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Abstract. We derive by the traditional algebraic Bethe ansatz method the Bethe equa-
tions for the general open XXZ spin chain with non-diagonal boundary terms under the
Nepomechie constraint [J. Phys. A 37 (2004), 433–440, arXiv:hep-th/0304092]. The tech-
nical difficulties due to the breaking of U(1) symmetry and the absence of a reference
state are overcome by an algebraic construction where the two-boundary Temperley–Lieb
Hamiltonian is realised in a new Uqsl2-invariant spin chain involving infinite-dimensional
Verma modules on the edges [J. High Energy Phys. 2022 (2022), no. 11, 016, 64 pages,
arXiv:2207.12772]. The equivalence of the two Hamiltonians is established by proving Schur–
Weyl duality between Uqsl2 and the two-boundary Temperley–Lieb algebra. In this frame-
work, the Nepomechie condition turns out to have a simple algebraic interpretation in terms
of quantum group fusion rules.
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1 Introduction

Let us consider the open XXZ Hamiltonian acting on H := (C2)⊗N with the most general
boundary fields

Hn.d. :=
1

2

N−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + cosh(h)σzi σ

z
i+1 + sinh(h)

(
σzi+1 − σzi

))
+

sinh(h)

2 sinh(hδl) cosh(hκl)

(
ehθlσ+1 + e−hθlσ−1 + sinh(h(δl + κl))σ

z
1

)
+

sinh(h)

2 sinh(hδr) cosh(hκr)

(
ehθrσ+N + e−hθrσ−N − sinh(h(δr + κr))σ

z
N

)
(1.1)
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depending on 7 parameters h, δl/r, κl/r and θl/r, where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
are Pauli matrices and

σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)
, σ− =

1

2
(σx − iσy) =

(
0 0
1 0

)
are raising and lowering matrices. Performing a rotation of angle θ around the z-axis shifts θl/r
by θ while leaving the other 5 parameters unchanged so one can always set, for example, θr to 0.
In other words, the spectrum of Hn.d. only depends on the difference

Θ := θl − θr (1.2)

and so there is actually only 6 relevant parameters.1

While it is known from Sklyanin’s boundary Bethe ansatz formalism [58] and the subsequent
construction of boundary K-matrices [21, 22] that Hn.d. is integrable, the rigorous implementa-
tion of this procedure for the most general choice of parameters is far from being straightforward.
The main reason is that the non-diagonal boundary terms in (1.1) containing σ±1 and σ±N break

the U(1) invariance of the usual XXZ model and so |↑⟩⊗N is not an eigenvector of Hn.d. anymore
and cannot be used as a reference state (also sometimes called “pseudovacuum”) for algebraic
Bethe ansatz (ABA).

In the last twenty years, various new approaches have been proposed to circumvent this
problem. A first major breakthrough was made in [53, 54] and independently in [10], with the
derivation of the Bethe ansatz equations (BAE) under the assumption

δl + κl + δr + κr ±Θ = 2M + 1−N ∈ Z, (1.3)

where M ≥ 0 is the magnon number, a constraint informally known as the “Nepomechie con-
dition”.2 Later on, the BAE for any choice of parameters were derived [60] and it turned out
that if the constraint (1.3) is not satisfied they contained an additional “inhomogeneous” term,
which moreover fixed the magnon number to M = N (see more details in Appendix C). The
same equations were also obtained using various forms of coordinate Bethe ansatz [16, 20, 57]
and the separation of variables method [44]. Additionally, the closely related modified algebraic
Bethe ansatz formalism was developed [2, 6, 7, 8] as well as an algebraic framework based on
the so-called q-Onsager algebra [5].

Although these methods provide a satisfactory solution to the spectral problem of Hn.d. it is
fair to say they are rather indirect and still lack a simple representation-theoretic understanding.
Indeed, in the above-mentioned works, the BAE are either derived by analytically continuing
some truncated functional relations and fusion rules at roots of unity [53, 54], by using an intri-
cate dynamical gauge (or face-vertex [31]) transformation [8, 10] or by writing the most general
form for the eigenvalues of the transfer matrix respecting certain analyticity conditions and
asymptotics [60]. In all these different approaches, the Nepomechie condition (1.3) naturally
appears at some step of the computation but its representation-theoretic meaning remains elu-
sive. Notice that the role of Nepomechie condition (1.3) was also touched upon from different
perspectives in several other works [2, 3] (see also [33] for the XXX case).

In this paper, we will rigorously derive the BAE for all Hn.d., under the constraint (1.3) by
standard algebraic Bethe ansatz and explain the algebraic origin of this condition.

1One can also show that the spectrum of Hn.d. does not depend on the sign of Θ (see end of Section 2.1).
2Note that the notations α±, β±, θ±, η in [54] correspond here to δl/r, κl/r, θl/r, h respectively and that

k = 2M + 1−N according to [54, equation (3.31)].
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Our first step is to reinterpret Hn.d. as (a representation of) an abstract element

H := −µlbl − µrbr −
N−1∑
i=1

ei

belonging to a certain lattice algebra, namely the two-boundary Temperley–Lieb algebra
2Bδ,yl/r,Y,N , evaluated in a specific 2N -dimensional representation (W0, ρW0) called the vacuum
module (see definitions in Section 2.1). Concretely, this means that, with some (explicit) map-
ping of parameters (h, δl/r, κl/r,Θ) ↔ (δ, yl/r, Y, µl/r), we have Hn.d. = ρW0(H) (see Theorem 2.1
which is due to [19]).

The next step is to repackage all the Hn.d. satisfying (1.3) into sectors of a different spin chain
whose Hilbert space

H2b := Vαl
⊗ (C2)⊗N ⊗ Vαr

is constructed from N spin-12 representations and two infinite-dimensional Verma modules Vαl/r

of the Uqsl2 quantum group and whose Hamiltonian H2b commutes with the action of Uqsl2
on H2b (Sections 2.2 and 2.3). As a representation of Uqsl2, H2b decomposes into an infinite
direct sum of irreducible representations, with some multiplicity spaces HM , M ≥ 0 (2.36).
It was shown in [14]3 that HM carries an action of the two-boundary Temperley–Lieb algebra
2Bδ,yl/r,YM ,N for some explicit value YM of the Y parameter (2.38). Under explicit assumptions
on the generic values of the bulk parameter q and of the boundary parameters αl/r we prove
in Theorem 2.3 that HM , as a 2Bδ,yl/r,YM ,N -module, is isomorphic to the (irreducible) vacuum
moduleW0 ifM ≥ N and to an irreducible piece ofW0 if 0 ≤M ≤ N−1, thereby confirming [14,
Conjecture 1]. This new Schur–Weyl duality between Uqsl2 and the two-boundary Temperley–
Lieb algebra is the main algebraic result of this paper.4

Using this theorem, we can interpret the restriction ofH2b toHM as a representation ofH and
thus identify it with Hn.d. satisfying (1.3) for M ≥ N and with an irreducible subblock of Hn.d.

satisfying (1.3) for 0 ≤M ≤ N−1 (Corollary 2.4). By a simple algebraic transformation, we are
also able to reach the remaining block of Hn.d. for 0 ≤M ≤ N−1 as well as negative values ofM ,
thus realising any Hn.d. satisfying (1.3) as some subsector of H2b (Corollary 2.5). In other words,
the spectral problem of Hn.d. for all values of the parameters subject to the constraint (1.3) is
equivalent to diagonalising H2b. But this is a simpler task, since H2b, as a representation of H,
is integrable [24], and, as an operator acting on H2b, is Uqsl2-invariant and so has a suitable
highest-weight reference eigenvector to implement ABA. This formalism also gives an algebraic
interpretation of the Nepomechie condition: it is just a direct consequence of the fusion rules for
the Uqsl2-modules entering the construction of H2b, in particular Verma modules, which restrict
the possible values of the Y parameter of 2Bδ,yl/r,Y,N to the discrete set {YM ,M ∈ Z}.

It is worth mentioning that the idea to use the two-boundary Temperley–Lieb algebra to
derive the BAE for Hn.d. and to understand the Nepomechie condition from an algebraic point
of view was previously explored in [20]. However, the lack of a suitable Uqsl2-invariant repre-
sentation in that paper makes it necessary to use coordinate Bethe ansatz in a given basis and
keeps the relevant underlying algebra hidden.

The paper is divided into two parts. The first (Section 2), purely algebraic, introduces the
objects and states the theorems we need to make a precise connection between Hn.d. and H2b.
The second (Section 3) is devoted to the diagonalisation of H2b, first by implementing the ABA

3The analysis in this reference was performed for even N only, however it can be extended rather straightfor-
wardly to the odd N case too.

4It is worth mentioning that a similar Schur–Weyl duality theorem but with finite-dimensional spin-j rep-
resentations of Uqsl2 at the boundary has been recently proven by Daugherty and Ram [17, Theorem 5.1] (see
also [18]).
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procedure for the simpler one-boundary Hamiltonian Hb (Section 3.1) and then by extending
it to the two-boundary Hamiltonian H2b (Section 3.2). We also discuss the completeness of
the BAE in both cases. The main text is supplemented by three technical appendices, the
first (Appendix A) containing the proof of Theorem 2.3, the second (Appendix B) carrying out
ABA for the most general integrable Uqsl2-invariant highest-weight spin chain and the third
(Appendix C) discussing an alternative form of BAE for Hn.d. also appearing in the literature.

Notations

� N : length of bulk of spin chains.

� σx = ( 0 1
1 0 ), σ

y =
(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
: Pauli matrices.

� σ+ =
1

2
(σx + iσy) = ( 0 1

0 0 ), σ
− =

1

2
(σx − iσy) = ( 0 0

1 0 ): raising and lowering matrices.

� H := (C2)⊗N : Hilbert space of the open XXZ spin chain of length N .

� Hn.d.: open XXZ Hamiltonian with non-diagonal boundary terms.

� H
(M)
n.d. : Hn.d. under the Nepomechie constraint (1.3) for M ∈ Z.

� TLδ,N : Temperley–Lieb (TL) algebra on N sites with loop weight δ.

� ei, 1 ≤ i ≤ N − 1: generators of the Temperley–Lieb algebra or their spin-chain represen-
tatives.

� Bδ,y,N : blob algebra on N sites with loop weight δ and blob weight y.

� b, b̄ := 1− b: blob/anti-blob generator or its spin-chain representative.

� 2Bδ,yl/r,Y,N : two-boundary Temperley–Lieb algebra onN sites with loop weight δ, left/right
blob weights yl/r and two-blob weight Y .

� bl/r, b̄l/r := 1 − bl/r: left/right blob/anti-blob generators (bl := b) or their spin-chain
representatives.

� Wbb
j , Wbb̄

j , W b̄b
j , W b̄b̄

j , 1 ≤ j ≤ N/2, and W0: standard 2Bδ,yl/r,Y,N -modules.

� H := −µlbl − µrbr −
∑N−1

i=1 ei ∈ 2Bδ,yl/r,Y,N : abstract two-boundary Temperley–Lieb
Hamiltonian.

� 2Buni
δ,yl/r,N

: universal two-boundary Temperley–Lieb algebra on N sites with loop weight δ

and left/right blob weights yl/r and central element Y.

� q = eh: deformation parameter of the XXZ spin chain.

� [x]q :=
qx−q−x

q−q−1 : q-deformed numbers.

� {x} := qx − q−x.

� Uqsl2: quantum group, a q-deformation of SU(2).

� E, F, K, K−1: generators of Uqsl2.

� C: Casimir element of Uqsl2.

� Vα: infinite-dimensional Verma module of Uqsl2 of highest-weight qα−1.

� HXXZ: Uqsl2-invariant open XXZ Hamiltonian.

� Hb := Vα ⊗ (C2)⊗N : Hilbert space of the one-boundary spin chain of length N .

� Hb := −µb+HXXZ: Uqsl2-invariant one-boundary Hamiltonian with coupling µ.

� H2b := Vαl
⊗ (C2)⊗N ⊗ Vαr : Hilbert space of the two-boundary spin chain of length N .
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� H2b := −µlbl + HXXZ − µrbr: Uqsl2-invariant two-boundary Hamiltonian with couplings
µl, µr.

� HM , M ≥ 0: subspaces of highest-weight vectors of weight qαl+αr+N−2M−2 of H2b.

2 Algebraic setting

In this section, we present the necessary algebraic tools:

� the relevant lattice algebras, namely the Temperley–Lieb (TL) algebra, the Blob algebra
and the two-boundary Temperley–Lieb algebra and their representations (Section 2.1),

� the Uqsl2 quantum group and its representations (Section 2.2),

� Uqsl2-invariant spin chains with Hilbert spaces H, Hb, H2b and corresponding Hamiltoni-
ans HXXZ, Hb, H2b (Section 2.3),

� Schur–Weyl duality between the Uqsl2 and lattice algebra actions on these spin chains
(Section 2.3).

Most of the formalism and results were introduced in [14] and we will often refer to this paper for
additional details. To simplify the exposition we will always assume that N is strictly positive
and even, but our construction can be extended to the odd N case too.

2.1 Lattice algebras

The TL algebra [59], denoted TLδ,N , is defined by generators (ei)1≤i≤N−1 and relations

e2i = δei, eiei±1ei = ei, [ei, ej ] = 0 ∀|i− j| ≥ 2, (2.1)

with δ ∈ C some parameter. If we set

ei =

.

.

.

.
. . .

. .

. .
. . .

.

.

.

.

i i+ 1

these relations are neatly expressed by the graphical rules

e2i =

.

.
. . .

. .

. .
. . .

.

..

.
. . .

. .

. .
. . .

.

.

= δ
.

.
. . .

. .

. .
. . .

.

.

eiei+1ei =

. . .

.

. . .

. . .

.

.

.
. . .

. . .

.

.

.

. . .

. . .

.
. . .

. . .

.

. . .

. . .

.

.

.
. . .

= . . .

.

. . .

. . .

.

.

.
. . .

The parameter δ is then interpreted as the weight of a closed loop.
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The TL can be shown to be finite-dimensional and all its irreducible representations, called
standard modules, have been classified. They are indexed by an integer 0 ≤ j ≤ N/2 interpreted
as half the number of through lines propagating in a TL diagram. Concretely, the standard
module Wj has a basis of so-called link states which are half-diagrams containing exactly 2j
through lines. For example, for N = 4, these are given by

W0 = C⟨. . . .,. .. . ⟩,

W1 = C⟨. . .. ..,.. ... . , .... . .⟩,

W2 = C⟨.. .. .. ..⟩.

A TL diagram then acts on these link states by propagating them with the diagrammatical rules
of the TL algebra, with the additional condition that if two through lines are contracted then
the diagram acts by 0. For example,

e2
. .. .

= . .. ..

.

. . .

.. .

= δ
. .. .

,

e2
. . . .

= . . . ..

.

. . .

.. .

=
. .. .

,

e2
. . .. .. = . . .. ...

.

. . .

.. .

=
.. ... .

,

e3
. . .. .. = . . .. ...

.

. ..

. . .

= 0.

By some standard combinatorial arguments one can show that

dimWj =

(
N

N
2 − j

)
−
(

N
N
2 − j − 1

)
. (2.2)

Let us now define some boundary extensions of the TL algebra. The simplest one is the blob
algebra introduced in [47] and denoted Bδ,y,N . It has an additional generator b called the blob
satisfying

b2 = b, e1be1 = ye1, [b, ei] = 0 for 2 ≤ i ≤ N − 1, (2.3)

with y ∈ C some parameter. Graphically, b is represented by

b =

.

.
•

.

.
. . .

.

.

.

.
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and the rules (2.3) mean that

.

.

•
• =

.

.
•

. .

. .. .

. .

• = y

. .

. .
(2.4)

The parameter y is then interpreted as the weight of a closed loop carrying a blob. One often
introduces the anti-blob b̄ = 1− b, represented by

b̄ =

.

.
◦

.

.
. . .

.

.

.

.

which also satisfies relations (2.3) but with the blob weight y replaced by δ − y. Moreover,
bb̄ = b̄b = 0 so diagrammatically

.

.

•
◦ =

.

.
•
◦ = 0 (2.5)

which justifies the anti-blob terminology.

The blob algebra is also finite-dimensional and the classification of its standard modules
is very similar to the analogous construction in the TL algebra. They are also indexed by
0 ≤ j ≤ N/2 and constructed using link states with 2j through lines but now we also have
to decorate all the cups and through lines which can touch the left boundary by blobs and
anti-blobs. Since only the leftmost through line can touch it, we have two types of standard
modules: Wb

j where the leftmost through line carries a blob and W b̄
j where it carries an anti-blob.

For j = 0, there are no through lines so we just have W0.
5 For example,

Wb
1 = C⟨. .• ..• ..,. .◦ ..• ..,..• ... . ,..• .. . .⟩,

W b̄
1 = C⟨. .◦ ..◦ ..,. .• ..◦ ..,..◦ ... . ,..◦ .. . .⟩.

