Surveys in Mathematics and its Applications


ISSN 1842-6298
Volume 1 (2006), 13 - 22

ON THE SPECTRUM OF A MORPHISM OF QUOTIENT HILBERT SPACES

Sorin Nădăban

Abstract. In this paper we define the notion of spectrum for a morphism of quotient Hilbert spaces. The definition is the same with the one given by L.Waelbroeck but the proofs that the spectrum is a compact and nonempty set are different. In this context we also make some remarks concerning the resolvent function and the spectral radius.

2000 Mathematics Subject Classification: 47A10, 46M18.
Keywords: quotient Hilbert spaces, morphism, spectrum.

Full text

References

  1. M.Akkar; H.Arroub, Calcul fonctionnel harmonique dans une algebre de Banach involutive quotient, Bull. Belg. Math. Soc 3, No. 5 (1996), 521-535. MR1425280(97k:46054). Zbl 0873.46027.

  2. A. Terescenco, F. Turcu, S. Nădăban, A definition of the adjoint between quotient Hilbert spaces, talk at the 17th International Conference of Operator Theory, Timisoara, 1998.

  3. F.-H.Vasilescu, Spectral Theory in Quotient Frechet Spaces I, Revue Roumaine Mathematique Pures Applique, 32 (1987), 561-579. MR0900363 (88h:47004). Zbl 0665.46058.

  4. L.Waelbroeck, Quotient Banach Spaces, Banach Center Publications, Vol.8, Warszaw, (1982), 553-562. MR0738315(85m:46072a). Zbl 0492.46013.

  5. L.Waelbroeck, The Taylor Spectrum and Quotient Banach Spaces,Banach Center Publications, Vol.8, Warszaw, (1982), 573-578. MR0738317 (85m:46072c). Zbl 0492.46014.

  6. L.Waelbroeck, Holomorfic Functional Calculus and Quotient Banach Algebra, Studia Math., 75 (1983), 273-286. MR0722252(85j:46088a). Zbl 0492.46039.

Sorin Năbădan
Department of Mathematics, Faculty of Exact Sciences,
University "Aurel Vlaicu" of Arad, Romania.
e-mail: snadaban@gmail.com

http://www.utgjiu.ro/math/sma