Imam Khomeini International University for its financial support and KTH for its hospitality.
This paper owes much to the references [23], [44],[68], [61], [62], [82], [104], [125] and [137]. The author acknowledges a great debt to them.
References
K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to nonlinear equations, Math. Comput. Modelling 20 (9) (1994) 60-73. MR1302630. Zbl 822.65027.
J.D. Avrin, Qualitative theory for a model of laminar flames with arbitrary nonnegative initial data, J. Differential Equations 84 (1990), 290-308. MR1047571(91h:35316). Zbl 0712.35047.
J.D. Avrin, Qualitative theory of the Cauchy problem for a one-step reaction model on bounded domains, SIAM J. Math. Anal. 22 (1991) 379-391. MR1084962(92h:35103). Zbl 0737.35030.
J.D. Avrin, Flame propagation in models of complex chemistry, Houstan J. Math. 26 (2000), 145-163. MR1814732(2001j:80004). Zbl 0979.35073.
S. Benzoni-Gavage, D. Serre, Compacite par compensation pour une classe de systemes hyperboliques de p lois de conservation (p ≥ 3), Rev. Mat. Iberoam. 10 (1994), 557-579. MR1308703(96b:35136). Zbl 0834.35081.
S. Benzoni-Gavage, D. Serre, K. Zumbrun, Alternate Evans functions and viscous shock waves, SIAM J. Math. Anal. 32 (2001), 929-962. MR1828312(2002b:35144). Zbl 0985.34075.
H. Berestycki, B. Nicolaenko, B. Scheurer, Sur quelques problemes asymptotiques avec applications a la combustion, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), 105-108. MR0691376(84c:34078). Zbl 0526.34044.
H. Berestycki, B. Nicolaenko, B. Scheurer, Travelling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal. 16 (1985), 1207-1242. MR0807905(87h:35326). Zbl 0596.76096.
J. Billingham, G. N. Mercer, The effect of heat loss on the propagation of strongly exothermic combustion waves, Combust. Theory Model. 5 (2001), 319-342. MR1860153(2002g:80007). Zbl 1023.76054.
A. Bressan, A locally contractive metric for systems of conservation laws, Ann. Scuola Norm. Sup. Pisa CI. Sci. 22 (1995), 109-135. MR1315352(96k:35113). Zbl 0867.35060.
A. Bressan, G. Crasta, B. Piccoli, Well posedness of the Cauchy problem for n ✕ n systems of conservation laws, Mem. Amer. Math. Soc. 146 (2000), no. 694. MR1686652(2000m:35122). Zbl 0958.35001.
A. Bressan, P. Lefloch, Uniqueness of weak solutions to systems of conservation laws, Arch. Rational Mech. Anal. 140 (1997), 301-317. MR1489317(98m:35125). Zbl 0903.35039.
J. Buckmaster, G.S.S. Ludford, Theory of laminar flames, Cambridge Monographs on Mechanics and Applied Mathematics. Electronic & Electrical Engineering Research Studies: Pattern Recognition & Image Processing Series, 2. Cambridge University Press, Cambridge-New York, 1982. MR0666866(84f:80011). Zbl 0557.76001.
T. Chang, L. Hsiao, Riemann problem and discontinuous initial value problem for typical quasilinear hyperbolic system without convexity, Acta. Math. Sin. 20 (1977), 229-331.
S. Chen, Non-symmetric conical supersonic flow, in: Hyperbolic Problems: Theory, Numerics, and Applications, 1 (Zurich 1998), Internet. Ser. Numer. Math. 129, Birkhauser, Basel, 1999, 149-158. MR1715743(2000f:76059). Zbl 0926.35118.
G.Q. Chen, H. Frid, Large-time behavior of entropy solutions of conservation laws, J. Differential Equations 152 (1999), 308-357. MR1674529(99m:35150). Zbl 0926.35085.
K.N. Chuey, C.C. Conley, J.A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1997), 373-392. MR0430536(55\#3541). Zbl 0368.35040.