The action of the blob algebra on Wb
j , W b̄

j , with 1 ≤ j ≤ N/2, and W0 is defined in the same
way as for the TL algebra with the additional diagrammatical rules (2.4) and (2.5). Moreover,
one can show [38, 47] that

dimWb
j = dimW b̄

j =

(
N

N/2 + j

)
, dimW0 =

(
N

N/2

)
. (2.6)

5We will often slightly abuse notation and denote W0 the module with no through lines irrespectively of the
lattice algebra we consider.
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We can further extend the blob algebra by working with two blobs, one on the left, de-
noted bl := b, with weight yl := y and one on the right, denoted br and represented by

br =

.

.
■

.

.
. . .

.

.

.

.

and satisfying an analogue of (2.3) and (2.4) but on the right

b2r = br, eN−1breN−1 = yreN−1,

[bl, br] = 0, [br, ei] = 0 for 1 ≤ i ≤ N − 2, (2.7)

with a weight yr for a loop carrying the right blob ■. One of course also has a right anti-blob
b̄r = 1−br represented by □ and satisfying (2.7) with weight δ−yr together with br b̄r = b̄rbr = 0.
This is not sufficient from a diagrammatical point of view however as we also need to assign
some weight Y ∈ C to a closed loop carrying both the left and the right blob. Formally, this
non-local relation is given by(

N/2∏
i=1

e2i−1

)
bl

(
N/2−1∏
i=1

e2i

)
br

(
N/2∏
i=1

e2i−1

)
= Y

N/2∏
i=1

e2i−1. (2.8)

The generators (ei)1≤i≤N−1 and bl/r with relations (2.1), (2.3), (2.7) and (2.8), then define a fi-
nite-dimensional algebra called the two-boundary Temperley–Lieb algebra denoted 2Bδ,yl/r,Y,N .

The classification of standard modules of the two-boundary TL algebra is a natural gen-
eralisation of the blob algebra case [19, 27]. Namely, for 1 ≤ j ≤ N we have four types of
modules, namely Wbb

j , W b̄b
j , Wbb̄

j and W b̄b̄
j , with 2j through lines depending on whether the

leftmost/rightmost line carries a blob/anti-blob, as well as a single module W0 with no through
lines, all of these being constructed from link states decorated by left/right blob/anti-blob in all
allowed ways. The action of 2Bδ,yl/r,Y,N on these representations is again given by the defining
diagrammatical rules of the algebra. One can show [19, 27] that

dimWbb
j = dimW b̄b

j = dimWbb̄
j = dimW b̄b̄

j =

N/2∑
k=j

(
N

N/2 + k

)
, dimW0 = 2N . (2.9)

W0 is called the vacuum module. It is generically irreducible but can become reducible but
indecomposable for certain values of the parameters [19] which will be important for us later on
(see Section 2.3 and Appendix A). It is also worth mentioning that since a closed loop touching
both boundaries can be formed only if there are no through lines, W0 is the only standard
module which actually depends on the value of Y .

The main interest of this whole formalism for the open XXZ spin chain with non-diagonal
boundary terms is the following. Let us set

ei = −1

2

(
σxi σ

x
i+1 + σyi σ

y
i+1 + cosh(h)

(
σzi σ

z
i+1 − 1

)
+ sinh(h)

(
σzi+1 − σzi

))
,

bl =
1

2 sinh(hαl)

(
iehθlσ+1 + ie−hθlσ−1 + cosh(hαl)σ

z
1

)
+

1

2
,

br = − 1

2 sinh(hαr)

(
iehθrσ+N + ie−hθrσ−N + cosh(hαr)σ

z
N

)
+

1

2
,

µl/r =
sinh(h) sinh

(
hαl/r

)
sinh

(
ζl/r −

hαl/r

2

)
sinh

(
ζl/r +

hαl/r

2

) (2.10)
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with some new parameters αl/r and ζl/r. Then, up to an irrelevant additive constant, we have

Hn.d. = −µlbl − µrbr −
N−1∑
i=1

ei

with6

hδl =
hαl

2
− ζl, hκl =

hαl

2
+ ζl +

iπ

2
,

hδr =
hαr

2
− ζr, hκr =

hαr

2
+ ζr −

iπ

2
, (2.11)

and the following result holds.

Theorem 2.1 (J. de Gier, A. Nichols [19]). The ei, 1 ≤ i ≤ N − 1, and bl/r from (2.10) satisfy
the relations of the two-boundary TL algebra with weights

δ = 2 cosh(h), yl/r =
sinh

(
h(αl/r + 1)

)
sinh

(
hαl/r

) ,

Y =
sinh

(
hαl+αr+1±Θ

2

)
sinh

(
hαl+αr+1∓Θ

2

)
sinh(hαl) sinh(hαr)

, (2.12)

where Θ := θl − θr (1.2), and thus define a 2N -dimensional representation of 2Bδ,yl/r,Y,N on

(C2)⊗N . Moreover, this representation is isomorphic to the vacuum module W0.

Using this theorem, we can identify (C2)⊗N with W0 and interpret Hn.d. as an abstract
element of 2Bδ,yl/r,Y,N

H := −µlbl − µrbr −
N−1∑
i=1

ei (2.13)

evaluated in the vacuum representation W0, that is Hn.d. = ρW0(H) where ρW0 : 2Bδ,yl/r,Y,N →
EndC(W0) is the representation map of W0. This will be an essential ingredient of our construc-
tion. In what follows we will always tacitly make the identification (C2)⊗N ∼= W0. To the best
of our knowledge, there is no simple way to construct this isomorphism explicitly.

Note also that the weights (2.12) do not depend on the sign of Θ, so the spectrum Hn.d.

is invariant under the transformation Θ ↔ −Θ. In particular, the +Θ and −Θ choices in the
Nepomechie condition (1.3) are equivalent. When convenient, we will write ±Θ instead of Θ.

2.2 The Uqsl2 quantum group

Let us now introduce the second main ingredient: the Uqsl2 quantum group.
The algebra Uqsl2 [25, 40] (see also [12, Chapter 6.4] and [43, Chapters VI and VII]) is defined

by generators E, F, K and K−1 and relations

KEK−1 = q2E, KFK−1 = q−2F, [E,F] =
K− K−1

q− q−1
, KK−1 = K−1K = 1. (2.14)

It is a q-deformation of the universal enveloping algebra of the Lie algebra sl2, in the sense that
we recover the commutation relations of the sl2 triple (E,F,H) in the limit q → 1 with K = qH.

6Other choices are possible but this will not affect the end result.
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It is important for defining the action on tensor products of representations that this algebra
admits the coproduct

∆(E) = 1⊗ E+ E⊗ K, ∆(F) = K−1 ⊗ F+ F⊗ 1, ∆
(
K±1

)
= K±1 ⊗ K±1 . (2.15)

As sl2, Uqsl2 admits (2j + 1)-dimensional spin-j representations for all j ∈ 1
2N. For our pur-

poses we will need the fundamental spin-12 representation C2, where the action of the generators
is given by

EC2 = σ+, FC2 = σ−, K±1
C2 = q±σz

. (2.16)

Let us also introduce the Verma modules Vα [43, Chapter VI.3] that we shall need to define our
modified boundary conditions. For all α ∈ C, they are given in a basis Vα :=

⊕
0≤nC |n⟩ by

EVα |n⟩ = [n]q[α− n]q |n− 1⟩ , FVα |n⟩ = |n+ 1⟩ , K±1
Vα

|n⟩ = q±(α−1−2n) |n⟩ (2.17)

for all n ≥ 0, with |−1⟩ = 0, and where

[x]q :=
qx − q−x

q− q−1
=

{x}
{1}

, {x} := qx − q−x.

The basis vectors |n⟩ diagonalise K and their K-eigenvalue qα−1−2n is called the weight. The
vector |0⟩ is annihilated by the raising operator E and is thus called the highest-weight vector.
Note that its weight is qα−1 with the −1 shift of α introduced for later convenience. When q
is not a root of unity, Vα is irreducible if and only if qα ̸= ±qn for all n ∈ N∗.7 If that is the
case, Vα is also unique, meaning that any Uqsl2-module generated from a highest-weight vector
of weight qα−1 is isomorphic to Vα. Finally, for all α ∈ C such that qα ̸= ±1 we have the fusion
rule8

Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1. (2.18)

The above definitions have to be slightly adapted if q is a root of unity. This case was
thoroughly treated in [14] and presents no major complications. To keep the exposition simple,
from now on we will always assume q to be generic (not a root of unity) unless otherwise stated.
We refer to [14] for further details.

2.3 Uqsl2-invariant spin chains and Schur–Weyl duality

2.3.1 The bulk spin chain

Applying the coproduct (2.15) N − 1 times (recall that the coproduct is coassociative, and so
the result does not depend on the order of its application) to the spin-12 representation (2.16)
we obtain a well-defined action of Uqsl2 on H := (C2)⊗N . Now if we set

ei = −1

2

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

q+ q−1

2

(
σzi σ

z
i+1 − 1

))
− q− q−1

4

(
σzi+1 − σzi

)

=


0 0 0 0
0 q −1 0
0 −1 q−1 0
0 0 0 0

 (2.19)

7If qα ∈ ±qN
∗
, Vα contains a unique non-trivial stable subspace but is indecomposable.

8If qα = ±1, the two factors Vα+1 and Vα−1 get “glued” into a single indecomposable representation known
as a tilting module.
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as in (2.10), with q = eh, it turns out that the ei commute with this Uqsl2 action [56]. This
implies that the Hamiltonian

HXXZ =
1

2

N−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

q+ q−1

2
σzi σ

z
i+1

)
+

q− q−1

4

(
σzN − σz1

)
=

q+ q−1

2
(N − 1)−

N−1∑
i=1

ei (2.20)

(which is just the first line of Hn.d. from (1.1), i.e., without the two boundary terms) is Uqsl2-
invariant. More generally, the whole TLδ,N -action onH generated by the ei commutes with Uqsl2.
Actually, not only they commute, but they are even mutual maximal centralisers and H decom-
poses as a (TLδ,N , Uqsl2)-bimodule [34, 41, 48, 49]

H =

N/2⊕
j=0

Wj ⊗ C2j+1, (2.21)

whereWj are the standard TLδ,N -modules introduced above and C2j+1 are spin-j representations
of Uqsl2. This result is known as (quantum) Schur–Weyl duality. This result is essential, as it
reduces the study of HXXZ on H := (C2)⊗N to its restriction on standard TLδ,N -modules.

Unfortunately, we cannot use this method for Hn.d. because the boundary terms (2.10)

bl =
1

{αl}

(
iqθlσ+1 + iq−θlσ−1 +

qαl + q−αl

2
σz1

)
+

1

2
=

1

{αl}

(
qαl iqθl

iq−θl −q−αl

)
,

br = − 1

{αr}

(
iqθrσ+N + iq−θrσ−N +

qαr + q−αr

2
σzN

)
+

1

2
=

1

{αr}

(
−q−αr −iqθr

−iq−θr qαr

)
break the Uqsl2 symmetry. This is why we are going to build a different Hamiltonian (2.29)
which does preserve the quantum group symmetry and then show that it can be related back
to Hn.d. through the two-boundary TL algebra.

2.3.2 The one-boundary system

Following [14], let us first introduce the one-boundary Hamiltonian. It is constructed by ten-
soring the usual spin chain H := (C2)⊗N with the Verma module Vα and adding a new Uqsl2-
invariant boundary term acting on the two leftmost sites, Vα ⊗ C2, of the new Hilbert space

Hb := Vα ⊗ (C2)⊗N .

Because of the fusion rule (2.18) the most general such term can only be a linear combination
of projectors b± on the direct summands Vα±1, which are given by

b± =
±1

{α}

(
−q−1K−1 + q±α {1}F

q{1}K−1E qK−1 − q∓α

)
. (2.22)

In the expression above, b± are operators acting on Vα ⊗ C2 which we have written as 2 × 2
matrices with entries in End(Vα). Since b+ + b− = 1, it is sufficient, up to irrelevant additive
terms in the Hamiltonian, to consider boundary couplings of the form −µb, with b := b+ and
µ ∈ C a coupling constant. The one-boundary Hamiltonian on Hb is then defined as

Hb := −µb−
N−1∑
i=1

ei. (2.23)
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One can also check that b satisfies

b2 = b, e1be1 = ye1, [b, ei] = 0 for 2 ≤ i ≤ N − 1 (2.24)

with

y =
[α+ 1]q
[α]q

. (2.25)

Together with (2.1) this means that Hb carries a representation of the blob algebra. By con-
struction, the actions of Uqsl2 and Bδ,y,N on Hb commute with each other. One can actually
show [14] that if qα /∈ ±qZ, we have Schur–Weyl duality, namely Uqsl2 and Bδ,y,N are mutual
maximal centralisers and we have the (Bδ,y,N , Uqsl2)-bimodule decomposition

Hb = W0 ⊗ Vα ⊕
N/2⊕
j=1

(
Wb

j ⊗ Vα+2j ⊕W b̄
j ⊗ Vα−2j

)
. (2.26)

2.3.3 The two-boundary system

The two-boundary Hamiltonian is constructed in very much the same way, this time by tensoring
the usual spin chain H = (C2)⊗N with two Verma modules Vαl

and Vαr , on the left and on the
right respectively [14]. The most general left boundary coupling is still given by −µlbl with bl
the projector on Vαl+1 from (2.22). On the other hand, the projector on the Vαr+1 summand of
C2 ⊗ Vαr

∼= Vαr+1 ⊕ Vαr−1 is

br =

(
qK− q−αr q{1}KF

{1}E −q−1K+ qαr

)
. (2.27)

The two-boundary Hamiltonian is then defined on the Hilbert space

H2b := Vαl
⊗ (C2)⊗N ⊗ Vαr (2.28)

as

H2b := −µlbl − µrbr −
N−1∑
i=1

ei (2.29)

with µr ∈ C a coupling constant. Similarly to bl, the new generator br satisfies

b2r = br, eN−1breN−1 = yreN−1, [br, ei] = 0 for 1 ≤ i ≤ N − 2 (2.30)

with

yr =
[αr + 1]q
[αr]q

. (2.31)

To obtain a representation of the two-boundary TL algebra it remains to compute the
weight Y of a loop carrying both br and bl. We can indeed find such a Y , but it turns out
that in our case it will not be a number but some non-trivial central element [14]. This is
why we need to use a slightly different version of the two-boundary TL algebra, namely the
universal two-boundary TL algebra 2Buni

δ,yl/r,N
. It is defined by the same relations as 2Bδ,yl/r,Y,N

but now Y is treated as an additional generator denoted Y and commuting with all the other
generators ei and bl/r, i.e., it is a central extension of 2Bδ,yl/r,Y,N . If we want to recover
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the usual two-boundary TL at some fixed value of Y ∈ C, we just have to take the quo-
tient 2Buni

δ,yl/r,N
/⟨Y − Y ⟩ ∼= 2Bδ,yl/r,Y,N . In particular, this implies that any representation of

2Bδ,yl/r,Y,N for any value of Y ∈ C is automatically a representation of 2Buni
δ,yl/r,N

(the converse

is not true in general, however). Note also that contrary to the usual two-boundary TL algebra,
2Buni

δ,yl/r,N
⊃ C[Y] is infinite-dimensional.

Coming back to our spin chain, we showed in [14] that H2b carries a representation of the
universal two-boundary TL algebra 2Buni

δ,yl/r,N
. Concretely, Uqsl2 admits a Casimir element

C := {1}2FE+ qK+ q−1K−1, (2.32)

which commutes with Uqsl2 and moreover its action on H2b, denoted CH2b
, commutes with the ei

and bl/r. Then the relation (2.8) is satisfied for9

Y =
qαl+αr+1 + q−αl−αr−1 − CH2b

{αl}{αr}
(2.33)

making H2b a representation of 2Buni
δ,yl/r,N

. By construction, this action commutes with that

of Uqsl2.
Following [14], we can restrict the action of 2Buni

δ,yl/r,N
to a Y-eigenspace to obtain a well-

defined action of the usual two-boundary TL algebra 2Bδ,yl/r,Y,N for some fixed value of Y .
Since the Casimir C commutes with Uqsl2 it acts as a scalar on any irreducible representation
of Uqsl2, in particular10

CVα = qα + q−α, (2.34)

and so this amounts to computing the decomposition of H2b into simple Uqsl2-modules. Using
the fusion rule for Verma modules, valid for qαl+αr−1 /∈ ±qN

∗
,11

Vαl
⊗ Vαr

∼=
⊕
n≥0

Vαl+αr−1−2n (2.35)

as well as (2.18), we obtain the Uqsl2-decomposition

H2b =
⊕
M≥0

HM ⊗ Vαl+αr−1+N−2M , (2.36)

where HM are some multiplicity spaces of dimension

dM := dimHM =


M∑
k=0

(
N

k

)
for 0 ≤M ≤ N,

2N for M ≥ N,

(2.37)

which can be identified with the subspaces of highest-weight vectors of weight qαl+αr−2+N−2M .
By direct computation, one then shows [14] that restricted to HM , Y acts as the scalar

YM =

[
M + 1− N

2

]
q

[
αl + αr −M + N

2

]
q

[αl]q[αr]q
(2.38)

and so, for all M ≥ 0, HM is a representation of the two-boundary TL algebra 2Bδ,yl/r,YM ,N .
The final question is what are these representations. Let us first recall an important result

from [19, 27], valid for generic q.

9This result, shown in [14], has also a natural interpretation in terms of the affine Hecke algebra of type C [17,
Section 3.7].

