Surveys in Mathematics and its Applications
ISSN 1842-6298
Volume 1 (2006), 111 - 116EXISTENCE OF POSITIVE SOLUTION TO A QUASILINEAR ELLIPTIC PROBLEM IN RN
Dragoş-Pătru Covei
Abstract. In this paper we prove the existence of positive solution for the following quasilinear problem
where is the p-Laplacian operator.
The proof is based on the results due to Diaz-Saa ([2]).2000 Mathematics Subject Classification: 35J60.
Keywords: quasilinear elliptic problem, p-Laplacian, positive solution.References
K. Chaib, A. Bechah and F. De Thelin, Existence and uniqueness of positives solution for subhomogeneous elliptic problems in RN. Revista de Mathematicas aplicadas, 21 (1-2) (2000), 1-18. MR1822068(2001m:35099). Zbl 0982.35038.
J. I. Diaz and J. E. Saa, Existence et unicite de solutions positives pour certaines equations elliptiques quasilineaires, CRAS 305 Serie I (1987), 521-524. MR0916325(89e:35051). Zbl 0656.35039.
E. DiBenedetto, $C^{1,\alpha}$- local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850. MR0709038(85d:35037). Zbl 0539.35027.
J. V. Goncalves and C. A. Santos, Positive solutions for a class of quasilinear singular equations, Electronic Journal of Differential Equations, Vol. 2004 No. 56, (2004), 1-15. MR2047412(2004m:34065). Zbl pre02100297.
G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (11) (1988), 1203-1219. MR0969499(90a:35098). Zbl 0675.35042.
N. Ural'tseva, Degenerate quasilinear elliptic systems, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 7 (1968), 184-222. Zbl 0199.42502.
J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. {MR0768629(86m:35018). Zbl 0561.35003.
Z. Zhang, A remark on the existence of entire solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl. 215 (1997), 579-582. MR1490771(98j:35055). Zbl 0891.35042.
Acknowledgement. This work was supported by the CEEX grant ET65/2005, contract no 2987/11.10.2005, from the Romanian Ministry of Education and Research.
Dragoş-Pătru Covei
University Constantin Brâncuşi of Târgu-Jiu,
Bld. Republicii 1, 210152, Târgu-Jiu,
Romania.
e-mail: dragoscovei@utgjiu.ro
http://www.utgjiu.ro/math/dcovei/