P. Clavin, Dynamical behavior of premixed fronts in laminar and turbulent flows, Prog. Energy Comb. Sci. 11 (1985), 1-59.
P. Colella, A. Majda, V. Roytburd, Theoretical and numerical structure for reacting shock waves, SIAM J. Sci. Stat. Comput. 7 (1986), 1059-1080. MR0857783(87i:76037). Zbl 0633.76060.
R. Courant, K.O. Friedichs, Supersonic flows and shock waves, Applied Mathematical Sciences 21, Springer-Verlag, New York-Heidelberg, 1976. MR0421279(54\#9284).
E. Conway, J.A. Smoller, Global solutions of the Cauchy problem for quasi-linear first order equations in several space variable, Commun. Pure Appl. Math. 19 (1966), 95-105. MR0192161(33\#388). Zbl 0138.34701.
C.M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Diff. Eqns. 14 (1973), 202-212. MR0328368(48\#6710). Zbl 0262.35038.
C.M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Rational Mech. Anal. 52 (1973), 1-9. MR0340837(49\#5587). Zbl 0262.35034.
C.M. Dafermos, Hyperbolic conservation laws in continuum physics. 2nd ed., Grundlehren der mathematischen Wissenschaften 325, Springer-Verlag, Berlin, 2005. MR2169977(2006d:35159). Zbl 1078.35001.
C.M. Dafermos, X. Geng, Generalized characteristic, uniqueness and regularity of solutions in a hyperbolic system of conservation laws, Proc. Roy. Soc. Edinb., Sect. A 116 (1990), 245-278. MR1127926(92h:35135). Zbl 0776.35033.
C.M. Dafermos, L. Hsiao, Hyperbolic systems and balance laws with inhomogeneity and dissipation, Indiana Uinv. Math. J. 31 (1982), 471-491. MR0662914(83m:35093). Zbl 0497.35058.
X. Ding, G.Q. Chen, P. Luo, Convergence of the fractional step Lax-Friedirichs scheme and Godunov scheme for the isentropic system of gas dynamics, Commun. Math. Phys. 121 (1989), 63-84. MR0985615(90d:65168). Zbl 0689.76022.
R.J. Diperna, Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of conservation laws, Indiana Univ. Math. J. 24 (1974/75), 1047-1071. MR0410110(53\#13860). Zbl 0309.35050.
R.J. Diperna, Singularises of solutions of nonlinear hyperbolic system of conservation laws, Arch. Rational Mech. Anal. 60 (1975/76), 75-100. MR0393867(52\#14675).
R.J. Diperna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 27-70. MR0684413(84k:35091). Zbl 0519.35054.
R.J. Diperna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys. 91 (1983), 1-30. MR0719807(85i:35118). Zbl 0533.76071.
W. Doring, The detonation process in gases, Ann. Physik 43 (1943), 421.
W. Fickett, Detonation in miniature, Amer. J. Phys. 47 (1979), 1050-1059.
W. Fickett, W. Davis, Detonation, University of California Press, Berkeley, Los Angeles, 1979.
C. Fries, Nonlinear asymptotic stability of general small-amplitude viscous laxian shock waves, J. Diff. Eqns. 146 (1998), 185-202. MR1625739(99h:35132). Zbl 0921.35106.
R.A. Gardner, On the Detonation of Combustible Gas, Trans. Amer. Math. Soc. 277 (1983), 431-468. MR0694370(84g:35118). Zbl 0543.76152.
R.A. Gardner, K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Commun. Pure Appl. Math. 51 (1998), 797-855. MR1617251(99c:35152). Zbl 0933.35136.
I. Gasser, P. Szmolyan, A geometric singular perturbation analysis of detonation and deflagration waves, SIAM J. Math. Anal. 24 (1993), 968-986. MR1226859(94h:35206). Zbl 0783.76099.
I. Gasser, P. Szmolyan, Detonation and Deflagration Waves with Multistep Reaction Schemes, SIAM J. Appl. Math. 55 (1995), 175-191. MR1313012(95i:35229). Zbl 0814.34028.
D. Gilbarg, The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math. 73 (1951), 256-275. MR0044315(13,401e). Zbl 0044.21504.
