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Abstract. We continue the exploration of various appearances of cluster algebras in scat-
tering amplitudes and related topics in physics. The cluster configuration spaces generalize
the familiar moduli space M0,n to finite-type cluster algebras. We study worldsheet-like
variables, which for classical types have also appeared in the study of the symbol alphabet
of Feynman integrals. We provide a systematic derivation of these variables from Y -systems,
which allows us to express the dihedral coordinates in terms of them and to write the cor-
responding cluster string integrals in compact forms. We mainly focus on the Dn type and
show how to reach the boundaries of the configuration space, and write the saddle-point
equations in terms of these variables. Moreover, these variables make it easier to study var-
ious topological properties of the space using a finite-field method. We propose conjectures
about quasi-polynomial point count, dimensions of cohomology, and the number of saddle
points for the Dn space up to n = 10, which greatly extend earlier results.
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1 Introduction and review

In [5, 7], cluster configuration spaces have been introduced, which generalize the moduli space
M0,n (corresponding to the type-An−3 space) to cases corresponding to other finite-type cluster
algebras. The idea behind these spaces is that of stringy canonical forms [6], which are Euler–
Mellin type integrals providing α′ deformations of canonical forms [4] of any polytopes. The
prototypes of such string-like integrals are genus-zero (open- and closed-) string integrals, which
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are very special stringy canonical forms for the so-called Arkani-Hamed–Bai–He–Yan (ABHY)
associahedra describing tree amplitudes in bi-adjoint ϕ3 theory as α′ → 0 [3]. For generalized
associahedra of any finite-type cluster algebra, one can define a class of special (real and com-
plex) integrals called cluster string integrals whose α′ → 0 limit gives the canonical forms of their
ABHY realizations, which are rigid and natural extensions of the usual string integrals. The
corresponding cluster configuration space is defined by compactifying the integration domain
with a boundary structure mirroring that of the generalized associahedron, which manifests
“factorizations” of the integrals at finite α′ dictated by the Dynkin diagram [7]; the positive
space is literally a curvy generalized associahedron polytope. For type An−3, we recover the
Deligne–Knudsen–Mumford compactification of M0,n [22, 42] and in general the spaces become
generalizations of the latter. As we will review shortly, a cluster configuration space is defined
in terms of a set of constrained variables that are related to Y -systems [52], and it is natu-
ral to wonder if one could find certain unconstrained variables as generalizations of worldsheet
variables of M0,n (type A). In this note, we will show that it is indeed the case, and such
worldsheet-like variables become very useful for our study of cluster string integrals, the ABHY
polytopes, and the corresponding saddle-point equations. In particular, we will use these vari-
ables for a systematic study of topological properties, e.g., the number of saddle points (or Euler
characteristic), for such configuration spaces, especially for type Dn [5].

On the other hand, the authors of [21] have recently proposed such variables for classical
types ABCD, which naturally appear as symbol letters for Feynman integrals and scattering
amplitudes in QFTs. They were obtained from clever but somewhat ad hoc birational maps of
the kinematical variables. A goal of the current paper is to provide a systematic derivation of
such polynomials from the corresponding Y -systems. We find simple birational transformations
from d initial y-variables to d worldsheet-like variables z1, z2, . . . , zd, and all other y-variables
can be obtained from Y -systems; by our transformation they generate polynomials of z’s. As we
will show, there are natural transformations such that these polynomials of z’s take particularly
simple forms, including the familiar zi − zj factors for the type-A moduli space. In terms of
these variables, we can alternatively define the cluster configuration space as the d-dimensional
space with all N polynomials of z’s non-vanishing. We will illustrate how this works with the
most important example, the configuration space of type D. We also write down the alphabet
for E6 and the non-simply-laced types, leaving the technical details to an upcoming work [51].
These worldsheet-like variables play a crucial role for two purposes: they naturally appear
as letters of the symbol for certain classes of Feynman integrals (especially for type Dn in
various ladder integrals to all loops [37]), and they are the natural variables for describing
the cluster configuration spaces for which we can define cluster string integrals, saddle-point
equations, etc.