10Just evaluate it on the highest-weight vector: C |0⟩ = {1}2FE |0⟩+ qK |0⟩+ q−1K−1 |0⟩ =
(
qα + q−α

)
|0⟩.

11As for the fusion rule (2.18), if this condition is not satisfied, some of the summands are glued into tilting
modules.
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Theorem 2.2.

(i) For 0 ≤ M ≤ N/2 − 1 the vacuum module W0 of 2Bδ,yl/r,YM ,N is reducible but indecom-

posable, with a unique irreducible proper 2Bδ,yl/r,YM ,N -submodule isomorphic to Wbb
N/2−M

and an irreducible subquotient W0/Wbb
N/2−M .

(ii) For N/2 ≤ M ≤ N − 1 the vacuum module W0 of 2Bδ,yl/r,YM ,N is reducible but indecom-

posable, with a unique irreducible proper 2Bδ,yl/r,YM ,N -submodule isomorphic to W b̄b̄
M+1−N/2

and an irreducible subquotient W0/W b̄b̄
M+1−N/2.

(iii) For M ≥ N the vacuum module W0 of 2Bδ,yl/r,YM ,N is irreducible.

Based on this theorem and the dimensions (2.37) a conjecture about the nature of the
2Bδ,yl/r,YM ,N -modules HM was made in [14]. In Appendix A, we prove this conjecture, so let us
restate it here as a theorem:

Theorem 2.3. For q ∈ C\qiπQ, qαl , qαr ∈ C\{±qZ} such that qαl+αr /∈ ±qZ and N ∈ 2N∗, Uqsl2
and 2Buni

δ,yl/r,N
are mutual centralisers on H2b in (2.28), with generators ei, 1 ≤ i ≤ N−1, bl, br, Y

acting by (2.19), (2.22), (2.27), (2.33) respectively, and we have the (2Buni
δ,yl/r,N

, Uqsl2)-bimodule

decomposition

H2b =
⊕
M≥0

HM ⊗ Vαl+αr−1+N−2M , (2.39)

where the HM are irreducible 2Bδ,yl/r,YM ,N -modules given by

HM
∼= Wbb

N/2−M ⊊W0 for 0 ≤M ≤ N/2− 1,

HM
∼= W0/W b̄b̄

M+1−N/2 for N/2 ≤M ≤ N − 1,

HM
∼= W0 for N ≤M.

(2.40)

This theorem means, in particular, that even for 0 ≤ M ≤ N − 1, HM is always isomorphic
to an irreducible piece of the vacuum module W0 of 2Bδ,yl/r,YM ,N , either a stable subspace
(0 ≤M ≤ N/2− 1) or an irreducible subquotient (N/2 ≤M ≤ N − 1) of W0.

Now recall q = eh, δ = 2 cosh(h) = [2]q, and compare (2.12) with (2.25)–(2.38). All the
weights coincide, except for Y , which however matches in both cases if and only if

αl + αr ±Θ = 2M + 1−N,

where Θ := θl − θr (1.2). Recalling the reparametrisation (2.11), this is equivalent to

δl + κl + δr + κr ±Θ = 2M + 1−N,

which is exactly the Nepomechie condition (1.3)! Moreover, Theorems 2.1–2.3 imply the follow-
ing. Set

H
(M)
n.d. := Hn.d.(δ, yl/r, µl/r, YM )

and for any 2Bδ,yl/r,Y,N -module M denote the representation map ρM : 2Bδ,yl/r,Y,N → EndC(M).
Then
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Corollary 2.4.

(i) For 0 ≤M ≤ N/2− 1,

H
(M)
n.d. = ρW0(H) =

(
ρW0/Wbb

N/2−M
(H) ∗

0 ρWbb
N/2−M

(H)

)

=

(
ρW0/Wbb

N/2−M
(H) ∗

0 H2b|HM

)
.

(ii) For N/2 ≤M ≤ N − 1,

H
(M)
n.d. = ρW0(H) =

ρW0/W b̄b̄
M+1−N/2

(H) ∗
0 ρW b̄b̄

M+1−N/2
(H)


=

(
H2b|HM

∗
0 ρW b̄b̄

M+1−N/2
(H)

)
.

(iii) For M ≥ N ,

H
(M)
n.d. = ρW0(H) = H2b|HM

.

In other words, the spectrum of all the open non-diagonal XXZ Hamiltonians with non-
diagonal boundary terms for all the values of the parameters covered by the Nepomechie con-
dition (1.3) with M ≥ N is contained in the irreducible sectors of a single Hamiltonian H2b.
For 0 ≤ M ≤ N − 1 the sectors of H2b only contain an irreducible block of Hn.d.. The spectral
problem of H2b will be solved in the next section by algebraic Bethe ansatz.

One may wonder if we can also express the remaining blocks ρW0/Wbb
N/2−M

(H) and ρW b̄b̄
M+1−N/2

(H)

in terms of H2b to diagonalise Hn.d. completely, even for 0 ≤M ≤ N − 1. This turns out to be
possible via the following trick. Let us introduce the involution

· : 2Bδ,yl/r,Y,N → 2Bδ,δ−yl/r,δ−yl−yr+Y,N , (ei, bl/r) 7→ (ei, b̄l/r := 1− bl/r). (2.41)

From the definitions of the various weights one easily sees that it is an algebra isomorphism and
moreover that it exchanges Wbb

j with W b̄b̄
j

(
and also Wbb̄

j with W b̄b
j

)
for 1 ≤ j ≤ N/2, while

leaving W0 invariant. Let us define

H := −µlb̄l − µr b̄r −
N−1∑
i=1

ei ∈ 2Bδ,δ−yl/r,δ−yl−yr+Y,N .

and

H2b := ρH2b

(
H
)
= −µl − µr +H2b(αl/r → −αl/r, µl/r → −µl/r) (2.42)

acting on H2b := V−αl
⊗ (C2)⊗N ⊗ V−αr . Note that by (2.25)–(2.31)

yl/r(αl/r → −αl/r) =
[αl/r − 1]q

[αl/r]q
= δ − yl/r

and using (2.38) one easily checks that

YM (αl/r → −αl/r) =

[
N
2 −M − 1

]
q

[
αl + αr − N

2 +M
]
q

[αl]q[αr]q
= δ − yl − yr + YN−M−1, (2.43)
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so by Theorem 2.3, H2b decomposes as

H2b =
⊕
M≥0

HM ⊗ V−αl−αr−1+N−2M ,

where the HM are irreducible 2Bδ,δ−yl/r,δ−yl−yr+YN−M−1,N -modules given by (2.40). Pulling back
by the algebra isomorphism (2.41), we can thus generalise Corollary 2.4.

Corollary 2.5.

(i) For 0 ≤M ≤ N/2− 1,

H
(M)
n.d. = ρW0(H) = ρW0

(
H
)
=

(
ρW0/W b̄b̄

N/2−M

(
H
)

∗
0 ρWbb

N/2−M
(H)

)

=

(
H2b|HN−M−1

∗
0 H2b|HM

)
.

(ii) For N/2 ≤M ≤ N − 1,

H
(M)
n.d. = ρW0(H) = ρW0

(
H
)
=

(
ρW0/W b̄b̄

M+1−N/2
(H) ∗

0 ρWbb
M+1−N/2

(
H
))

=

(
H2b|HM

∗
0 H2b|HN−M−1

)
.

(iii) For M ≥ N ,

H
(M)
n.d. = ρW0(H) = H2b|HM

.

(iv) For M ≤ −1,

H
(M)
n.d. = ρW0

(
H
)
= H2b|HN−M−1

.

Note that, because of (2.43), the magnon number M labelling the sectors HM of H2b is
mapped to the dual magnon number M := N −M − 1 in the H2b spin chain (and vice versa) by
the involution (2.41). It is this purely algebraic observation that enables us to reach the missing

blocks of H
(M)
n.d. for 0 ≤M ≤ N−1 as well as negative values ofM , which correspond toM ≥ N .

As we will see, this will be essential to establish a complete set of Bethe ansatz equations for
the degenerate cases 0 ≤M ≤ N − 1.

To summarise, we have reduced the spectral problem of all the H
(M)
n.d. , M ∈ Z, satisfying the

Nepomechie condition (1.3) to the spectral problem of H2b.
12 This may not seem like a big step,

but actually it is: H2b is Uqsl2-invariant and as such has a natural reference state |0⟩⊗|↑⟩⊗N⊗|0⟩
which will enable us to compute its spectrum using standard algebraic Bethe ansatz.

3 Bethe ansatz

We now turn to the computation of the spectrum of H2b (2.29) using the algebraic boundary
Bethe ansatz formalism first developed by Sklyanin [58]. Here, we no longer assume that N is
even. As a warm-up, we will first treat the one-boundary Hamiltonian Hb (2.23).

12Note that H2b is related to H2b by the transformation (2.42) so it is sufficient to consider H2b only.
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3.1 The one-boundary system

In the basis {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} the Uqsl2-invariant (affine) R-matrix is given by

R(u) :=


sinh(u+ h) 0 0 0

0 sinh(u) sinh(h)eu 0
0 sinh(h)e−u sinh(u) 0
0 0 0 sinh(u+ h)

 . (3.1)

It is easy to check that

Ři,i+1(u) := Pi,i+1Ri,i+1(u) = sinh(u+ h)− sinh(u)ei, (3.2)

where Pi,i+1 is the operator permuting the i and (i+1)-th sites of the spin chain. For all u, v ∈ C,
the R-matrix R(u) satisfies the Yang–Baxter equation (YBE)

R1,2(u− v)R1,3(u)R2,3(v) = R2,3(v)R1,3(u)R1,2(u− v), (3.3)

where Ri,j(u) denotes R(u) acting the i-th and j-th tensor factors of (C2)⊗3 or, equivalently,

Ř1,2(u− v)Ř2,3(u)Ř1,2(v) = Ř2,3(v)Ř1,2(u)Ř2,3(u− v).

Note also that

R1,2(u)R2,1(−u) = sinh(h+ u) sinh(h− u) IdC2⊗C2 , (3.4)

so R(u) is invertible if u ̸= ±h.
For boundary Bethe ansatz, one also needs an additional ingredient: a so-called K-matrix.

It is a 2×2 matrix K(u) with entries in some (possibly non-commutative) algebra satisfying the
boundary Yang–Baxter equation (bYBE)

R1,2(u− v)K1(u)R2,1(u+ v)K2(v) = K2(v)R1,2(u+ v)K1(u)R2,1(u− v) (3.5)

or, written differently,

Ř1,2(u− v)K1(u)Ř1,2(u+ v)K1(v) = K1(v)Ř1,2(u+ v)K1(u)Ř1,2(u− v). (3.6)

For example, because

R1,2(u− v)R2,1(u+ v) = R1,2(u+ v)R2,1(u− v), (3.7)

K(u) = IdC2 is a solution of (3.5). This can also be seen directly from (3.2)–(3.6).
Although many other solutions to the bYBE (3.5) are known [21, 22, 24, 58], it is not always

possible to find a K-matrix yielding precisely the boundary conditions we want to impose. In
our case however, it is possible to use the symmetry of the one-boundary spin chain to find
a suitable solution of the bYBE (3.5). Actually, there are even two independent constructions:
one based on the Bδ,y,N -module structure of the spin chain and the other on the Uqsl2 symmetry.

The first was described in detail [24]. Namely, for any b satisfying the blob algebra rela-
tions (2.24) there exists a solution of the bYBE (3.5) for Hb. With our choice of b this K-matrix
reads

K(u) = 1− µ

sinh(h) sinh(hα)
(sinh(u− hα) sinh(u) + sinh(hα) sinh(2u)b)

= IdVα⊗C2 −
µ sinh(u) cosh(u)

sinh(h) sinh(hα)

(
−e−hK−1 + eu cosh(hα)

cosh(u) 2 sinh(h)F

2eh sinh(h)K−1E ehK−1 − e−u cosh(hα)
cosh(u)

)
, (3.8)
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where again we have written it as a 2×2 matrix with entries in End(Vα). The second construction
based on the Uqsl2 symmetry of the spin chain will be used for the two-boundary case where it
is most convenient. For the time being, let us work with the K-matrix (3.8).

Let us define the transfer matrix13

tb(u) := qtr0 T (u− h/2)K(u− h/2)T̂ (u− h/2), (3.9)

where K is treated as a 2× 2 matrix with entries in End(Vα) acting on the auxiliary C2 space
(with index 0),

T (u) := R0,N (u) · · ·R0,1(u), T̂ (u) := R1,0(u) · · ·RN,0(u) (3.10)

and qtr0(−) := tr0
(
qσ

z
0−
)
denotes the partial quantum trace over the auxiliary space. This is

the natural trace for Uqsl2-invariant objects and it ensures that tb(u) commutes with Uqsl2 as it
should (see [24] for more details14).

Now by (3.3) and (3.5)

[tb(u), tb(v)] = 0

and, moreover, [58]

d

du

∣∣∣∣
u=h

2

tb(u) = 2 sinh2N−1(h) tr0
(
qσ

z)N−1∑
i=1

Ř′
i,i+1(0)

+ 2 sinh2N−1(h) qtr0
(
Ř′

N,0(0)
)
+ sinh2N (h) tr0

(
qσ

z)
P0,1K

′(0)P0,1

= 4 sinh2N (h) coth(h)
N−1∑
i=1

cosh(h)− ei

+ 4 sinh2N (h) coth(h)

(
cosh(h)− 1

2 cosh(h)

)
+ 4 sinh2N (h) coth(h)

(
−µb+ µ

2

)
,

so

Hb = −µb−
N−1∑
i=1

ei =
tanh(h)

4 sinh2N (h)

d

du

∣∣∣∣
u=h

2

tb(u)−N cosh(h) +
1

2 cosh(h)
− µ

2
. (3.11)

Therefore, we are reduced to computing the spectrum of tb(u).
Let us now define the monodromy

T (u) := T (u− h/2)K(u− h/2)T̂ (u− h/2) =

(
A(u) B(u)
C(u) D(u)

)
,

where the coefficients of this auxiliary space 2× 2 matrix are in End(Hb). Repeatedly applying
the YBE (3.3), one finds that T (u) satisfies the RTT relation

R0,0̄(u− v)T0(u)T0̄(v) = T0̄(v)T0(u)R0,0̄(u− v) (3.12)

involving two different auxiliary C2 spaces with index 0 and 0̄. Note also (3.4) implies that
T̂ (u) ∝ T (−u)−1. By a general result [58, Proposition 2], for any T (u) satisfying (3.12) and

13The h
2
shift is introduced to make the final result neater.

14The formalism in this paper is a bit more general with J corresponding to our qσ
z
0 .
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any solution K(u) of the bYBE (3.5), the product T (u)K(u)T (−u)−1 is also a solution of (3.5).
Therefore, T (u+ h/2) satisfies (3.5)15, that is,

R1,2(u− v)

(
A(u) B(u)
C(u) D(u)

)
1

R2,1(u+ v − h)

(
A(v) B(v)
C(v) D(v)

)
2

=

(
A(v) B(v)
C(v) D(v)

)
2

R1,2(u+ v − h)

(
A(u) B(u)
C(u) D(u)

)
1

R2,1(u− v). (3.13)

From the explicit expression of R(u) (3.1), we can then derive the relevant commutation relations
between A, B, C and D at different values of the spectral parameter. Doing so, we obtain

[B(u),B(v)] = 0 (3.14)

for all u, v ∈ C and, moreover,

A(u)B(v) = sinh(u− v − h) sinh(u+ v − h)

sinh(u− v) sinh(u+ v)
B(v)A(u)

+
eu−v sinh(h) sinh(u+ v − h)

sinh(u− v) sinh(u+ v)
B(u)A(v)− eu+v−h sinh(h)

sinh(u+ v)
B(u)D(v),

D(u)B(v) = sinh(u− v + h) sinh(u+ v + h)

sinh(u− v) sinh(u+ v)
B(v)D(u)

− ev−u sinh(h) sinh(u+ v + h)

sinh(u− v) sinh(u+ v)
B(u)D(v)

+
e−u−v+h sinh(h) sinh(u− v + 2h)

sinh(u− v) sinh(u+ v)
B(u)A(v)

− 2e−2u+h sinh2(h) cosh(h)

sinh(u− v) sinh(u+ v)
B(v)A(u).