H. Gilquin, J. Laurens, C. Rosier, Multi-dimensional Riemann problems for linear hyperbolic systems, RAIRO Model. Math. Anal. Numer 30 (1996), 527-548. MR1411390(97k:35155). Zbl 0865.35078.
J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697-715. MR0194770(33\#2976). Zbl 0141.28902.
J. Glimm, P.D. Lax, Decay of solutions of systems of hyperbolic conservation laws, Bull. Amer. Math. Soc. 73 (1967), 105. MR0204826(34\#4662). Zbl 0146.33803.
J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Anal. 95 (1986), 110-146. MR0853782(88b:35127). Zbl 0631.35058.
B. Hanouzet, R. Natalini, A. Tesei, On the Chapman-Jouguet limit for a combustion model, SIAM J. Math. Anal. 29 (1998), 619-636. MR1617759(99b:76046). Zbl 0928.35092.
A. Heibig, Existence and uniqueness of solutions for some hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 126 (1994), 79-101. MR1268050(95d:35101). Zbl 0810.35058.
M. Hesaaraki, A. Razani, Detonative Travelling Waves for Combustions, Applicable Anal. 77 (2001), 405-418. MR1975745(2004b:76153). Zbl 1022.80007.
M. Hesaaraki, A. Razani, On the existence of Chapman-Jouguet detonation waves, Bull. Austral. Math. Soc. 63 (2001), 485-496. MR1834949(2002h:35189). Zbl 0986.34008.
E. Jouguet, Sur la propagation des discontinuites dans les fluides, C. R. Acad. Sci., Paris, Ser. I 132 (1901), 673-676.
A.K. Kapila, B.J. Mathowsky, A. Van Harten, An asymptotic theory of deflagration and detonations 1. The steady solutions, SIAM J. Appl. Math. 43 (1983), 491-519. MR0700527(85b:80012).
D.X. Kong, T. Yang, A note on: "Well-posedness theory for hyperbolic conservation laws" [Comm. Pure Appl. Math. 52 (1999), no. 12, 1553-1586; MR1711037(2000m:35126)] by T.P. Liu, Yang., Appl. Math. Letters 16 no. 2 (2003), 143-146. MR1963080(2004c:35269). Zbl 1073.35159.
G. Kreiss, H.O. Kreiss, Stability of systems of viscous conservation laws, Commun. Pure Appl. Math. 23 (1998), 1397-1424. MR1639151(2000c:35156). Zbl 0935.35013.
S.N. Kruzhkov, First order quasilinear equations in several independent variables, Math. USSR Sb. 81 (1970), 217-243. Zbl 0215.16203.
B. Larrouturou, The equations of one-dimensional unsteady flame propagation: existence and uniqueness, SIAM J. Math. Anal. 19 (1988), 32-59. MR0924543(89i:80002). Zbl 0662.35090.
P.D. Lax, The multiplicity of eigenvalues, Bull. Amer. Math. Soc. (N.S.) 2 (1982), 213-214. MR0640948(83a:15009). Zbl 0483.15006.
P.D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves, Conference Board of the mathematical Science Regional Conference Series in Applied Mathematics 11, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. MR0350216(50\#2709). Zbl 0268.35062.
P.D. Lax, Hyperbolic System of Conservation Laws II, Commun. Pure Appl. Math. 10 (1957), 537-566. MR0093653(20\#176).
P.D. Lax, Shock waves and entropy, Contrib. nonlin. functional Analysis, Proc. Sympos. Univ. Wisconsin, Madison 1971 (1971), 603-634. Zbl 0268.35014.
P.D. Lax, C.D. Levermore, S. Venakidis, The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior, in: Important Developments in Solution Theory, Springer Ser. Nonlinear Dynam. Springer, Berlin, 1993, 205-241. MR1280476(95c:35245). Zbl 0819.35122.
R.J. Leveque, B. Temple, Convergence of Godunov's method for a class of 2 ✕ 2 systems of conservation laws, Trans. Amer. Math. Soc. 288 (1985), 115-123. MR0773050(87c:35105). Zbl 0561.65067.