In addition to providing a systematic derivation of such z-variables, we will also apply these
variables to the study of cluster string integrals and important topological properties of cluster
configuration spaces, such as the number of saddle points. In [5], it has been shown that the
number of saddle points for types Ad, Bd and Cd is d!, dd and (2d)!!/2, respectively. This
was done by computing the number of points in the configuration space for a finite field Fp

(with a generic prime p), which turns out to be a degree-d polynomial of p for these cases; by
plugging in p = 1 we obtain the Euler characteristic, or the number of saddle points up to
a sign. In these cases, coefficients of the polynomial give dimensions of cohomology, which can
be generated by independent d log forms.1 Although such computations can also be done with,
e.g., F -polynomials, at least for types A and C, the use of worldsheet variables has been crucial

1Similar computations using the finite-field method has played an important role in determining the number
of saddle points etc. for the so-called Cachazo–Early–Guevara–Mizera (CEGM) amplitudes [15], which are closely
related to stringy integrals of Grassmannian case [9]; see [49] and especially the appendix of [2] for such results
in the context of likelihood equations.
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to obtaining general result (for type B it is coincidental that a new set of “linear” variables
can be used to show that the space is the complement of a hyperplane arrangement, similar to
type A). In [5], it has been conjectured that the point count for types D4, D5 and G2 are quasi-
polynomials, i.e., polynomials with correction terms that depend on the characteristic p. The
point count also nicely gives Euler characteristics for these spaces, but the lack of such worldsheet
variables for type Dn has made computations much more difficult. We will partially solve this
problem by performing such a point count for Dn up to n = 10, which is unimaginable without
the help of these variables. Moreover, we are also interested in linear relations among d log forms
made of such polynomials especially for type Dn, which will be instrumental to “bootstrap” all
possible integrable symbols with such an alphabet [37].

Before proceeding, here we will first give a lightening review of the cluster configuration
space and associated string integrals, and refer the readers to [5, 6] for details. It turns out
that a gauge-invariant way for describing the compactified moduli space, which allows us to see
all the boundaries of the An−3 configuration space explicitly, is by introducing N := n(n−3)/2
dihedral coordinates ua,b (one for each diagonal of an n-gon labeled by (a, b)). They satisfy the
same number of constraints called u-equations [12, 43, 44]:

1− ua,b =
∏

(c,d) incompatible with (a,b)

uc,d,

where on the right-hand side we have the product over all the uc,d variables where (c, d) is
incompatible with (a, b) (the diagonals cross). It is a remarkable fact that these n(n−3)/2
equations have a solution space of dimension n−3, which we call the open An−3 configuration
space for all ua,b ̸= 0. In the real case, it is referred to as the positive part if we further ask all
ua,b > 0. The u-equations have revealed that the configuration space is a binary geometry, which
has boundary structures that “factorize” by removing a node of the (type-A) Dynkin diagram:
as any uc,d → 0, all incompatible ua,b → 1, thus the space factorizes as AL × AR where L, R
are associated with the two polygons of the n-gon separated by (c, d). For the positive (or more
precisely, non-negative) part, all the variables 0 ≤ ua,b ≤ 1 and the space has the shape of
a (curvy) associahedron. In an analogous manner, one introduces u-variables and u-equations
for any finite-type cluster algebra: for any Dynkin diagram Γ with d nodes (the rank of the
cluster algebra), we have NΓ such variables and equations with NΓ the dimension of the cluster
algebra.2 Explicitly, we have