Introducing

D̄(u) =
e−h sinh(2u)

sinh(2u− h)
D(u)− e−2u sinh(h)

sinh(2u− h)
A(u), (3.15)

these equations become

A(u)B(v) = sinh(u− v − h) sinh(u+ v − h)

sinh(u− v) sinh(u+ v)
B(v)A(u)

+ f1(u, v)B(u)A(v) + f2(u, v)B(u)D̄(v), (3.16)

D̄(u)B(v) = sinh(u− v + h) sinh(u+ v + h)

sinh(u− v) sinh(u+ v)
B(v)D̄(u)

+ g1(u, v)B(u)D̄(v) + g2(u, v)B(u)A(v), (3.17)

where

f1(u, v) =
eu−v sinh(h) sinh(2v − h)

sinh(u− v) sinh(2v)
, f2(u, v) = −eu+v sinh(h) sinh(2v − h)

sinh(u+ v) sinh(2v)
(3.18)

and

g1(u, v) =
sinh(2u+ h)

sinh(2u− h)
f1(u, v), g2(u, v) =

sinh(2u+ h)

sinh(2u− h)
f2(u, v). (3.19)

15This statement can also be proved by induction on N using only the YBE (3.3) and (3.7).
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We will actually never need the explicit expressions of f1, f2, g1 and g2 (3.18) but only the
relations (3.19). The transfer matrix reads

tb(u) = qtr0 T (u) = ehA(u) + e−hD(u) =
sinh(2u+ h)

sinh(2u)
A(u) +

sinh(2u− h)

sinh(2u)
D̄(u). (3.20)

Let us now look for eigenvectors of tb(u) of the form

|{vm}⟩ = B(v1) · · · B(vM ) |⇑⟩ , (3.21)

where

|⇑⟩ := |0⟩ ⊗ |↑⟩⊗N

is our reference state (recall that |0⟩ is the highest-weight vector of the Verma module Vα (2.17)),
M ≥ 0 is the magnon number and {vm}1≤m≤M are some complex numbers that we want to
determine. Note that because of (3.14), the order of the vm is irrelevant. Also B(u) decreases
the Uqsl2-weight by q−2 so

KHb
|{vm}⟩ = q−2MB(v1) · · · B(vM )KHb

|⇑⟩ = qα−1+N−2M |{vm}⟩ (3.22)

meaning that |{vm}⟩ has weight qα−1+N−2M .
The first step is to compute the eigenvalues of A(u) and D̄(u) when acting on |⇑⟩. Re-

write (3.8)–(3.10)

T (u− h/2) =

(
A(u) B̃(u)
C(u) D(u)

)
, T̂ (u− h/2) =

(
A(u) B(u)

C̃(u) D(u)

)
,

K(u− h/2) =

(
a(u) b(u)
c(u) d(u)

)
(3.23)

as 2× 2 matrices acting on the auxiliary space with coefficients in End(Hb) such that

T (u) =

(
A(u) B(u)
C(u) D(u)

)
=

(
A(u) B̃(u)
C(u) D(u)

)(
a(u) b(u)
c(u) d(u)

)(
A(u) B(u)

C̃(u) D(u)

)
. (3.24)

Knowing that C(u) |⇑⟩ = C̃(u) |⇑⟩ = 0, we have

A(u) |⇑⟩ = a(u)A(u)2 |⇑⟩ ,
D(u) |⇑⟩ = (a(u)C(u)B(u) + d(u)D(u)2) |⇑⟩ . (3.25)

Introducing a basis {|↑0⟩ , |↓0⟩} of the auxiliary space and the matrix entries rij := R(u−h/2)ij ,
1 ≤ i, j ≤ 4, we obtain

A(u) |⇑⟩ = ⟨↑0|R0,N (u− h/2) · · ·R0,1(u− h/2) |↑0⟩ ⊗ |⇑⟩ = rN11 |⇑⟩ = sinh(u+ h/2)N |⇑⟩ ,
D(u) |⇑⟩ = ⟨↓0|R0,N (u− h/2) · · ·R0,1(u− h/2) |↓0⟩ ⊗ |⇑⟩ = rN33 |⇑⟩ = sinh(u− h/2)N |⇑⟩

and

B(u) |⇑⟩ = ⟨↑0|R1,0(u− h/2) · · ·RN,0(u− h/2) |↓0⟩ ⊗ |⇑⟩
= ⟨↑0|R1,0(u− h/2) · · ·RN−1,0(u− h/2)

(
r22 |↓0⟩ ⊗ |⇑⟩+ r32 |↑0⟩ ⊗ σ−N |⇑⟩

)
= r22 ⟨↑0|R1,0(u− h/2) · · ·RN−1,0(u− h/2) |↓0⟩ ⊗ |⇑⟩+ rN−1

11 r32 |↑0⟩ ⊗ σ−N |⇑⟩

=
N−1∑
k=0

rN−1−k
11 r32r

k
22σ

−
N−k |⇑⟩ ,
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so

C(u)B(u) |⇑⟩ =
N−1∑
k=0

rN−1−k
11 r32r

k
22 ⟨↓0|R0,N (u− h/2) · · ·R0,1(u− h/2) |↑0⟩ ⊗ σ−N−k |⇑⟩

=
N−1∑
k=0

rN−1−k
11 r32r

k
33r

k
22r32r

N−1−k
11 |⇑⟩

= sinh2(h)e−2u+h
N−1∑
k=0

sinh(u+ h/2)2N−2k−2 sinh(u− h/2)2k |⇑⟩

=
sinh2N (u+ h/2)− sinh2N (u− h/2)

sinh2(u+ h/2)− sinh2(u− h/2)
sinh2(h)e−2u+h |⇑⟩ .

Using the explicit expression of K(u) (3.8) and D̄(u) (3.15) as well as (3.25), we obtain

A(u) |⇑⟩ = sinh2N (u+ h/2)∆(u) |⇑⟩ , (3.26)

D̄(u) |⇑⟩ = sinh2N (u− h/2)∆(−u) |⇑⟩ , (3.27)

where

∆(u) = 1− µ
sinh(u− h/2) sinh(u+ hα− h/2)

sinh(h) sinh(hα)
. (3.28)

Finally, following the standard algebraic Bethe ansatz procedure [58], we use the commutation
relations (3.16) and (3.17) to compute tb(u) |{vm}⟩. We have from (3.16) and (3.26)

A(u) |{vm}⟩ = A(u)B(v1) · · · B(vM ) |⇑⟩

=

(
M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)
B(vk)

)
A(u) |⇑⟩

+

M∑
k=1

f1(u, vk)B(u)

×

∏
m ̸=k

sinh(vk − vm − h) sinh(vk + vm − h)

sinh(vk − vm) sinh(vk + vm)
B(vk)

A(vk) |⇑⟩

+

M∑
k=1

f2(u, vk)B(u)

×

∏
m ̸=k

sinh(vk − vm + h) sinh(vk + vm + h)

sinh(vk − vm) sinh(vk + vm)
B(vk)

 D̄(vk) |⇑⟩

= sinh2N (u+ h/2)∆(u)
M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)
|{vm}⟩

+
M∑
k=1

f1(u, vk) sinh
2N (vk + h/2)∆(vk)

×
∏
m̸=k

sinh(vk − vm − h) sinh(vk + vm − h)

sinh(vk − vm) sinh(vk + vm)
|ψk⟩

+

M∑
k=1

f2(u, vk) sinh
2N (vk − h/2)∆(−vk)
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×
∏
m̸=k

sinh(vk − vm + h) sinh(vk + vm + h)

sinh(vk − vm) sinh(vk + vm)
|ψk⟩ (3.29)

and similarly from (3.17) and (3.27)

D̄(u) |{vm}⟩ = D̄(u)B(v1) · · · B(vM ) |⇑⟩

= sinh2N (u− h/2)∆(−u)
M∏

m=1

sinh(u− vm + h) sinh(u+ vm + h)

sinh(u− vm) sinh(u+ vm)
|{vm}⟩

+
M∑
k=1

g1(u, vk) sinh
2N (vk − h/2)∆(−vk)

×
∏
m ̸=k

sinh(vk − vm + h) sinh(vk + vm + h)

sinh(vk − vm) sinh(vk + vm)
|ψk⟩

+
M∑
k=1

g2(u, vk) sinh
2N (vk + h/2)∆(vk)

×
∏
m ̸=k

sinh(vk − vm − h) sinh(vk + vm − h)

sinh(vk − vm) sinh(vk + vm)
|ψk⟩ , (3.30)

where

|ψk⟩ := B(u)
∏
m ̸=k

B(vk) |⇑⟩ .

Therefore, using (3.20),

tb(u) |{vm}⟩ =
(
sinh(2u+ h)

sinh(2u)
A(u) +

sinh(2u− h)

sinh(2u)
D̄(u)

)
|{vm}⟩ = Λb(u) |{vm}⟩+ |ψ⟩ ,

where

Λb({vm};u) = sinh2N (u+ h/2)∆(u)
sinh(2u+ h)

sinh(2u)

M∏
m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)

+ sinh2N (u− h/2)∆(−u)sinh(2u− h)

sinh(2u)

×
M∏

m=1

sinh(u− vm + h) sinh(u+ vm + h)

sinh(u− vm) sinh(u+ vm)
(3.31)

and |ψ⟩ is a linear combination of the vectors {|ψk⟩}1≤k≤M . Moreover, (3.29) and (3.30) together
with (3.19) imply that |ψ⟩ vanishes if and only if {vm}1≤m≤M satisfy the Bethe ansatz equations
(BAE)

∆(vm)

∆(−vm)

(
sinh(vm + h/2)

sinh(vm − h/2)

)2N

=

M∏
k=1
k ̸=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)
(3.32)

for all 1 ≤ m ≤ M . Thus |{vm}⟩ is an eigenvector of tb(u) with eigenvalue Λb({vm};u) for any
solution of (3.32). Note the additional factor of ∆(vm)/∆(−vm) compared to the BAE of the
usual open Uqsl2-invariant XXZ spin chain. It contains all the contribution of the new boundary
coupling.
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From (3.11) and (3.31), the energy corresponding to a solution {vm}1≤i≤M is then given by

Eb({vm}) = −µ+
M∑

m=1

sinh2(h)

sinh(vm − h/2) sinh(vm + h/2)
. (3.33)

It is also possible to introduce the variables x := sinh(u+h/2)
sinh(u−h/2) and λ := x+ x−1 to rewrite the

BAE (3.32) as (recall that δ := [2]q and y :=
[α+1]q
[α]q

)

λm − δ + µ
(
(δ − y)x−1

m − 1
)

λm − δ + µ
(
(δ − y)xm − 1

) x2Nm =
M∏
k=1
k ̸=m

λm + λk − δxm(λk − δ)− 2δ

λm + λk − δx−1
m (λk − δ)− 2δ

=
M∏
k=1
k ̸=m

(1− δxm + xmxk)
(
1− δxk + xkx

−1
m

)(
1− δx−1

m + x−1
m xk

)
(1− δxk + xkxm)

(3.34)

for 1 ≤ m ≤M . The associated energy (3.33) is then simply

Eb({λm}) = −µ+
M∑

m=1

(λm − δ).

These equations were already derived in [20] using coordinate Bethe ansatz.
A natural question is whether they “completely” describe the spectrum of Hb. To clarify

what this means, we have to factor out the obvious redundancies of these equations. First,
equations (3.32) as well as the corresponding eigenvalues (3.31) are invariant under permutations
of the vk, so we should consider solutions as unordered tuples {vk}1≤k≤M . This of course is just
a direct consequence of the commutation relation (3.14) and of the definition of |{vm}⟩ in (3.21).
Second, note that if {vk} is a solution, then so are {v1, . . . ,−vl, . . . , vM} and {v1, . . . , vl +
iπr, . . . , vM}, r ∈ Z, and with the same energy for any 1 ≤ l ≤M . This means that we can look
for non-zero solutions in the fundamental domain

S+ := {vk |Re vk ≥ 0,−π/2 ≤ Im vk < π/2}\{0} (3.35)

for all 1 ≤ k ≤ M .16 Finally, note that if {v1, . . . , vM} is a solution then so is {v1, . . . , vM ,∞}
and they both have the same energy. This is actually a consequence of the Uqsl2 symmetry.
Indeed one can show that B(∞) ∝ FHb

, either by direct computation or more easily using the
construction of R(u) from the universal R-matrix of Uqsl2, as will be explained later on at the
end of Section 3.2.1. Since tb(u) commutes with Uqsl2, if |{vm}⟩ is an eigenvector then so is
B(∞) |{vm}⟩ ∝ FHb

|{vm}⟩, and moreover it has the same energy Eb because of (3.33). Finite
solutions {v1, . . . , vM} provide eigenstates, which we therefore expect to be Uqsl2 highest-weight
vectors of weight qα−1+N−2M (3.22).

For qα /∈ ±qZ, using the fusion rule (2.18) repeatedly, we know that the Hilbert space Hb

decomposes into irreducible Uqsl2-modules as

Hb =
N⊕

M=0

(
N

M

)
Vα+N−2M ,

so there is exactly
(
N
M

)
linearly independent highest-weight vectors in the M -magnon sector.17

Therefore, we conjecture that the system of M equations (3.32) on an unordered set of M

16Solutions with vk = 0 for some k have to be excluded too because they correspond to “double roots” of the
BAE. For generic values of the parameters this situation does not occur.

17This can also be seen from the Schur–Weyl decomposition (2.26) and the dimensions of standard blob mod-
ules (2.6).
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complex numbers {vk}1≤k≤M , such that vk ∈ S+ for all 1 ≤ k ≤ M , has exactly
(
N
M

)
distinct

solutions, at least for generic values of α and µ, and that the corresponding eigenvectors |{vm}⟩
are linearly independent and highest-weight for the Uqsl2 symmetry. Then an eigenbasis of Hb is
given by the vectors FkHb

|{vm}⟩, k ∈ N. Establishing such statements is usually quite challenging
and rigorous proofs are known only for very few integrable spin chains [4, 13, 35, 50, 51].

Let us also note that all the results above carry through mutatis mutandis to the root of
unity cases without any obstacle.

Example 3.1. When M = 1, the BAE (3.34) becomes

x+ x−1 − δ + µ((δ − y)x− 1)

x+ x−1 − δ + µ((δ − y)x−1 − 1)
= x2N ,

which can be rewritten as

UN (λ/2)− (µ+ δ)UN−1(λ/2) + (1 + µ(δ − y))UN−2(λ/2) = 0, (3.36)

where Un is the n-th Chebyshev polynomial of the second kind. The corresponding eigenvalue
of Hb is

E = −µ+ λ− δ.

Equation (3.36) has exactly
(
N
1

)
= N solutions as it should.

When δ = 0 (q = i), we recover the spectral equation from [14]. Note also that for δ = 0
the “interaction term” on the right-hand side of (3.34) is always equal to unity18, and so the
BAE will just be M copies of the same equation (3.36) for all M . Denoting (λi)1≤i≤N the N
solutions of (3.36) at δ = 0, any choice of M pairwise distinct19 λi will then be a solution of the
BAE. Therefore, the eigenvalues of Hb in the M -magnon sector are given by

ES = −µ−
∑
i∈S

λi

for all sets S ⊂ {1, . . . , N} of cardinality |S| = M , in accordance with the results of [14]. Since
there are

(
N
M

)
such sets S, this also means that the BAE (3.34) have exactly

(
N
M

)
solutions for

this special value of δ, as we conjectured.

3.2 The two-boundary system

We now turn to the two-boundary Hamiltonian H2b. In principle, this case can also be treated
using Sklyanin’s boundary Bethe ansatz formalism. For this, in addition to the “left” K-
matrix (3.8) one also needs a “right” K-matrix satisfying an analogue of the bYBE (3.5) and
implementing the desired integrable boundary conditions on the right. It is possible to find such
a K-matrix by brute force but let us instead present an alternative and conceptually better
approach. To this end, we first start by giving another construction of the left K-matrix (3.8)
and then extend this approach to the two-boundary case.

3.2.1 An alternative construction of K(u)

The basic idea is to put the boundary site carrying the Vα representation on an equal footing
with the bulk sites, each of which carries a C2 representation, by making apparent that their

18This simplification is of course not surprising as for δ = 0 the system reduces to free fermions.
19This condition is needed to ensure that the BAE are not degenerate.
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contribution to the transfer matrix (3.20) just comes from the same universal affine R-matrix,
but evaluated in different representations of Uqsl2.

20

Computing such an evaluation in full generality is a hard task, complicated by the fact that
we have to choose the correct gauge so that it is compatible with our conventions [9]. However,
if one of the factors of the affine R-matrix is evaluated in the fundamental C2-representation –
as will always be the case in our construction – then there is a simpler procedure using the
so-called “baxterisation” trick [42].

Concretely, recall that Uqsl2 admits a universal (non-affine) R-matrix given by [26] (see
also [12, Chapter 6.4])

R = q
H⊗H
2

∑
k≥0

{1}2k

{k}!
qk(k−1)/2Ek ⊗ Fk, (3.37)

where

{n}! :=
n∏

k=1

{k}.

Although strictly speaking R /∈ Uqsl2 ⊗ Uqsl2, it can be evaluated on the tensor product of any
pair (X ,Y) of representations of Uqsl2 as long as at least one of them is finite-dimensional. We
denote this evaluation by RX ,Y . One of the essential properties of R is that for any two such
representations X and Y, the two operators

PX ,Y ◦ RX ,Y and R−1
Y,X ◦ PX ,Y ,

where

PX ,Y : X ⊗ Y → Y ⊗X ,
x⊗ y 7→ y ⊗ x

is the operator permuting the two tensor factors, commute with the action of Uqsl2. In other
words, R generates two (a priori different) Uqsl2-intertwiners between X ⊗Y and Y ⊗X . These
are precisely the building blocks we need to evaluate the affine R-matrix. Indeed, introducing
for any representation X of Uqsl2,

RX ,C2(u) :=
eu+

h
2

2
RX ,C2 −

e−u−h
2

2
PC2,X ◦ R−1

C2,X ◦ PX ,C2 ,

RC2,X (u) :=
eu+

h
2

2
RC2,X − e−u−h

2

2
PX ,C2 ◦ R−1

X ,C2 ◦ PC2,X , (3.38)

as well as

ŘX ,C2(u) := PX ,C2 ◦RX ,C2(u), ŘC2,X (u) := PC2,X ◦RC2,X (u)

one checks that

(i) RC2,C2(u) = R(u) from (3.1),

(ii) ŘX ,C2(u) and ŘC2,X (u) are Uqsl2-intertwiners,

20More precisely, in evaluation representations of the affine quantum group Uqŝl2 corresponding to different
representations of Uqsl2.
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(iii) For any three representations X1, X2, X3 of Uqsl2 with at least two of them isomorphic
to C2 the generalisation of the YBE (3.3)

RX1,X2(u− v)RX1,X3(u)RX2,X3(v) = RX2,X3(v)RX1,X3(u)RX1,X2(u− v) (3.39)

is satisfied.