T. Li, On the initiation problem for a combustion model, J. Differential Equations 112 (1994), 351-373. MR1293475(95g:35112). Zbl 0808.35073.
T. Li, W. Sheng, The general multi-dimensional Riemann problem for hyperbolic systems with real constant coefficients, Discrete Conitin. Dynam. Systems 8 (2002), 737-744. MR1897878(2002m:35137). Zbl 1005.35061.
T. Li, W. Sheng, The general Riemann problem for the linearized system of two-dimensional isentropic flow in gas dynamics, J. Math. Anal. Appl. 276 (2002), 598-610. MR1944778(2003j:76087). Zbl 1106.76437.
J. Li, T. Zhang, S. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Pitman Monograph and Surveys in Pure and Applied Mathematics, Longman, Harlow 98, 1998. MR1697999(2000d:76106). Zbl 0935.76002.
W. Lien, T.P. Liu, Nonlinear stability of a self-similar 3-dimensional gas flow, Comm. Math. Phys. 204 (1999), 525-549. MR1707631(2000f:76106). Zbl 0945.76033.
P.L. Lions, Mathematical topics in fluid mechanics. Vol. 1. Incompressible models, Oxford Lecture Series in Mathematics and its Applications 3 Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996. MR1422251(98b:76001). Zbl 0866.76002.
P.L. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications 10 Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998. MR1637634(99m:76001). Zbl 0908.76004.
P.L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1994), 169-192. MR1201239(94d:35100). Zbl 0820.35094.
T.P. Liu, On shock wave theory, Taiwanese J. Math. 4 (2000), 9-20. MR1757979(2001c:35151). Zbl 0960.35062.
T.P. Liu, Zero dissipation and stability of shocks, Methods Appl. Anal. 5 (1998), 81-94. MR1631343(99m:35155). Zbl 0912.35107.
T.P. Liu, Pointwise convergence to $N$-waves for solutions of hyperbolic conservation laws, Bull. Inst. Math. Acad. Sinica 15 (1987), 1-17. MR0947772(89h:35202). Zbl 0646.35053.
T.P. Liu, Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws, Comm. Pure Appl. Math. 30 (1977), 767-796. MR0499781(58\#17556). Zbl 0358.35014.
T.P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57 (1977), 135-148. MR0470508(57\#10259). Zbl 0376.35042.
T.P. Liu, Admissible solutions of hyperbolic conservation laws, Mem. Amer. Math. Soc. 30 (1981), no. 240. MR0603391(82i:35116). Zbl 0446.76058.
T.P. Liu, Interactions of nonlinear hyperbolic waves, Proceedings of the 1989 conference on nonlinear analysis, Academia Sinica, Taipei, Republic of China, 19-24 June, 1989. Singapore: World Scientific.(1991), 171-183. MR1103571(92a:35111). Zbl 0820.35109.
T.P. Liu, Pointwise convergence to shock waves for viscous conservation laws, Comm. Pure Appl. Math. 50 (1997), 1113-1182. MR1470318(98j:35121). Zbl 0902.35069.
T.P. Liu, The entropy condition and the admissibility of Shocks, J. Math. Anal. Appl. 53 (1976), 78-88. MR0387830(52\#8669). Zbl 0332.76051.
T.P. Liu, Nonlinear stability of shock waves for Viscous Conservation Laws, Memoirs. Amer. Math. Soc. 328 (1985). MR0791863(87a:35127). Zbl 0617.35058.
T.P. Liu, Z. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws, Asian J. Math. 1 (1997), 34-84. MR1480990(99b:35138). Zbl 0928.35095.
T.P. Liu, T. Yang, A new entropy functional for a scalar conservation law, Comm. Pure Appl. Math. 52 (1999), 1427-1442. MR1702712(2000e:35139). Zbl 0941.35051.
T.P. Liu, T. Yang, Well-posedness theory for system of conservation laws, Comm. Pure Appl. Math. 52 (1999), 1553-1586. MR1702712(2000e:35139). Zbl 0931.35097.