1− uI =

NΓ∏
J=1

u
J |I
J

for all I = 1, 2, . . . , NΓ, where J |I is the so-called compatibility degree from cluster variable J
to I [8, 32]. Beyond type A, these degrees go beyond 0, 1 and we have J |I > 0 if and only
if the two cluster variables are incompatible (only for simply-laced cases, we have I|J = J |I).
Remarkably, the NΓ equations for NΓ variables again have an d-dim solution space where d is the
rank of the cluster algebra, which is called the cluster configuration space MΓ of type Γ. As any
uJ → 0, all incompatible uI → 1 (those with J |I > 0), and for the positive part (all u between 0
and 1), it has the shape of the corresponding generalized associahedron withNΓ facets. Note that
our u-variables are related to y-variables of Y -systems via uI := yI/(1+yI) for I = 1, 2, . . . , NΓ,
and it is a non-trivial fact that the u-equations become equivalent to recurrence relations of the
corresponding Y -system. One way to parameterize MΓ is to use d initial y-variables y1, . . . , yd
(which correspond to an acyclic quiver), and by solving Y -systems the remaining NΓ− d y’s are

2For Ad, NΓ = d(d+3)/2, for Bd or Cd, NΓ = d(d+1), for Dd, NΓ = d2, and for E6, E7, E8, F4 and G2, we
have NΓ = 42, 70, 128, 28 and 8, respectively.
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rational functions of them. Equivalently, all the y- or u-variables can be expressed as ratios of F -
polynomials and monomials of y1, . . . , yd. The positive part, M+

Γ , where we have all 0 < uI < 1
or all yI > 0, is thus parameterized by yi > 0 (i = 1, 2, . . . , d) for any initial acyclic quiver. As
we have mentioned, it is more advantageous to use unconstrained variables, e.g., for explicitly
computing such string integrals (either as an expansion in α′ or even at finite α′), or studying
their saddle-point equations. However, we emphasize that the u-variables constrained by the
u-equations provide a gauge-invariant description of the configuration space.

Associated with such a space, it is natural to write the cluster string integral, e.g., for the
positive part M+

Γ [6]

IΓ({X}) :=
(
α′)d ∫

M+
Γ

Ω(M+
Γ )

NΓ∏
I=1

uα
′XI

I , (1.1)

where the integral is over M+
Γ (with all uI > 0), and we do not need the explicit expression of the

canonical form Ω
(
M+

Γ

)
but the property that on any boundary uI → 0, it becomes the canonical

form of the latter which takes a “factorized” form by removing a node of the Dynkin diagram;
the integral is “regulated” by the “Koba–Nielsen” factor with exponents XI > 0. This is exactly
the domain of convergence, which also cuts out an ABHY generalized associahedron AΓ with
each facet reached by XI → 0. As α′ → 0, the leading order of the integral is given by the
canonical function of the AΓ, and most remarkably even for finite α′, the integral has “perfect”
factorization as each XI → 0 [7].

In particular, for type An−3 we have the following n-point string integral over (the positive
part of) the configuration space

IAn−3({X}) :=
(
α′)n−3

∫
M+

0,n

Ω
(
M+

0,n

) ∏
(a,b)

u
α′Xa,b

a,b ,

where we have alternatively denoted the space of type An−3 as the moduli space M0,n, and Xa,b

can be identified with the planar variables, one for each facet of the ABHY associahedron An−3.
The α′ → 0 (low-energy) limit of this open-string integral gives the canonical function of An−3,
which is nothing but the (diagonal) bi-adjoint ϕ3 tree amplitude [3]. These physical string
integrals, as a special case of cluster string integrals, still factorize at Xa,b = 0, even at finite α′,
which nicely reflects the “perfect” factorization of M+

0,n as one can see from the u-equations.
Now let us quickly see how M0,n and the worldsheet variables naturally appear from the cluster
configuration space of type An−3. The u-variables as defined above do not refer to any worldsheet
picture, but the u-equations can be nicely solved once we introduce worldsheet variables zi for
i = 1, 2, . . . , n with an SL(2) redundancy. The ui,j ’s are exactly the dihedral coordinates written
as cross ratios of the marked points on the boundary:

ui,j =
zi−1,jzi,j−1

zi−1,j−1zi,j
, 1 ≤ j < i− 1 < n, (1.2)

where zi,j := zj − zi, and it is easy to see that the z-variables provide the solution to the u-
equations, though we still need to fix the SL(2) redundancy, e.g., by choosing z1 = −1, z2 = 0,
zn = ∞. The open cluster configuration space can be identified with the moduli space M0,n

and in particular for the positive part, we have zi’s ordered, z1 < z2 < · · · < zn (in our fixing,
we have 0 < z3 < · · · < zn−1. One can rewrite IAn−3 in terms of the z-variables once we realize
that Ω