This means that RX ,C2(u) and RC2,X (u) are precisely the evaluations of the universal affine
R-matrix we are looking for. Note also that

RC2,X (u)RX ,C2(−u) =
1

4
(CX − 2 cosh(2u) IdX )⊗ IdC2 , (3.40)

where CX is the Casimir (2.32) of X . In particular, for X = Vα, by (2.34)

RC2,Vα
(u)RVα,C2(−u) = sinh

(
hα

2
+ u

)
sinh

(
hα

2
− u

)
IdX ⊗ IdC2 , (3.41)

so RC2,Vα
(u) and RC2,Vα

(u) are invertible for u ̸= ±hα/2.
Now going back to the construction in (3.9) and (3.10), we see that the simplest transfer

matrix with an integrable Uqsl2-invariant boundary coupling to some Uqsl2-module X one can
construct is of the form

tb(u) ∝ qtr0 Tb(u− h/2)T̂b(u− h/2) (3.42)

with

Tb(u) := R0,N (u) · · ·R0,1(u)R0,X (u− ζ),

T̂b(u) := RX ,0(u+ ζ)R1,0(u) · · ·RN,0(u), (3.43)

where the index i ∈ {0, . . . , N} stands for the i-th C2-site, and ζ ∈ C is some inhomogeneity
parameter. Taking X = Vα and comparing (3.9) with (3.42), we see that we should have

K(u) ∝ R0,Vα(u− ζ)RVα,0(u+ ζ). (3.44)

From this form of the K-matrix one can easily show that it satisfies the bYBE (3.5) using the
YBE (3.39) and (3.7). This is actually another instance of the general result [58, Proposition 2],
simply because the YBE (3.39) implies that R0,Vα(u − ζ) satisfies the RTT relation (3.12),
RVα,0(u+ ζ) ∝ R0,Vα(−u− ζ)−1 by (3.41), and IdC2 is a solution of the bYBE (3.5) by (3.7).

It only remains to fix the normalisation factor in (3.44) and to express the coupling constant µ
in terms of the inhomogeneity ζ. Computing (3.44) explicitly using (3.37) and (3.38) and
matching the result with (3.8), we obtain

K(u) =
RC2,Vα

(u− ζ)RVα,C2(u+ ζ)

sinh
(
hα
2 − ζ

)
sinh

(
hα
2 + ζ

) (3.45)

with

µ =
sinh(h) sinh(hα)

sinh
(
ζ − hα

2

)
sinh

(
ζ + hα

2

) .
A fruitful consequence of this formalism is that we are now able to compute B(∞) very easily.

Indeed, define

T (∞) =

(
A(∞) B(∞)
C(∞) D(∞)

)
:= lim

u→+∞
e−(2N+2)uT (u). (3.46)
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Then by (3.38) and (3.43) this limit is finite and

T (∞) ∝ R0,N · · ·R0,1R0,VαRVα,0R1,0 · · ·RN,0. (3.47)

But for any representations X and Y of Uqsl2

RC2,YRC2,X =

(
K
1/2
Y {1}K1/2

Y FY

0 K
−1/2
Y

)(
K
1/2
X {1}K1/2

X FX

0 K
−1/2
X

)

=

(
K
1/2
X K

1/2
Y {1}K1/2

X K
1/2
Y
(
FX + K−1

X FY
)

0 K
−1/2
X K

−1/2
Y

)

=

(
K
1/2
X⊗Y {1}K1/2

X⊗YFX⊗Y

0 K
−1/2
X⊗Y

)
= RC2,X⊗Y , (3.48)

where we used the coproduct formula (2.15). Similarly,

RX ,C2RY,C2 = RX⊗Y,C2 . (3.49)

Finally,

RC2,XRX ,C2 =

(
K
1/2
X {1}K1/2

X FX

0 K
−1/2
X

)(
K
1/2
X 0

{1}K−1/2
X EX K

−1/2
X

)

=

(
KX + q−1{1}2FXEX q−1{1}FX

{1}K−1E K−1

)
, (3.50)

where we used the defining relations of Uqsl2 (2.14). Therefore, using (3.48) and (3.49) iteratively
on (3.47), we have

T (∞) ∝ R0,N · · ·R0,1R0,VαRVα,0R1,0 · · ·RN,0 = R0,Vα⊗(C2)⊗NRVα⊗(C2)⊗N ,0 = R0,Hb
RHb,0

and so from (3.50) applied to X = Hb, we obtain B(∞) ∝ FHb
. The proportionality constant can

easily be fixed but we will not need it. Note that the reasoning above applies to any integrable
Uqsl2-invariant spin chain as long as we renormalise the corresponding monodromy T (u) by an
appropriate power of e−u in (3.46) to make the u→ +∞ limit finite.

The result that B(∞) ∝ FHb
, which we have now established, was used in the arguments

given towards the end of Section 3.1.

3.2.2 Bethe ansatz for H2b

From all the above, it is now clear how to proceed to construct the transfer matrix for the
two-boundary system. We simply take

t2b(u) :=
qtr0 T2b(u− h/2)T̂2b(u− h/2)

sinh
(
hαl
2 − ζl

)
sinh

(
hαl
2 + ζl

)
sinh

(
hαr
2 − ζr

)
sinh

(
hαr
2 + ζr

) (3.51)

with

T2b(u) := R0,Vαr
(u− ζr)R0,N (u) · · ·R0,1(u)R0,Vαl

(u− ζl),

T̂2b(u) := RVαl
,0(u+ ζl)R1,0(u) · · ·RN,0(u)RVαr ,0(u+ ζr). (3.52)
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Using (3.9), (3.10), (3.41)–(3.45), we have

d

du

∣∣∣∣
u=h

2

t2b(u) =
d

du

∣∣∣∣
u=0

qtr0R0,Vαr
(−ζr)T (u)K(u)T̂ (u)RVαr ,0(ζr)

sinh
(
hαr
2 − ζr

)
sinh

(
hαr
2 + ζr

)
+

d

du

∣∣∣∣
u=0

qtr0R0,Vαr
(u− ζr)T (0)K(0)T̂ (0)RVαr ,0(u+ ζr)

sinh
(
hαr
2 − ζr

)
sinh

(
hαr
2 + ζr

)
=

d

du

∣∣∣∣
u=h

2

tb(u) + 4 sinh2N (h) coth(h)
(
−µrbr +

µr
2

)
,

so (compare with (3.11))

H2b = −µlbl − µrbr −
N−1∑
i=1

ei

=
tanh(h)

4 sinh2N (h)

d

du

∣∣∣∣
u=h

2

t2b(u)−N cosh(h) +
1

2 cosh(h)
− µl + µr

2
(3.53)

with

µl/r =
sinh(h) sinh

(
hαl/r

)
sinh

(
ζl/r −

hαl/r

2

)
sinh

(
ζl/r +

hαl/r

2

) . (3.54)

To find the BAE one does not need to redo all the computations of the previous section.
Indeed, using the YBE (3.39) with appropriate choices of representations X1, X2, X3 and spectral
parameters u, v, we have

R0,Vαr
(u− ζr)R0,i(u)RVαr ,i(ζr) = RVαr ,i(ζr)R0,i(u)R0,Vαr

(u− ζr),

Ri,0(u)RVαr ,0(u+ ζr)RVαr ,i(ζr) = RVαr ,i(ζr)RVαr ,0(u+ ζr)Ri,0(u), (3.55)

which we can use to bring the sites Vαl
and Vαr together to the left by means of a similarity

transformation. Concretely (3.55) for i = N implies that

T2b(u)T̂2b(u)RVαr ,N (ζr) = R0,Vαr
(u− ζr)R0,N (u) · · ·RN,0(u)RVαr ,0(u+ ζr)RVαr ,N (ζr)

= R0,Vαr
(u− ζr)R0,N (u) · · ·RVαr ,N (ζr)RVαr ,0(u+ ζr)RN,0(u)

= R0,Vαr
(u− ζr)R0,N (u)RVαr ,N (ζr) · · ·RVαr ,0(u+ ζr)RN,0(u)

= RVαr ,N (ζr)R0,Vαr
(u− ζr)R0,N (u) · · ·RVαr ,0(u+ ζr)RN,0(u),

so setting

R := RVαr ,N (ζr)RVαr ,N−1(ζr) · · ·RVαr ,2(ζr)RVαr ,1(ζr),

we have21

R−1T2b(u)T̂2b(u)R = T (u)R0,Vαr
(u− ζr)R0,Vαl

(u− ζl)RVαl
,0(u+ ζl)

×RVαr ,0(u+ ζr)T̂ (u) (3.56)

with T (u), T̂ (u) from (3.10). Introducing the new K-matrix

K̃(u) =
R0,Vαr

(u− ζr)R0,Vαl
(u− ζl)RVαl

,0(u+ ζl)RVαr ,0(u+ ζr)

sinh
(
hαl
2 − ζl

)
sinh

(
hαl
2 + ζl

)
sinh

(
hαr
2 − ζr

)
sinh

(
hαr
2 + ζr

) (3.57)

21Note that by (3.41) R is invertible if and only if ζr ̸= ±hαr/2, but this is just equivalent to requiring that
µr (3.54) is finite.
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satisfying the bYBE (3.5) (again as a consequence of the YBE (3.39) and (3.7) or [58, Proposi-
tion 2]), the corresponding monodromy

T̃ (u) := T (u− h/2)K̃(u− h/2)T̂ (u− h/2),

and transfer matrix

t̃2b(u) := qtr0 T̃ (u),

we have by (3.56)

t2b(u) = Rt̃2b(u)R−1,

so t̃2b(u) has the same spectrum as t2b(u). But diagonalising t̃2b(u) is straightforward. Indeed, to
implement ABA for the one-boundary system we only needed the commutation relations (3.16)
and (3.17) and the eigenvalues of A(u) (3.26) and D̄(u) (3.27) when acting on the reference
state |⇑⟩. Replacing K(u) by K̃(u) does not change the commutation relations (3.16) and (3.17)
because they were solely derived from the bYBE (3.13) which the new monodromy T̃ (u) equally
satisfies as K̃(u) is also a solution of the bYBE (3.5). Therefore, we only need to compute the
new eigenvalues of A(u) and D̄(u) when acting on the new reference state22

|⇑⟩ := |0⟩ ⊗ |0⟩ ⊗ |↑⟩⊗N .

This amounts to replacing the diagonal coefficients a(u) and d(u) of K(u) in (3.23)–(3.25) by
the diagonal coefficients ã(u) and d̃(u) of K̃(u) (which are now operators acting on Vαl

⊗ Vαr)
in all the computations of Section 3.1.23 Doing so, we obtain, instead of (3.26) and (3.27),

A(u) |⇑⟩ = sinh2N (u+ h/2)∆l(u)∆r(u) |⇑⟩ ,
D̄(u) |⇑⟩ = sinh2N (u− h/2)∆l(−u)∆r(−u) |⇑⟩ ,

while (3.28) is replaced by

∆l/r(u) = 1− µl/r
sinh(u− h/2) sinh

(
u+ h(αl/r − 1/2)

)
sinh(h) sinh

(
hαl/r

)
=

sinh
(
u+ h

αl/r−1

2 − ζl/r

)
sinh

(
u+ h

αl/r−1

2 + ζl/r

)
sinh

(
hαl/r

2 − ζl/r

)
sinh

(
hαl/r

2 + ζl/r

) . (3.58)

Thus

|{vm}⟩ = B(v1) · · · B(vM ) |⇑⟩

is an eigenvector of t̃2b(u) – or, equivalently, R|{vm}⟩ is an eigenvector of t2b(u) – with eigenvalue
(compare with (3.31))

Λ2b({vm};u) = sinh2N (u+ h/2)∆l(u)∆r(u)
sinh(2u+ h)

sinh(2u)

×
M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)

22We use the same notations as for the one-boundary case for the entries of the new monodromy T̃ (u) and the
new reference state |0⟩ ⊗ |0⟩ ⊗ |↑⟩⊗N .

23The trick we just used is not essential to implement ABA in the two-boundary case and we could have equally
worked with t2b(u) directly (see Appendix B).
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+ sinh2N (u− h/2)∆l(−u)∆r(−u)
sinh(2u− h)

sinh(2u)

×
M∏

m=1

sinh(u− vm + h) sinh(u+ vm + h)

sinh(u− vm) sinh(u+ vm)
(3.59)

if and only if {vm}1≤m≤M satisfy the Bethe ansatz equations (compare with (3.32))

∆l(vm)∆r(vm)

∆l(−vm)∆r(−vm)

(
sinh(vm + h/2)

sinh(vm − h/2)

)2N

=
M∏
k=1
k ̸=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)
(3.60)

for all 1 ≤ m ≤M . The corresponding eigenvalue of H2b is (compare with (3.33))

E2b({vm}) = −µl − µr +
M∑

m=1

sinh2(h)

sinh(vm − h/2) sinh(vm + h/2)
.

Of course we could have guessed this result on physical grounds by interpreting ∆(u)/∆(−u)
as the phase acquired by a quasi-particle of rapidity u reflected at the boundary. For periodic
integrable spin chains, this heuristic can actually be mathematically justified using the represen-
tation theory of the affine quantum group Uqŝl2 (the algebra defined by the RTT relation (3.12)),
establishing that the form of the eigenvalues of the transfer matrix and the BAE are completely
fixed by the choice of a (trigonometric) Drinfeld polynomial, which uniquely specifies (up to iso-
morphism) an irreducible highest-weight representation of Uqŝl2 for the physical space [11]. This
allows to implement ABA for any such choice of representation without almost any computation.
To the best of our knowledge, a similar formalism has not been fully developed for open Uqsl2-
invariant spin chains, especially for infinite-dimensional highest-weight representations, so for
the sake of completeness we perform ABA for all open integrable Uqsl2-invariant highest-weight
spin chains in Appendix B. This also provides an alternative derivation of eigenvalues (3.59) and
BAE (3.60) which does not require K-matrices nor the similarity transformation (3.56).

Coming back to the two-boundary case, we have B(∞) ∝ FH2b
,24 and we expect the finite

(permutation invariant) solutions {vk}1≤k≤M of the BAE (3.60) belonging to the fundamental
domain S+ (3.35) to provide all the Uqsl2 highest-weight eigenstates of weight qαl+αr−2+N−2M

of H2b. Recalling the decomposition (2.36), valid for qαl/r , qαl+αr ̸= ±qZ,

H2b =
⊕
M≥0

HM ⊗ Vαl+αr−1+N−2M

and the dimensions dM (2.37), there are dM such linearly independent vectors and so for generic
values of the parameters we conjecture that the BAE (3.60) have dM such solutions. Note in
particular that the number of magnons M is not bounded as in the one-boundary case.

The BAE (3.60) are exactly the ones found in [10, 54] for Hn.d. (1.1) under the Nepomechie
condition (1.3), which is not surprising: indeed, by Corollary 2.4 (for N even), H2b|HM

is

an irreducible subblock of H
(M)
n.d. for 0 ≤ M ≤ N − 1 and H2b|HM

= H
(M)
n.d. for M ≥ N . Note

however that our derivation of the BAE is fully rigorous and relies on no additional assumptions.
Also, we are now able to pinpoint the algebraic origin of the Nepomechie condition: it is just
a direct consequence of the fusion rules (2.18) and more importantly (2.35), yielding the Uqsl2-
decomposition of H2b (2.36) and restricting the generator Y (2.33) of the two-boundary TL algebra

24As was mentioned at the end of Section 3.2.1, this is true for any integrable Uqsl2-invariant spin chain. Note
also that for H2b we need to renormalise the monodromy T (u) by e−(2N+4)u in (3.46) to make the limit u→ +∞
finite.
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to take exactly the values YM (2.38) of the Nepomechie condition in its irreducible sectors HM .
Strictly speaking, this relation betweenHn.d. andH2b is only valid for generic values of q and αl/r,
as our arguments are based on the Schur–Weyl duality from Theorem 2.3, proven under this
assumption. However, by continuity of the (generalised) spectrum, and since the “allowed”
values of the parameters form a dense set, the spectral equivalence between Hn.d. and (sectors
of) H2b still holds for all q, αl/r ∈ C even though their exact algebraic connection may be more
involved in the non-generic non-semi-simple cases. An instance where ABA was applied to such
a case can be found in [32].