T.P. Liu, L. A. Ying, Nonlinear stability of strong detonations for a viscous combustion model, SIAM J. Math. Anal. 26 (1995), 519-528. MR1325901(95k:35101). Zbl 0829.35053.
T.P. Liu, S.H. Yu, Hyperbolic conservation laws and dynamic systems, Discere. Contin. Dynam. Syst. 6 (2000), 143-145. MR1739597(2000j:35179). Zbl 1021.35067.
T.P. Liu, S.H. Yu, Nonlinear stability of weak detonation waves for a combustion model, Comm. Math. Phys. 204 (1999), 551-586. MR1707627(2000g:76108). Zbl 0976.76036.
T.P. Liu, S.H. Yu, Riemann problem for viscous conservation laws, To appear.
G. Lyng, K. Zumbrun, A stability index for detonation waves in Majda's model for reacting flow, Physica D 194 (2004), 1-29. MR2075662(2005d:35134). Zbl 1061.35018.
A. Majda, A qualitative model for dynamic combustion, SIAM J. Appl. Math. 41 (1981), 70-93. MR0622874(82j:35096). Zbl 0472.76075.
A. Majda, High Mach number combustion, Lecture in Appl. Math. 24, {Amer. Math. Soc., Providence, 1986. MR0840071(87c:80022).
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variable, Springer, New York, 1984. MR0748308(85e:35077). Zbl 0537.76001
A. Majda, R. Pego, Stable viscosity matrices for systems of conservation laws, J. Diff. Eqns. 56 (1985), 229-262. MR0774165(86b:35132). Zbl 0512.76067.
M. Marion, Qualitative properties of a nonlinear system for laminar flames without ignition temperature, Nonlinear Anal. 9 (1985), 1269-1292. MR0813658(87j:80016). Zbl 0648.76051.
G.N. Mercer, R.O. Weber, H.S. Sidhu, An oscillatory route to extinction for solid fuel combustion waves due to heat losses, Proc. R. Soc. A 454 (1998), 2015-2022. MR1640072(99d:80011). Zbl 0926.65087.
J. Von Neumann, Theory of Detonation Waves, Progress REPORT 238, Office of Scientific Research and Development, Report 549 (1942); Ballistic Research Lab. File X122.
J. Von Neumann, Theory of shock waves, Division, N.D.R.C., (1943) Office of Scientific Research and Development, Report 1140.
J. Von Neumann, Collected works. Vol. VI: Theory of games, astrophysics, hydrodynamics and meteorology, General editor: A. H. Taub. A Pergamon Press Book The Macmillan Co., New York 1963, 178-218. MR0157876(28\#1105). Zbl 0188.00105.
O.A. Olejnik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Usp. Mat. Nauk 14 (1959), 165-170. MR0117408(22\#8187). Zbl 0132.33303.
Y. Oshime, Canonical forms of 3 ✕ 3 strictly hyperbolic systems with real constant coefficients, J. Math. Kyoto. Univ. 31-4 (1991), 937-982. MR1141079(93f:35135). Zbl 0797.35107.
Y. Oshime, On the canonical forms of 3 ✕ 3 non-diagonalizable hyperbolic systems with real constant coefficients, J. Math. Kyoto. Univ. 31-4 (1991), 983-1021. MR1141080(93f:35136). Zbl 0793.35057.
A. Razani, Chapman-Jouguet Detonation for a Qualitative Model, Bull. Austral. Math. Soc. 66 (2002), 393-403. MR1939202(2003i:35162). Zbl 1029.34023.
A. Razani, Weak and Strong Detonation Profiles for a Qualitative Model, J. Math. Anal. Appl. 276 (2002), 868-881. MR1944793(2003i:76061). Zbl 1106.76400.
A. Razani, The structure of shock waves for a viscous combustion model, Submitted.
A. Razani, Existence of Chapman-Jouguet Detonation for a Viscous Combustion Model, J. Math. Anal. Appl. 293 (2004), 551-563. MR2053898(2005a:80009). Zbl 1058.35165.