(
M+

0,n

)
is given by the Parke–Taylor form:

IAn−3 := (α′)n−3

∫
M+

0,n

dn−3z

z1,2z2,3 · · · zn,1

∏
j<i

|zi,j |α
′si,j ,
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where the measure is the top, (n− 3)-form on M0,n, and we have rewritten the factor
∏

u
Xa,b

a,b

as the Koba–Nielsen factor with Mandelstam variables si,j := (ki + kj)
2 = 2ki · kj (subject to

momentum conservation). It is easy to see that linearly-independent Mandelstam variables can
be written as

si,j = Xi+1,j +Xi,j+1 −Xi,j −Xi+1,j+1.

More precisely, in the gauge-fixing above the factor reads
∏

1≤j<i≤n−1 z
α′si,j
i,j , where we have

the same number, n(n−3)/2, of linear factors (since z1,2 = 1 drops out). We will refer to the
collection of the n(n−3)/2 polynomials of degree 1 as an alphabet; in our gauge-fixing it consists
of {zi, 1 + zi} for i = 3, . . . , n−1 and {zi,j} for 3 ≤ j < i ≤ n−1. The cluster configuration
space is equivalent to the complement of the hyperplane arrangement in terms of the letters of
the alphabet, i.e., {zi,j = 0, zi = 0, 1 + zi = 0}, and one can easily derive various topological
properties from here, e.g., the number of saddle points is (n−3)! [5]. Moreover, the number of
connected components of M0,n(R) is (n−1)!/2, and they are given by all possible orderings of
z3, z4, . . . , zn−1 (or sign patterns of the alphabet), which are in 1−1 correspondence with all the
(n−1)!/2 consistent sign patterns of u-variables [5].

In the following, we will systematically introduce worldsheet-like variables for cluster configu-
ration spaces of Dn type, and study properties of the space and string integrals. We sketch how
the construction can be generalized for other finite types and present results for the alphabet
for the classical types and E6, F4, and G2, leaving technical details to a separate work [51].

In Section 2, we will show how to derive from Y -systems worldsheet-like variables z1, . . . , zd,
which are related to the initial y1, . . . , yd via birational maps, such that all the NΓ u (or y)
variables become ratios of polynomials of z’s. As we have seen above, naively there are more
than NΓ polynomials in z’s, but similar to the type-A case, there is a natural SL(2) gauge
redundancy. After a choice of gauge, we find exactly NΓ such polynomials (letters), and we
call their collection an alphabet. Nicely, we find linear factors similar to those in type A, zi,
1 + zi and zi,j , and polynomials of higher degrees: for types B, C and D, there are quadratic
polynomials, and for types E6, F4 and G2, there are polynomials of degree at most 4, 5 and 4,
respectively.3 We will use type Dn as the main example: we obtain nice formulae that express u-
variables as “cross ratios” of the letters and discuss how the boundaries of M+

Dn
can be obtained

by degeneration of these z-variables.

In Section 3, we proceed to write cluster string integrals and saddle-point equations using
such z-variables. The Koba–Nielsen factor present in the case of An cluster algebras naturally
generalizes for the other cluster string integrals as the product of all letters. Moreover, we
focus on the positive configuration space, whose canonical form may be written in terms of
the z-variables and is analogous to the Parke–Taylor factor. We will see how factorization
on “massless” poles of stringy integral correspond to boundaries of the positive part of the
configuration space as z-variables pinch (as shown explicitly for, e.g., D4, B3 and G2). Using
z-variables, we will write the Dn scattering equations which also provide a diffeomorphism from
the positive configuration space to the ABHY polytope. Last but not least, we will numerically
solve these equations, and count the number of solutions (saddle points) up to D7.