3.2.3 Completeness

Another interesting consequence of our formalism is the question of completeness of the BAE

for Hn.d.. For M ≥ N , H2b|HM
= H

(M)
n.d. so it is equivalent for both Hamiltonians. For 0 ≤M ≤

N − 1, however, H2b|HM
is only an irreducible subblock of H

(M)
n.d. by Corollary 2.4, but both

Hamiltonians still have the same BAE. This means that for 0 ≤ M ≤ N − 1, the BAE (3.60)

cannot possibly provide all the eigenvalues of H
(M)
n.d. , as is already quite clear for M = 0. But

thanks to Corollary 2.5, we know exactly which additional BAE we have to write to diagonalise

the remaining block of H
(M)
n.d. for 0 ≤M ≤ N − 1: we simply need to replace H2b by H2b, which

just amounts to the replacement (2.42), namely αl/r, µl/r → −αl/r,−µl/r up to an irrelevant
additive constant, and by (2.43) the simultaneous replacement of the magnon number M by the
dual magnon number M := N −M − 1. Thus (3.58) is now replaced by

∆̄l/r(u) =: 1− µl/r
sinh(u− h/2) sinh

(
u− h(αl/r + 1/2)

)
sinh(h) sinh

(
hαl/r

)
=

sinh
(
u− h

αl/r+1

2 − ζl/r

)
sinh

(
u− h

αl/r+1

2 + ζl/r

)
sinh

(
hαl/r

2 − ζl/r

)
sinh

(
hαl/r

2 + ζl/r

) ,

and we obtain the BAE

∆l(vm)∆r(vm)

∆l(−vm)∆r(−vm)

(
sinh(vm + h/2)

sinh(vm − h/2)

)2N

=
M∏
k=1
k ̸=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)
(3.61)

for M Bethe roots {vm}1≤m≤M . Together with (3.60) we expect (3.61) to provide the complete

spectrum of H
(M)
n.d. for 0 ≤ M ≤ N − 1, as was previously conjectured in [55] (see also [20]).

Rigorously proving such a completeness statement is of course very hard and has only been
achieved for a handful of integrable models [13, 51]. Still, our approach demonstrates that
two sets of BAE are definitely needed and explains their algebraic origin. Note also that by

Corollary 2.5 (iv), (3.61) are the BAE for H
(M)
n.d. with M ≤ −1. Thus (3.60) and (3.61) taken

together cover all the possible values of the parameters satisfying the Nepomechie constraint (1.3)
for M ∈ Z.

Finally, let us also mention that there exists a different set of BAE for the two-boundary which
can be established using functional relations between various Q-functions [60] or separation of
variables [44]. These equations are rather different from (3.60) and it is therefore quite surprising
that they should yield the same spectrum. We discuss this question in more detail in Appendix C.

Remark 3.2. If q is a 2p-th root of unity, the fusion rule (2.35) becomes

Vαl
⊗ Vαr

∼=
p−1⊕
n=0

Vαl+αr+p−1−2n,
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so we have

H2b =

N+p−1⊕
M=0

d′MVαl+αr+p−1+N−2M

with the magnon number 0 ≤M ≤ N +p−1 now bounded and some different multiplicities d′M
whose explicit expression can be found in [14]. Thus we see that contrary to the one-boundary
case where we expect the same number of solutions to the BAE (3.32) for generic and root of
unity q, in the two-boundary case the BAE (3.60) should apparently behave quite differently
in these two situations. This must also be related to the fact that the representation theory of
2Bδ,yl/r,Y,N changes significantly at roots of unity and in particular the structure of the vacuum
module W0 – which is still not fully known – becomes much more complicated than for generic q
as in Theorem 2.2 (see also [14, Conjecture 2]). This requires further study.

4 Outlook

In this paper, we have constructed a Uqsl2-invariant realisationH2b of the open XXZ Hamiltonian
with non-diagonal boundary terms Hn.d. for all values of the parameters satisfying (1.3) by
using the representation theory of the two-boundary Temperley–Lieb algebra 2Bδ,yl/r,Y,N . This
enabled us to rigorously derive the BAE equations (3.60) for Hn.d. by ABA and to understand
the algebraic origin of the Nepomechie condition (1.3) from the point of view of Uqsl2 fusion
rules (2.18)–(2.35), restricting the possible values of the weight Y of 2Bδ,yl/r,Y,N to the discrete
set {YM ,M ∈ Z} (2.38).

Although the BAE we derived were previously known in the literature, a direct construction of
the eigenstates by standard algebraic Bethe ansatz had never been performed until now and could
be most useful in the computation of finer observables of the system, such as correlation functions
and form factors, and in the study of some closely related models such as the asymmetric simple
exclusion process (ASEP) [16, 57]. It is also worth mentioning that the algebraic Bethe ansatz
formalism we presented generalises straightforwardly to open XXZ spin chains with additional
inhomogeneity parameters at every site. Finally, our construction admits a well-defined q → 1
limit, giving rise to non-compact boundary conditions for the open XXX spin chain.

It would be very interesting to construct an even more general Uqsl2-invariant spin chain
which could reach arbitrary values of Y and not just the discrete set subject to the Nepomechie
condition (1.3). The weights yl/r are entirely determined by the value of the Casimir CVαl/r

and

the possible values of Y by the values C can take on the tensor product Vαl
⊗ Vαr . Therefore,

to find such a generalisation, one would need to construct two new one-parameter families of
boundary Uqsl2-modules Xαl/r

, with αl/r parametrising yl/r through the Casimir CXαl/r
, and

more crucially such that C can take any value on Xαl
⊗ Xαr . This implies that the Uqsl2-

decomposition of Xαl
⊗ Xαr should no longer be discrete as in (2.35) but continuous. For

the q → 1 XXX case, such fusion rules are known to arise in the context of principal series
representations of SL(2,C) [52]. For the general XXZ spin chain a natural guess would be to use
their Uqsl2 q-deformed analogues. Such spin chains could shed light on the origin of the general
BAE for Hn.d. (see Appendix C). Continuous fusion rules are also a central feature of Liouville
CFT and the celebrated DOZZ formula for its 3-point function constants, which was recently
proved [45], including in the imaginary case [1] where its relevance for lattice models has been
established [36]. A well-defined lattice model with similar properties would certainly be of great
help to further our understanding of the challenging questions still surrounding this theory. We
will explore these ideas in future work.

It would be of course very desirable to extend our formalism to XXZ-type chains of spin-1 with
non-diagonal integrable boundary conditions [37] and eventually to arbitrary spins [23, 46]. This
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should reveal new lattice algebras generalising the two-boundary Temperley–Lieb algebra. One
obvious guess would be here the fused Temperley–Lieb algebras, or fused Hecke algebras [15] for
higher rank cases. Unfortunately, their boundary versions and the corresponding representation
theory are poorly understood. A yet another interesting problem would be developing ABA in
the non-semi-simple cases when the weights of the Verma modules take integer values, even at
generic q, and the Hamiltonian is non-diagonalisable. This is similar to the problem studied
in [32] but one should take limits in αl/r variables instead of limits q to a root of unity.

Finally, it is known that in the critical domain |q| = 1, the boundary loop model defined
by H (2.13) is conformally invariant in the large-N scaling limit, with some explicit conjectures
for its conformal spectrum based on the Coulomb gas approach [28, 39] including for generali-
sations to anisotropic boundary conditions in the dilute O(n) model [29, 30]. Using the explicit
spin chain Hamiltonians Hb and H2b and the corresponding BAE (3.32)–(3.60) one can now
hope to establish these results rigorously. This will be the subject of a forthcoming paper.
Also, since from a physical perspective the two-boundary system can be seen as the fusion of
two one-boundary systems, the representation theory of the discrete lattice algebras Bδ,y,N and
2Bδ,yl/r,Y,N may provide new insight into the fusion of Virasoro primary fields.

A Proof of Theorem 2.3

The goal of this section is to prove the isomorphisms (2.40). By Theorem 2.2, this would
imply that all the HM appearing in the decomposition (2.39) are irreducible representations of
2Buni

δ,yl/r,N
and therefore that Uqsl2 and 2Buni

δ,yl/r,N
are indeed mutual centralisers on H2b.

The main idea is to follow a more abstract approach to Schur–Weyl duality and rewrite the
decomposition into irreducible Uqsl2-modules (2.36) as

H2b =
⊕
M≥0

HomUqsl2 (Vαl+αr−1+N−2M ,H2b)⊗ Vαl+αr−1+N−2M ,

where HomUqsl2(X ,Y) denotes the space of Uqsl2-intertwiners between two Uqsl2-modules X
and Y. Of course HomUqsl2 (Vαl+αr−1+N−2M ,H2b) and HM are isomorphic as vector spaces:
a Uqsl2-intertwiner f : Vαl+αr−1+N−2M → H2b is uniquely determined by the image of the
highest-weight vector |0⟩ of Vαl+αr−1+N−2M (2.17), that is the choice of a highest-weight vector
f |0⟩ ∈ H2b of the same weight. Since the subspace of all such vectors is HM by definition

HomUqsl2 (Vαl+αr−1+N−2M ,H2b) ∼= HomC (C |0⟩ ,HM ) ∼= HM . (A.1)

Actually, this isomorphism is even an isomorphism of 2Bδ,yl/r,YM ,N -modules. Indeed, the Uqsl2-
invariant action of 2Bδ,yl/r,YM ,N on H2b induces an action on the target space of intertwiners
f ∈ HomUqsl2 (Vαl+αr−1+N−2M ,H2b) which is equivalent to the action 2Bδ,yl/r,YM ,N on HM via
the isomorphism (A.1).

The advantage of this rewriting is that we can construct morphisms25 between standard
2Bδ,yl/r,YM ,N -modules and HomUqsl2 (Vαl+αr−1+N−2M ,H2b) in a much more canonical way. The

idea is to use the diagrammatical calculus for Uqsl2-intertwiners to map well-chosen 2Buni
δ,yl/r,N

-

modules to some bigger spaces of Uqsl2-intertwiners in a way compatible with the lattice algebra
action and then to appropriately specialise these maps to the spaces HomUqsl2(Vαl+αr−1+N−2M ,
H2b).

Let us first recall a few basic facts about this diagrammatical formalism and explain how
it can be used to rederive Schur–Weyl duality for the simpler case of the TL algebra (2.21).
To any TL diagram, that is a planar configuration of non-intersecting strings between two sets

25We shall use the term “morphism” instead of “homomorphism” to lighten the exposition.
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of N points, one can assign a Uqsl2-intertwiner from H := (C2)⊗N to itself, that is an element
of EndUqsl2(H), by mapping the elementary generators of TL diagrams ei, 1 ≤ i ≤ N − 1,
to the corresponding Uqsl2-intertwiners (2.19). Since their composition rules are the same as
the defining relations of the TL algebra (2.1), this provides a Uqsl2-invariant representation
ρTL : TLδ,N → EndUqsl2(H).

More generally, let us denote W≤j the vector space spanned by all planar configurations of
non-intersecting strings between a set of 2j ≤ N points (at the bottom) and a set of N points
(at the top). Although W≤j is not an algebra, (except for j = N/2 where we recover the TL
algebra), TLδ,N naturally acts on W≤j by stacking TL diagrams on top of elements of W≤j .
Moreover, using the elementary building blocks26

Ci =
. .i i+ 1

= q1/2 |↑↓⟩ − q−1/2 |↓↑⟩ ∈ HomUqsl2

(
C,C2 ⊗ C2

)
, 1 ≤ i ≤ N − 1,

C̄i = . .
i i+ 1

= q1/2 ⟨↑↓| − q−1/2 ⟨↓↑| ∈ HomUqsl2

(
C2 ⊗ C2,C

)
, 1 ≤ i ≤ N − 1,

any diagram of W≤j can be mapped to an element of HomUqsl2

(
(C2)⊗2j ,H

)
. As these diagrams

suggest, CiC̄i = ei, C̄iCi = q + q−1 = δ and more generally one can check that Ci, C̄i, 1 ≤ i ≤
N − 1 satisfy all the natural diagrammatical rules inherited from the TL algebra. This means
that the mapping

ΨTL
j : W≤j → HomUqsl2

(
(C2)⊗2j ,H

)
(A.2)

is a morphism of TLδ,N -modules, where TLδ,N acts on the target space of intertwiners f ∈
HomUqsl2

(
(C2)⊗2j ,H

)
via the representation map ρTL.

27

Evaluating all f ∈ HomUqsl2

(
(C2)⊗2j ,H

)
at |↑⟩⊗2j , we obtain a morphism of TLδ,N -modules

ψTL
j : W≤j → HTL

j , ℓ 7→ ΨTL
j (ℓ) |↑⟩⊗2j , (A.3)

where HTL
j ⊂ H is the subspace of highest-weight vectors of weight q2j . Indeed, since ΨTL

j (ℓ) ∈
HomUqsl2

(
(C2)⊗2j ,H

)
EHψ

TL
j (ℓ) = EHΨ

TL
j (ℓ) |↑⟩⊗2j = ΨTL

j (ℓ)E(C2)⊗2j |↑⟩⊗2j = 0,

KHψ
TL
j (ℓ) = KHΨ

TL
j (ℓ) |↑⟩⊗2j = ΨTL

j (ℓ)K(C2)⊗2j |↑⟩⊗2j = q2jψTL
j (ℓ) (A.4)

for all ℓ ∈ W≤j so ImψTL
j ⊂ HTL

j . Equivalently, ψTL
j can be seen as a map from W≤j to

HomUqsl2

(
C2j+1,H

) ∼= HTL
j obtained by precomposing ΨTL

j (ℓ) ∈ HomUqsl2

(
(C2)⊗2j ,H

)
by the

unique (up to normalisation) Uqsl2-intertwiner from the spin-j representation C2j+1 of Uqsl2
to (C2)⊗2j .

Finally, W≤j contains a stable TLδ,N -subspace W<j spanned by all diagrams of W≤j con-
taining strictly less than 2j through lines (recall that the action of the TL algebra can only
decrease the number of through lines). By definition, the quotient W≤j/W<j is isomorphic, as
a TLδ,N -module, to the standard module Wj . For all ℓ ∈ W<j , ψ

TL
j (ℓ) contains one or more

caps ∩ linking bottom points and moreover at least one of these caps has to connect two neigh-
bouring sites. This means that ΨTL

j (ℓ) is of the form A⊗ C̄i for some 1 ≤ i ≤ 2j − 1 and some

26There is a more abstract categorical construction of these morphisms in terms of evaluation and coevaluation
maps which we will not present here (see [14] for more details).

27One can also construct the morphisms ΨTL
j by first embedding W≤j into TLδ,N by adding N/2−j “spectator”

caps ∩ at the bottom of all diagrams, then mapping it to EndUqsl2(H) via ρTL and finally removing the spectator

caps by precomposing with δj−N/2 Id(C2)⊗2j ⊗
⊗N−1

i=j C2i+1. This method will be used for the two-boundary case.
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A ∈ HomUqsl2

(
(C2)⊗2(j−1),H

)
. Since C̄i |↑↑⟩ = 0, ψTL

j (ℓ) = 0, and so ℓ ∈ KerψTL
j . Therefore,

W<j ⊆ KerψTL
j which implies that ψTL

j induces a morphism of TLδ,N -modules

ψ̃TL
j : W≤j/W<j

∼= Wj → HTL
j . (A.5)

It is clearly non-zero as

. . . . . . ... . . . .. 7→ |↑⟩⊗2j ⊗
⊗N−1

i=j C2i+1 ̸= 0

and sinceWj is irreducible ψ̃
TL
j must be injective. But by (2.2), dimWj = dimHTL

j soHTL
j

∼= Wj .

This proves Schur–Weyl duality (2.21) between the actions of TLδ,N and Uqsl2 on H := (C2)⊗N .

We would now like to extend this formalism to the actions of 2Buni
δ,yl/r,N

and Uqsl2 on H2b :=

Vαl
⊗ (C2)⊗N ⊗ Vαr , in particular to construct (universal) two-boundary analogues of the mor-

phisms ΨTL
j (A.2), ψTL

j (A.3) and ψ̃TL
j (A.5).

Let us define W2b
≤j , the vector space spanned by all two-boundary TL diagrams from 2j ≤ N

points (at the bottom) to N points (at the top), that is TL diagrams of W≤j decorated by
left/right blobs/anti-blobs in all admissible ways. 2Bδ,yl/r,Y,N naturally acts on W2b

≤j by stacking

two-boundary TL diagrams on top of elements of W2b
≤j . Since we will be working with the

universal two-boundary TL algebra 2Buni
δ,yl/r,N

, we need to slightly extend this definition by

promoting W2b
≤j to a free C[Y]-module W2b

≤j [Y] of rank dimW2b
≤j , generated by the basis elements

of W2b
≤j . Then W2b

≤j [Y] admits an action of 2Buni
δ,yl/r,N

, where the additional Y generator simply

acts by multiplication.

We would like to define a morphism of 2Buni
δ,yl/r,N

-modules Ψj from W2b
≤j [Y] to HomUqsl2

(
Vαl

⊗
(C2)⊗2j⊗Vαr ,H2b

)
. For j = N/2 this is straightforward: W2b

≤N/2[Y] and 2Buni
δ,yl/r,N

are isomorphic

as (left) 2Buni
δ,yl/r,N

-modules and so we can just take the representation map

ρH2b
: 2Buni

δ,yl/r,N
→ EndUqsl2(H2b)

constructed in [14]. To build Ψj for 0 ≤ j ≤ N/2− 1, let us take advantage of this simpler case
by embedding W2b

≤j [Y] into 2Buni
δ,yl/r,N

.