A. Razani, On the existence of premixed laminar flames, Bull. Austral. Math. Soc. 69 (2004), 415-427. MR2066659(2005k:80010). Zbl 1058.34057.
B. Riemann, Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Gott. Abh. Math. Cl. 8 (1860), 43-65.
J.M. Roquejoffre, D. Terman, The asymptotic stability of a traveling wave solution arising from a combustion model, Nonlinear Anal. 22 (1994), 137-154. MR1258953(95a:35074). Zbl 0802.35071.
J.M. Roquejoffre, J.P. Vila, Stability of ZND detonation waves in the Majda combustion model, Asymptot. Anal. 18 (1998), 329-348. MR1668958(99m:80016). Zbl 0931.35026.
R. Rosales, A. Majda, Weakly nonlinear detonation waves, SIAM J. Appl. Math. 43 (1983), 1086-1118. MR0718631(86a:80003). Zbl 0572.76062.
D. Serre, Systems of Conservation Laws: A Challenge for the XXIst Century, Mathematics unlimited 2001 and beyond, 1061-1080, Springer, Berlin, 2001. MR1852203. Zbl 1005.35002.
D. Serre, Semi-linear and kinetic relaxation for systems of conservation laws. (Relaxation semi-linear et cintique de lois de conservation), Ann. Inst. Henri Poincare, Anal. Non Lineaire 17(2000), 169-192. MR1753092(2001g:35159). Zbl 0963.35117.
D. Serre, Discrete shock profiles and their stability. (English summary) Hyperbolic Problems: Theory, Numerics and Applications, Vol. II (Zurich 1998), Internat. Ser. Numer. Math. 130, Birkhauser, Basel, (1999), 843-853. MR1717256(2000k:35190). Zbl 0928.35102.
D. Serre, Systems of conservation laws. 2. Geometric structures, oscillations, and initial-boundary value problems. Translated from the 1996 French original by I. N. Sneddon. Cambridge University Press, Cambridge, 2000. MR1775057(2001c:35146). Zbl 0936.35001.
J. Shearer, Global existence and compactness in Lp for the quasi-linear wave equation, Commmun. Partial Diff. Eqns. 19 (1994), 1829-1877. MR1301175(95m:35120). Zbl 0855.35078.
M. Short, J.W. Dold, Weak detonations, their paths and transition to strong detonation, Combust. Theory Modelling 6 (2002), 279-296. MR1915330(2003g:76070). Zbl 1068.76527.
M. Short, J.J. Quirk, On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction, J. Fluid Mech. 339 (1979), 89-119. MR1453722(98c:80008). Zbl 0903.76038.
G.I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames, Annu. Rev. Fluid Mech. 15 (1983), 179-199. Zbl 0538.76053.
J.A. Smoller, Shock waves and reaction-diffusion equations, Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 258. Springer-Verlag, New York, 1994. MR1301779(95g:35002). Zbl 0807.35002.
G. Strang, On strong hyperbolicity, J. Math. Kyoto. Univ. 6 (1967), 397-417. MR0217439(36\#529). Zbl 0174.15103.
A. Szepessy, Dynamics and stability of a weak detonation wave, Comm. Math. Phys. 202 (1999), 547-569. MR1690953(2000g:35086). Zbl 0947.35019.
A. Szepessy, Z. Xin, Nonlinear stability of viscous shock waves, Arch. Rational Mech. Anal. 122 (1993), 53-103. MR1207241(93m:35125). Zbl 0803.35097.
L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math. 39 (1979), 136-210. MR0584398(81m:35014). Zbl 0437.35004.
R. Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR0609732(58\#29439). Zbl 0568.35002.
B. Temple, System of conservation laws with invariant submanifolds, Tran. Amer. Math. Soc. 280 (1983), 781-795. MR0716850(84m:35080).
D. Terman, Connection problems arising from nonlinear diffusion equations, Nonlinear diffusion equations and their equilibrium states, II (Berkeley, CA, 1986), 315-332, Math. Sci. Res. Inst. Publ., 13, Springer, New York, 1988. MR0956096(90c:35125). Zbl 0685.35056.