Define Ij the subspace of all two-boundary TL diagrams ℓ of the form ℓ′ ⊗ ∩⊗(N/2−j) where
ℓ′ ∈ W2b

≤j is a two-boundary TL diagram from 2j points labelled {1, . . . , 2j} (at the bottom)

to N points (at the top) and ∩⊗(N/2−j) are N/2 − j caps linking the remaining pairs of points
(2j+1, 2j+2), (2j+3, 2j+4), . . . , (N −1, N) at the bottom. For example, for N = 4 and j = 1

ℓ′ =
.
.◦
. . .

.■ 7→

.

.
◦

. .

.

.
■

. .
= ℓ = ℓ′ ⊗ ∩ .

1 2

1 2 3 4

Clearly

{0} ⊊ I0 ⊊ I1 ⊊ · · · ⊊ IN/2 := 2Bδ,yl/r,Y,N

and since the left action of 2Bδ,yl/r,Y,N on Ij preserves the ∩⊗(N/2−j) part, Ij is a left 2Bδ,yl/r,Y,N

ideal. We can extend this construction to the universal two-boundary TL algebra 2Buni
δ,yl/r,N

by
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promoting Ij to a free C[Y]-module Ij [Y] of rank dim Ij generated by the basis diagrams of Ij .
Then

{0} ⊊ I0[Y] ⊊ I1[Y] ⊊ · · · ⊊ IN/2[Y] := 2Buni
δ,yl/r,N

is an increasing sequence of ideals of 2Buni
δ,yl/r,N

. Obviously, W2b
≤j [Y] and Ij [Y] are isomorphic as

(left) 2Buni
δ,yl/r,N

-modules via the map ℓ′ 7→ ℓ := ℓ′⊗∩⊗(N/2−j) so we can (and will) identify them.

Now the restriction map

ρH2b
|Ij [Y] : Ij [Y] → EndUqsl2(H2b)

is a 2Buni
δ,yl/r,N

-module morphism (because ρH2b
is a representation of 2Buni

δ,yl/r,N
on H2b) and

its image consists of elements of EndUqsl2(H2b) of the form A⊗C̄2j+1 ⊗ · · · ⊗ C̄N−1 with A ∈
HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
. Let us define the map

πj : Im
(
ρH2b

|Ij [Y]
)
→ HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
,

A⊗ C̄2j+1 ⊗ · · · ⊗ C̄N−1 7→ A.

Concretely, using the fact that C̄iCi = δ ̸= 0,28

πj(X) = δj−N/2X ◦
(
IdVαl

⊗(C2)⊗2j ⊗C2j+1 ⊗ · · · ⊗ CN−1 ⊗ IdVαr

)
for all X ∈ Im

(
ρH2b

|Ij [Y]
)
, from which it is clear that

� πj is well-defined,

� πj(X) is a Uqsl2-intertwiner as the composition of two Uqsl2-intertwiners,

� πj is a 2Buni
δ,yl/r,N

-module morphism as 2Buni
δ,yl/r,N

acts only on the target space of the Uqsl2-

intertwiner X.

Thus, for all 0 ≤ j ≤ N/2, we have constructed a 2Buni
δ,yl/r,N

-module morphism

Ψj := πj ◦ ρH2b
|Ij [Y] : W2b

≤j [Y]
∼= Ij [Y] → HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
(A.6)

as we wanted.

This abstractly-defined map Ψj has actually a very natural diagrammatical interpretation.
Indeed, two-boundary TL diagrams of W2b

≤j are just decorated TL diagrams of W≤j so con-
structing Ψj amounts to implementing these decorations in terms of Uqsl2-intertwiners (and
mapping Y to (2.33)). Concretely, one can introduce the diagrams

.

.

.

.
bl

C2

C2

Vαl

Vαl

.

.

.

.
b̄l

C2

C2

Vαl

Vαl

.

.

.

.
br

C2

C2

Vαr

Vαr

.

.

.

.
b̄r

C2

C2

Vαr

Vαr

and decorate the TL of strings a Uqsl2-intertwiner belonging to HomUqsl2

(
(C2)⊗2j ,H

)
by de-

forming them until they are in contact with the left (red line) or right (blue line) boundary and

28Recall that δ = 0 corresponds to q = i, whereas we have assumed that q is not a root of unity.
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then inserting the diagrams bl/r, b̄l/r above to obtain a two-boundary Uqsl2-intertwiner belong-
ing to HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗Vαr ,H2b

)
. Of course such a deformation is only possible if one

never intersects any other string while doing so. But this is consistent with the decoration rules
for two-boundary diagrams because a string can acquire a left/right blob/anti-blob only when
touching the left/right boundary.

Using the above procedure, we can uniquely map diagrams of W2b
≤j to HomUqsl2

(
Vαl

⊗
(C2)⊗2j ⊗ Vαr ,H2b

)
. For example, for N = 4 and j = 0,

. . . .
◦ • ■

7→

. .

. . . .

. .

. .. .

.
bl

b̄l

br

.

. .

VαrVαl

VαrVαl C2 C2 C2 C2

= b̄l(C1C̄1)(blC2C̄2br)(C1C3).

For all ℓ ∈ W2b
≤j , it is technically possible to write an explicit expression of the correspond-

ing Uqsl2-intertwiner Ψj(ℓ) ∈ HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
in terms of the Ci, C̄i,

1 ≤ i ≤ N − 1, bl/r and b̄l/r, but the shortcut we took by adding the “spectator” part ∩⊗N/2−j to
embed them into 2Buni

δ,yl/r,N
and mapping them to intertwiners using the representation map ρH2b

achieves the same goal faster while also providing a direct proof that Ψj commutes with the
action of 2Buni

δ,yl/r,N
.

Coming back to our proof, let us first consider the morphism of 2Buni
δ,yl/r,N

-modules

Ψ0 : W2b
≤0[Y]

∼= I0[Y] → HomUqsl2(Vαl
⊗ Vαr ,H2b).

Note that, by definition, W2b
≤0[Y] = W0[Y], the universal vacuum module of 2Buni

δ,yl/r,N
.

Recalling the fusion rule (2.35), rewritten in a convenient way,

Vαl
⊗ Vαr

∼=
⊕

M≥N/2

Vαl+αr−1+N−2M , (A.7)

we have maps φM ∈ HomUqsl2 (Vαl+αr−1+N−2M ,Vαl
⊗ Vαr), M ≥ N/2, which are unique up to

normalisation. They induce maps

Ψ
(M)
0 : W0[Y] → HomUqsl2(Vαl+αr−1+N−2M ,H2b), ℓ 7→ Ψ0(ℓ) ◦ φM ,

which are also morphisms of 2Buni
δ,yl/r,N

-modules. Moreover, for any f ∈HomUqsl2(Vαl+αr−1+N−2M ,

H2b), M ≥ 0,

YH2b
f(−) = f(YVαl+αr−1+N−2M

−) = YMf(−). (A.8)

In other words, Y acts as the scalar YM on HomUqsl2 (Vαl+αr−1+N−2M ,H2b) which means that

(Y − YM )W0[Y] ⊆ KerΨ
(M)
0 and so, for allM ≥ N/2, Ψ

(M)
0 induces a morphism of 2Bδ,yl/r,YM ,N -

modules between W0[Y]/(Y − YM )W0[Y] ∼= W0 and HomUqsl2 (Vαl+αr−1+N−2M ,H2b) ∼= HM ,

which we still denote Ψ
(M)
0 .
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Note that, concretely, for all ℓ ∈ W0, Ψ
(M)
0 (ℓ) ∈ HM is simply the evaluation of the

Uqsl2-intertwiner Ψ0(ℓ) ∈ HomUqsl2 (Vαl
⊗ Vαr ,H2b) at the highest-weight vector |wM ⟩ of the

Vαl+αr−1+N−2M summand of Vαl
⊗ Vαr in (A.7). This evaluation Ψ

(M)
0 (ℓ) = Ψ0(ℓ) |wM ⟩ is in-

deed an element of HM – the subspace of highest-weight vectors of weight qαl+αr−2+N−2M –
simply because for all ℓ ∈ W0[Y],

EH2b
Ψ

(M)
0 (ℓ) = EH2b

Ψ0(ℓ)|wM ⟩ = Ψ0(ℓ)EVαl
⊗Vαr

|wM ⟩ = 0,

KH2b
Ψ

(M)
0 (ℓ) = KH2b

Ψ0(ℓ)|wM ⟩ = Ψ0(ℓ)KVαl
⊗Vαr

|wM ⟩ = qαl+αr−2+N−2MΨ0(ℓ)|wM ⟩. (A.9)

Clearly Ψ
(M)
0 ̸= 0 as, for example,

. . . . . . . 7→
⊗N/2

i=1 C2i−1 ̸= 0.

By Theorem 2.2 (iii), the 2Bδ,yl/r,YM ,N -module W0 is irreducible for all M ≥ N , so Ψ
(M)
0 must

be injective. Since dimW0 = dimHM = 2N by (2.9) and (2.37), Ψ
(M)
0 is an isomorphism and

so HM
∼= W0 for all M ≥ N .

Now for N/2 ≤ M ≤ N − 1, KerΨ
(M)
0 is a 2Bδ,yl/r,YM ,N -submodule of W0 and so by Theo-

rem 2.2 (ii) it must be equal to either {0}, W b̄b̄
M+1−N/2 or W0. It cannot be equal to W0 because

Ψ
(M)
0 ̸= 0. It cannot be equal to {0} because dM = dimHM < dimW0 = 2N by (2.37). There-

fore, KerΨ
(M)
0 = W b̄b̄

M+1−N/2 and so Ψ
(M)
0 induces a non-zero injective 2Bδ,yl/r,YM ,N -module

morphism between W0/W b̄b̄
M+1−N/2 and HM . Since by (2.9) and (2.37) dimW0/W b̄b̄

M+1−N/2 =

dimHM = dM we have HM
∼= W0/W b̄b̄

M+1−N/2 for all N/2 ≤M ≤ N − 1.

It remains to deal with the cases 0 ≤M ≤ N/2−1. Here we can no longer use Ψ0 because the
tensor product Vαr⊗Vαr (A.7) does not contain summands Vαl+αr−1+N−2M for 0 ≤M ≤ N/2−1.
The idea is then to consider the above-constructed 2Buni

δ,yl/r,N
-module morphisms (A.6)

Ψj : Ij [Y] → HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
now with 1 ≤ j ≤ N/2. Evaluating the elements of HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
at

|0⟩ ⊗ |↑⟩⊗2j ⊗ |0⟩ or, equivalently, pre-composing them with the only (up to normalisation)
Uqsl2-intertwiner

χj : Vαl+αr−1+2j → Vαl
⊗ (C2)⊗2j ⊗ Vαr ,

we obtain, for each 1 ≤ j ≤ N/2, a morphism of 2Buni
δ,yl/r,N

-modules29

ψj : Ij [Y] → HomUqsl2 (Vαl+αr−1+2j ,Hb) ∼= HN/2−j ,

ℓ 7→ Ψj(ℓ) ◦ χj
∼= Ψj(ℓ) |0⟩ ⊗ |↑⟩⊗2j ⊗ |0⟩ .

By (A.8), Y acts as the scalar YM on HomUqsl2 (Vαl+αr−1+N−2M ,H2b) ∼= HM and so for all
1 ≤ j ≤ N/2, ψj induces a morphism of 2Bδ,yl/r,YM ,N -modules,M = N/2−j, between Ij [Y]/(Y−
YM )Ij [Y] ∼= Ij and HomUqsl2 (Vαl+αr−1+2j ,H2b) which we still denote ψj .

Now consider the subspace Uj ⊂ Ij spanned by all two-boundary TL diagrams ℓ of the form
ℓ′ ⊗ ∩⊗N/2−j where ℓ′ ∈ W2b

≤j is a two-boundary TL diagram from 2j to N points such that it
has either

29Using the same reasoning as in (A.4) and (A.9), we easily see that EH2bΨj(ℓ) |0⟩ ⊗ |↑⟩⊗2j ⊗ |0⟩ = 0 and
KH2bΨj(ℓ) |0⟩ ⊗ |↑⟩⊗2j ⊗ |0⟩ = qαl+αr−2+2jΨj(ℓ) |0⟩ ⊗ |↑⟩⊗2j ⊗ |0⟩ for all ℓ ∈ Ij [Y] so indeed Imψj ⊆ HN/2−j for
all 1 ≤ j ≤ N/2.
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(i) strictly less than 2j through lines,

(ii) or exactly 2j through lines with the leftmost or rightmost through line of ℓ′ carrying
a left/right anti-blob.

The left action of 2Bδ,yl/r,YM ,N on Ij can only decrease the number of through lines and can
never change the left/right blob/anti-blob decoration of the leftmost/rightmost through line of
a diagram with 2j through lines,30 which implies that Uj is a stable 2Bδ,yl/r,YM ,N subspace.
Moreover, by definition of standard modules, the quotient Ij/Uj – which is exactly the space
of two-boundary TL diagrams with 2j through lines with leftmost and rightmost through lines
both carrying left and right blobs – is isomorphic to Wbb

j as a 2Bδ,yl/r,YM ,N -module.
Let us show the following.

Lemma A.1. For all 1 ≤ j ≤ N/2, Uj ⊆ Kerψj.

Proof. First consider ℓ ∈ Uj of the form (i). This means that ℓ = ℓ′ ⊗ ∩⊗N/2−j with ℓ′ ∈ W2b
≤j

containing at least one cap at the bottom. Moreover, at least one of these caps connects neigh-
bouring sites: if that was not the case, it would be impossible to fill the bottom 2j points of ℓ′

with non-intersecting caps and through lines. If j = 1, ℓ′ contains no through lines and the bot-
tom of ℓ′ has a single cap linking points 1 and 2 which can carry any left/right blob/anti-blob
configuration. Therefore, Ψ1(ℓ) is of the form AC̄1blbr, or AC̄1blb̄r, or AC̄1b̄lbr, or AC̄1b̄lb̄r for
some A ∈ HomUqsl2(Vαl

⊗ Vαr ,H2b) and so

ψ1(ℓ) = Ψ1(ℓ) |0⟩ ⊗ |↑↑⟩ ⊗ |0⟩ = 0

because C̄1blbr |0⟩ ⊗ |↑↑⟩ ⊗ |0⟩ = C̄1 |0⟩ ⊗ |↑↑⟩ ⊗ |0⟩ = 0 and b̄l |0⟩ ⊗ |↑⟩ = b̄r |↑⟩ ⊗ |0⟩ = 0.
Now take j ≥ 2 and first suppose ℓ′ contains through lines. We have the following cases:

� Either the bottom points 1 and 2j of ℓ′ are both occupied by through lines. Then the caps
in between cannot carry blobs/anti-blobs and so ℓ′ contains an undecorated cap linking
points i and i+ 1 for some 2 ≤ i ≤ 2j − 2.

� Or the bottom point 1 is connected to some other bottom point 2 ≤ k ≤ 2j − 2 by
a cap (for k even). If k ̸= 2, then the points strictly between 1 and k can only contain
undecorated caps, at least one of them linking neighbouring points i and i + 1 for some
2 ≤ i ≤ k− 2. If k = 2, ℓ′ contains a cap linking points 1 and 2 which can only carry a left
blob/anti-blob, because it is separated from the right boundary by a through line.

� Or the bottom point 2j is connected to some other bottom point 3 ≤ k ≤ 2j − 1 by a cap
(for k odd). If k ̸= 2j − 1, then the points strictly between k and 2j can only contain
undecorated caps, at least one of them linking neighbouring points i and i + 1 for some
k + 1 ≤ i ≤ 2j − 2. If k = 2j − 1, ℓ′ contains a cap linking points 2j − 1 and 2j which
can only carry a right blob/anti-blob, because it is separated from the left boundary by
a through line.

On the other hand if ℓ′ contains no through lines and j ≥ 2 then:

� Either the bottom of ℓ′ contains some “long” cap linking points 1 ≤ k < k′ ≤ 2j with
k+3 ≤ k′ (for k and k′ of opposite parities) so there is an undecorated cap linking points i
and i+ 1 for some k + 1 ≤ i ≤ k′ − 1.

� Or the bottom of ℓ′ contains only nearest-neighbour caps. Then either the leftmost cap
(linking points 1 and 2) is undecorated or carries only a left blob/antiblob, or the rightmost
cap (linking points 2j − 1 and 2j) is undecorated or carries only a right blob/antiblob.

30It is actually this property that makes the standard modules Wbb
j , Wbb̄

j , W b̄b
j , W b̄b̄

j well-defined.
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Indeed, the leftmost and rightmost caps cannot both carry left and right blobs/anti-blobs
as they would both need to touch the two boundaries of the system, which is impossible
without them crossing.

To summarise, if j ≥ 2, the bottom of ℓ′ contains

� either an undecorated cap linking neighbouring points i and i+ 1 for some 1 ≤ i ≤ 2j,

� or a cap linking points 1 and 2 and carrying only a left blob/anti-blob,

� or a cap linking points 2j − 1 and 2j and carrying only a right blob/anti-blob.

This means that Ψj(ℓ) is of the form AC̄i, for some 1 ≤ i ≤ 2j, or AC̄1bl, or AC̄1b̄l, or AC̄2j−1br,
or AC̄2j−1b̄r for some A ∈ HomUqsl2

(
Vαl

⊗ (C2)⊗2(j−1) ⊗ Vαr ,H2b

)
. Therefore,

ψj(ℓ) = Ψj(ℓ) |0⟩ ⊗ |↑⟩⊗2j ⊗ |0⟩ = 0.

Finally, if ℓ is of the form (ii), Ψj(ℓ) is of the form Ab̄l or Ab̄r with some A ∈ HomUqsl2

(
Vαl

⊗
(C2)⊗2j ⊗ Vαr ,H2b

)
and since b̄l |0⟩ ⊗ |↑⟩ = b̄r |↑⟩ ⊗ |0⟩ = 0, ψj(ℓ) = 0. ■

Now Uj ⊆ Kerψj implies that ψj induces a morphism of 2Bδ,yl/r,YM ,N -modules

ψ̃j : Ij/Uj
∼= Wbb

j → HM

for all 1 ≤ j ≤ N/2, with M = N/2− j. Clearly, ψ̃j is non-zero as, for example,

..• . .. . .. ... . . . .. ..■ 7→ |0⟩ ⊗ |↑⟩⊗2j ⊗
(⊗N−1

i=j C2i+1

)
⊗ |0⟩ ≠ 0.

By Theorem 2.2, the 2Bδ,yl/r,YM ,N -module Wbb
N/2−M is irreducible for all 1 ≤M ≤ N/2−1 so ψ̃j

is injective. Since dimWbb
N/2−M = dimHM by (2.9) and (2.37), we have Wbb

N/2−M
∼= HM for all

0 ≤M ≤ N/2− 1 which completes the proof.

B ABA for a general Uqsl2-invariant highest-weight spin chain

Consider a tensor product X :=
⊗n

i=1Xi of irreducible highest-weight Uqsl2-modules of weight
qαi−1 (that is, Xi is a spin-αi−1

2 representation if αi ∈ N∗ and a Verma module otherwise) and
define the monodromy

T (u) := T (u− h/2)T̂ (u− h/2) =

(
A(u) B(u)
C(u) D(u)

)
with

T (u− h/2) :=

(
A(u) B(u)
C(u) D(u)

)
= R0,Xn(u− h/2− ζn) · · ·R0,X1(u− h/2− ζ1),

T̂ (u− h/2) :=

(
Â(u) B̂(u)

Ĉ(u) D̂(u)

)
= RX1,0(u− h/2 + ζ1) · · ·RXn,0(u− h/2 + ζn),

for some inhomogeneity parameters ζi ∈ C, 1 ≤ i ≤ n, and the transfer matrix

t(u) := qtr0 T (u) = ehA(u) + e−hD(u).

By [58, Proposition 2], T (u) is a solution of the bYBE (3.13): using the YBE (3.39) one
checks that T (u) satisfies the RTT relation (3.12), T̂ (u) ∝ T (−u)−1 because of (3.40), and IdC2



Algebraic Bethe Ansatz for the Open XXZ Spin Chain 41

is a solution of the bYBE (3.5) by (3.7), so the product T (u + h/2) := T (u) IdC2 T̂ (u) is also
one.31 Therefore, the commutation relations (3.16) and (3.17) remain the same.

It remains to compute the eigenvalues of A(u) and D̄(u) when acting on the reference state

|0⟩ :=
n⊗

i=1

|0i⟩ ,

where |0i⟩ is the highest-weight vector of Xi. To do so, first write

R0,Xi(u− h/2− ζi) =
eu−ζi

2
RC2,Xi

− e−u+ζi

2
PXi,C2 ◦ R−1

Xi,C2 ◦ PC2,Xi

=
eu−ζi

2

(
K
1/2
i {1}K1/2

i Fi

0 K
−1/2
i

)
− e−u+ζi

2

(
K
−1/2
i 0

−{1}EiK
−1/2
i K

1/2
i

)

=

(
sinh(u− ζi + hHi/2) sinh(h) exp(u− ζi + hHi/2)Fi

sinh(h)Ei exp(−u+ ζi − hHi/2) sinh(u− ζi − hHi/2)

)
:=

(
ai bi
ci di

)
,

where qHi = ehHi := Ki. Similarly,

RXi,0(u− h/2 + ζi) =
eu+ζi

2
RXi,C2 −

e−u−ζi

2
PXi,C2 ◦ R−1

C2,Xi
◦ PXi,C2

=

(
sinh(u+ ζi + hHi/2) sinh(h)Fi exp(−u− ζi + hHi/2)

sinh(h) exp(u+ ζi − hHi/2)Ei sinh(u+ ζi − hHi/2)

)
:=

(
âi b̂i
ĉi d̂i

)
.

Since C(u) |0⟩ = Ĉ(u) |0⟩ = 0, we have

A(u) |0⟩ = A(u)Â(u) |0⟩ ,
D(u) |0⟩ =

(
C(u)B̂(u) +D(u)D̂(u)

)
|0⟩ . (B.1)

Introducing a basis {|↑⟩ , |↓⟩} of the auxiliary space, we have, similarly to the one-boundary
computation in Section 3.1,

A(u) |0⟩ = ⟨↑|T (u) |↑⟩ ⊗ |0⟩ =
n∏

i=1

ai |0⟩ =
n∏

i=1

sinh

(
u− ζi + h

αi − 1

2

)
|0⟩ ,

Â(u) |0⟩ = ⟨↑| T̂ (u) |↑⟩ ⊗ |0⟩ =
n∏

i=1

âi |0⟩ =
n∏

i=1

sinh

(
u+ ζi + h

αi − 1

2

)
|0⟩ ,

D(u) |0⟩ = ⟨↓|T (u) |↓⟩ ⊗ |0⟩ =
n∏

i=1

di |0⟩ =
n∏

i=1

sinh

(
u− ζi − h

αi − 1

2

)
|0⟩ ,

D̂(u) |0⟩ = ⟨↓| T̂ (u) |↓⟩ ⊗ |0⟩ =
n∏

i=1

d̂i |0⟩ =
n∏

i=1

sinh

(
u+ ζi − h

αi − 1

2

)
|0⟩ . (B.2)

and

C(u)B̂(u) |0⟩ = ⟨↓|T (u) |↑⟩ ⟨↑| T̂ (u) |↓⟩ ⊗ |0⟩
31This statement can also be proved by induction on n using only the YBE (3.39) and (3.7).
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= ⟨↓|T (u) |↑⟩ ⊗
n∑

k=1

(
k−1∏
i=1

âi

)
b̂k

(
n∏

i=k+1

d̂i

)
|0⟩

=

n∑
k=1

(
n∏

i=k+1

di

)
ck

(
k−1∏
i=1

ai

)(
k−1∏
i=1

âi

)
b̂k

(
n∏

i=k+1

d̂i

)
|0⟩

=
n∑

k=1

(
k−1∏
i=1

aiâi

)(
n∏

i=k+1

did̂i

)
ckb̂k |0⟩ . (B.3)

Note also that

ckb̂k = sinh2(h)e−2uEkK
−1/2
k FkK

1/2
k

= sinh2(h)e−2u+hEkFk

=
e−2u+h

2
(cosh(hαk)− cosh(hHk − h))

= e−2u+h sinh

(
hαk + hHk − h

2

)
sinh

(
hαk − hHk + h

2

)
, (B.4)

where we used (2.32)–(2.34) to write

CXk
= 4 sinh2(h)EkFk + 2 cosh(hHk − h) = 2 cosh(hαk).

Define

Dn := e−2u sinh(h)

(
n∏

i=1

did̂i −
n∏

i=1

aiâi

)
+ e−h sinh(2u)

n∑
k=1

(
k−1∏
i=1

aiâi

)(
n∏

i=k+1

did̂i

)
ckb̂k.

Let us show by induction on n ≥ 1 that Dn |0⟩ = 0. For n = 1, using (B.4), we can check by
direct computation that

D1 |01⟩ =
(
e−2u sinh(h)

(
d1d̂1 − a1â1

)
+ e−h sinh(2u)c1b̂1

)
|01⟩ = 0. (B.5)

Now assume that Dn−1 |0⟩ = 0. We have

anânDn−1 = Dn −
(
e−2u sinh(h)

(
dnd̂n − anân

)
+ e−h sinh(2u)cnb̂n

) n−1∏
i=1

did̂i,

so by (B.5) and the induction hypothesis Dn |0⟩ = 0. By (3.15), (B.1)–(B.3),

Dn |0⟩ = sinh(2u− h)

(
D̄(u)−

n∏
i=1

did̂i

)
|0⟩ = 0,

so finally

A(u) |0⟩ =
n∏

i=1

aiâi |0⟩ =
n∏

i=1

sinh

(
u− ζi + h

αi − 1

2

)
sinh

(
u+ ζi + h

αi − 1

2

)
|0⟩ ,

D̄(u) |0⟩ =
n∏

i=1

did̂i |0⟩ =
n∏

i=1

sinh

(
u− ζi − h

αi − 1

2

)
sinh

(
u+ ζi − h

αi − 1

2

)
|0⟩ . (B.6)

Therefore, using the commutation relations (3.16) and (3.17) and performing exactly the
same computations (3.29) and (3.30) as in the one-boundary case but with the new eigenvalues
of A(u) and D̄(u) (B.6), we find that

|{vm}⟩ = B(v1) · · · B(vM ) |0⟩
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is an eigenvector of the transfer matrix t(u) with eigenvalue

Λ({vm};u) =sinh(2u+ h)

sinh(2u)

(
n∏

i=1

∆αi,ζi(u)

)
M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)

+
sinh(2u− h)

sinh(2u)

(
n∏

i=1

∆αi,ζi(−u)

)
M∏

m=1

sinh(u− vm + h) sinh(u+ vm + h)

sinh(u− vm) sinh(u+ vm)
,

where

∆αi,ζi(u) := sinh

(
u+ h

αi − 1

2
− ζi

)
sinh

(
u+ h

αi − 1

2
+ ζi

)
if and only if {vm}1≤m≤M satisfy the Bethe ansatz equations

n∏
i=1

∆αi,ζi(vm)

∆αi,ζi(−vm)
=

M∏
k=1
k ̸=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)
(B.7)

for all 1 ≤ m ≤ M . As before B(∞) := limu→+∞ e−2nuB(u) ∝ FX and so we expect the finite
(permutation invariant) solutions {vk}1≤k≤M of the BAE (B.7) belonging to the fundamental

domain S+ to provide all the Uqsl2 highest-weight eigenstates of weight q(
∑n

i=1 αi)−n−2M of t(u).
Note that for Xi = C2, that is αi = 2, ∆2,0(u) = sinh(u− h/2)2, and for Xi = Vαl/r

,
∆αl/r,ζl/r(u) ∝ ∆l/r(u) (3.58). Thus for n = N + 2, X1 = Vαl

, ζ1 = ζl, XN+2 = Vαr , ζN+2 = ζr
and Xi = C2, ζi = 0 for all 2 ≤ i ≤ N + 1, we recover (3.59) and (3.60) (up to normalisation
of t2b(u)) as we should.

C A different set of BAE for the two-boundary system

Following [60], it is possible to find the general form of the eigenvalues of t2b(u) solely from the
knowledge of some functional relations it satisfies and their analytic properties. The end result
is that for any eigenvalue Λ2b({vm};u) of t2b(u) one can write a TQ relation of the form

Λ2b({vm};u) = sinh2N (u+ h/2)∆l(u)∆r(u)
sinh(2u+ h)

sinh(2u)

Q(u− h)

Q(u)

+ sinh2N (u− h/2)∆l(−u)∆r(−u)
sinh(2u− h)

sinh(2u)

Q(u+ h)

Q(u)

+ c
sinh2N (u+ h/2) sinh2N (u− h/2) sinh(2u+ h) sinh(2u− h)

Q(u)
,

where

Q(u) =

N∏
m=1

sinh(u− vm) sinh(u+ vm)

for some Bethe roots vm, 1 ≤ m ≤ N and c some constant. The Bethe ansatz equations are
obtained by imposing that Λ2b({vm};u) has no poles at all the vm, that is

sinh2N (vm + h/2)∆l(vm)∆r(vm)

N∏
k=1
k ̸=m

sinh(vm − vk − h) sinh(vm + vk − h)



44 D. Chernyak, A.M. Gainutdinov, J.L. Jacobsen and H. Saleur

− sinh2N (vm − h/2)∆l(−vm)∆r(−vm)

N∏
k=1
k ̸=m

sinh(vm − vk + h) sinh(vm + vk + h)

= c sinh2N (vm + h/2) sinh2N (vm − h/2) (C.1)

for all 1 ≤ m ≤ N . Note that if c ̸= 0, the trigonometric polynomial Q(u) has to be of degree 2N
for the BAE (C.1) to admit at least one solution.

The right-hand side of (C.1) is known as the “inhomogeneous term” and this equation pro-
vides the BAE for Hn.d. (1.1) for arbitrary values of h, δr/l, κr/l and Θ, whether they satisfy
the Nepomechie condition or not, with c an explicit function of these parameters. Actually, the
Nepomechie cases (1.3) with 0 ≤M ≤ N correspond to c = 0. Indeed, if c = 0, then a subset of
the vm can be sent to ∞ and we obtain

Λ2b({vm};u) = sinh2N (u+ h/2)∆l(u)∆r(u)
sinh(2u+ h)

sinh(2u)

Q(u− h)

Q(u)

+ sinh2N (u− h/2)∆l(−u)∆r(−u)
sinh(2u− h)

sinh(2u)

Q(u+ h)

Q(u)

with

Q(u) =
M∏

m=1

sinh(u− vm) sinh(u+ vm)

for some magnon number 0 ≤ M ≤ N as in (3.59) and the BAE (C.1) then reduce to the
form (3.60)

∆l(vm)∆r(vm)

∆l(−vm)∆r(−vm)

(
sinh(vm + h/2)

sinh(vm − h/2)

)2N

=
M∏
k=1
k ̸=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)

for all 1 ≤ m ≤ M . Thus the BAE from [60] are consistent with (3.60) as long as 0 ≤ M ≤ N .
However, we have seen that in the two-boundary case the magnon number M can take any
(positive) integer value. The question is then what happens for M > N .

For this we need to come back to the general c ̸= 0 case. It turns out that the constant c can
be entirely fixed from the knowledge of the large u asymptotic. Indeed, if c ̸= 0, then

Λ2b({vm};u) ∼
u→∞

4−N−2e2(N+2)u

(
2µlµr cosh(hαl + hαr − (N + 1)h)

sinh(h)2 sinh(hαl) sinh(hαr)
+ 4c

)
. (C.2)

On the other hand, we can compute the large u limit of t2b(u) directly. We have (3.38)

RX ,C2(u) ∼
u→∞

eu+
h
2

2
RX ,C2 , RC2,X (u) ∼

u→∞

eu+
h
2

2
RC2,X

for any Uqsl2 module X and so, using (3.51) and (3.52) and then (3.48)–(3.50)

t2b(u) ∼
u→∞

4−N−2e2(N+2)uµlµr qtr0 R0,Vαr
R0,N · · ·R0,1R0,Vαl

RVαl
,0R1,0 · · ·RN,0RVαr ,0

sinh(h)2 sinh(hαl) sinh(hαr)

=
4−N−2e2(N+2)uµlµr qtr0 R0,H2b

RH2b,0

sinh(h)2 sinh(hαl) sinh(hαr)

=
4−N−2e2(N+2)uµlµr

(
q
(
KH2b

+ q−1{1}2FH2b
EH2b

)
+ q−1K−1

H2b

)
sinh(h)2 sinh(hαl) sinh(hαr)
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=
4−N−2e2(N+2)uµlµrCH2b

sinh(h)2 sinh(hαl) sinh(hαr)
,

where CH2b
is the Casimir element (2.32) evaluated in the representation H2b. Recalling that C

is constant on any irreducible Uqsl2 module, in particular (2.34)

CVα = qα + q−α = 2 cosh(hα)

and the Uqsl2 decomposition (2.36)

H2b =
⊕
M≥0

HM ⊗ Vαl+αr−1+N−2M

it is then clear that

t2b(u)|HM
∼

u→∞
4−N−2e2(N+2)u 2µlµr cosh(hαl + hαr + h(N − 2M − 1))

sinh(h)2 sinh(hαl) sinh(hαr)
. (C.3)

Now comparing (C.2) and (C.3), we finally arrive at

c =
µlµr sinh(h(N −M)) sinh(hαl + hαr − h(M + 1))

sinh(h)2 sinh(hαl) sinh(hαr)
. (C.4)

We are thus led to conjecture that for M ≥ N , the BAE (3.60) on M Bethe roots are
equivalent to the BAE (C.1) with only N Bethe roots and c as in (C.4). Note that the case
M = N is trivial since c vanishes precisely for M = N .
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[27] Dubail J., Conditions aux bords dans des théories conformes non unitaires, Ph.D. Thesis, Université Paris
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