A.E. Tzavaras, Materials with internal variables and relaxation to conservation laws, Arch. Rational Mech. Anal. 146 (1999), 129-155. MR1718478(2000i:74004). Zbl 0973.74005.
A.I. Vol'pert, Spaces BV and quasilinear equations, Math. USSR Sb., (Russian) Mat. Sb. (N.S.) 73 (115) (1967), 255-302. MR0216338(35\#7172). Zbl 0168.07402.
D.H. Wagner, The existence and behavior of viscous structure for plan detonation waves, SIAM J. Math. Anal. 20 (1989) 1035-1054. MR1009344(90h:80009). Zbl 0675.76069.
D.H. Wagner, Existence of deflagration waves: Connection to a degenerate critical point, Proceeding of the conference on Physical Mathematics and Nonlinear Partial Differential Equations, (J. H. Lightbourne and S. M. Rankin, Eds.), West Virginia University, Marcel-Dekker, New York, 1985. MR0826834(87i:80013). Zbl 0586.35068.
D.H. Wagner, Premixed laminar flames as travelling waves, Lectures in Appl. Math. 24 (1986), 229-237. MR0840083(87e:80018).
D.H. Wagner, Detonation Waves and Deflagration Waves in the One Dimensional ZND Model for High Mach Number Combustion, Contemporary Maths 100 (1989), 277-285. MR1033523. Zbl 0682.76046.
D.H. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J. Differential Equations 68 (1987), 118-136. MR0885816(88i:35100). Zbl 0647.76049.
R.O. Weber, G.N. Mercer, H.S. Sidhu, B.F. Gray, Combustion waves for gases (le = 1) and solids (le → ∞), Proc. R. Soc. A 453 (1997), 1105-1118. MR1449095(98a:80007). Zbl 0885.76105.
F.A. Williams, Combustion Theory, The Benjamin/Cummings Publ. Co, Menlo Park, 1985.
L. Ying, T. Yang, C. Zhu, The rate of asymptotic convergence of strong detonations for a model problem, Japan J. Indust. Appl. Math. 16 (1999), 467-487. MR1719218(2000i:80009). Zbl 0647.76049.
L. Ying, C. Wang, The discontinuous initial value problem of a reacting gas flow system, Trans. Amer. Math. Soc. 266 (1981), 361-387. MR0617539(82k:35076). Zbl 0482.76071.
S.H. Yu, Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws, Arch. Rational Mech. Anal. 146 (1999), 275-370. MR1718368(2001b:35213). Zbl 0935.35101.
Y.B. Zeldovich, On theory of the propagation of detonations in gaseous systems, Tech. Memos. Nat. Adv. Comm. Aeronaut. (1950), no. 1261, 50 pp. MR0038203(12,370b).
Y.B. Zeldovich, A.S. Kompaneets, Theory of Detonation, Academic Press, New York, 1960.
Y.B. Zeldovich, Y.P. Raizer, Elements of gasdynamics and the classical theory of shock waves, Academic Press, INC, 1968.
T. Zhang, Y. Zheng, Axisymmetric solutions of the Euler equations for polytropic gases, Arch. Rational Mech. Anal. 142 (1998), 253--279. MR1636533(2000d:76103). Zbl 0909.76087.
K. Zumbrun, P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J. 47 (1998), 741-871. MR1665788(99m:35157). Zbl 0928.35018.
K. Zumbrun, P. Howard, Errata to: "Pointwise semigroup methods, and stability of viscous shock waves", Indiana Univ. Math. J. 47 (1998), 741-871], Indiana Univ. Math. J. 51 (2002), 1017-1021. MR1947866(2004a:35155).
K. Zumbrun, D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48 (1999), 937-992. MR1736972(2001h:35122). Zbl 0944.76027.
Abdolrahman Razani
Department of Mathematics, Faculty of Science, Imam Khomeini International University,
Postal code: 34149-16818,
Qazvin, Iran.
e-mail: razani@ikiu.ac.ir
http://math.ipm.ac.ir/razani