In Section 4, we shall study the topological properties of the cluster configuration spaces using
the worldsheet variables. By counting points in the complement of the hypersurfaces defined by
the letters over a finite field, we obtain quasi-polynomials that encode information on the Euler
characteristic and the dimensions of cohomology up to D10. Moreover, we will conjecture the
number of independent 2- and 3-forms for any Dn, which are not affected by the “correction

3The form of an alphabet depends on a choice of gauge. In this work, we find that the same canonical gauge
choice as the type-A case produces the alphabets in the literature. More discussion on gauge choices will be given
in [51].
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Figure 1. (1) The An−3 worldsheet is a disc with n boundary points. For each diagonal, the incompatible

diagonals are the ones that cross it. (2) The Dn worldsheet is a once-punctured disc with n boundary

points. The diagonals may go around the puncture in two orientations. There are tagged and untagged

arcs connecting boundary points to the interior puncture.

terms” in the quasi-polynomials. We provide a further support for the conjecture by explicitly
writing down the cohomology relations among the 2-forms that provide an upper bound on the
number of independent 2-forms.

2 Worldsheet-like variables for finite-type cluster algebras

The cluster configuration space MΓ is the configuration space of u-variables, which are initially
defined in [5, 7] as the solution of the u-equations over the complex numbers:

1− uI =

NΓ∏
J=1

u
J |I
J , (2.1)

where the compatibility degree J |I is a non-negative integer assigned to each pair of the u-vari-
ables. The possible values for J |I vary for different underlying cluster types of the u-variables.
This “global” form of the u-equations is a natural generalization of the relations among the
dihedral coordinates of a disc with n points on the boundary. For example, the A3 u-equations
are

1− u1,3 = u2,4u2,5u2,6, 1− u1,4 = u2,5u2,6u3,5u3,6,

and cyclic permutations of the indices. The u-variables are the cross ratios (1.2) of the marked
points.

The Dn moduli space is another distinguished example that admits a geometric realization as
a once-punctured disc with n boundary points [30]. In addition to the arcs ui,j connecting two
boundary points there are two arcs ui, ũi connecting a boundary point to the interior puncture,
one untagged and one tagged. Note that unlike in the A type, there are nontrivial arcs ui,i+1

connecting two neighboring boundary points that go around the puncture. Moreover uj,i and ui,j
are different arcs that go around the puncture in the opposite orientations. For example, the D4

u-equations are

1− u1,2 = u3ũ3u4ũ4u2,3u2,4u
2
3,4u3,1u4,1,

1− u1,3 = u4ũ4u4,1u4,2u2,4u3,4,

1− u1 = ũ2ũ3ũ4u2,3u2,4u3,4,

1− ũ1 = u2u3u4u2,3u2,4u3,4,

and cyclic permutations of the indices. It is not known whether the u-variables can be written
as “cross ratios” of the worldsheet coordinates, which is the main problem that we will address
in this section.
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Figure 2. The A3 worldsheet. Each diagonal in a triangulation corresponds to a node in the quiver and

is assigned a y-variable. We consider an initial zigzag triangulation where each node is either a source or

a sink. At each step, we mutate the source nodes (or equivalently, flip the diagonals) and generate new

y-variables according to the Y -system equations.

While the En types are not known to admit geometric realizations, their u-equations may
be abstractly defined as (2.1). The equations for the non-simply-laced types may be written by
“folding” the arcs and setting equal a subset of the u-variables [7].

The definition of the global u-equations (2.1) is equivalent to a recursive definition by the
local u-equations [5](

1− uv
uv

)(
1− uv′

uv′

)
=

∏
w ̸=v

(1− uw)
av,w . (2.2)

Here av,w is the Cartan matrix for the Dynkin diagram Γ. One chooses an acyclic quiver whose
graph is Γ and assigns an initial set of u-variables to the d nodes. Since an acyclic quiver has
at least a source and a sink, we perform a mutation on a source or a sink that reverses the
directions of the arrows. A new uv′ is generated by (2.2). The full set of NΓ u-variables is
generated by successive applications of the mutation.

The local u-equations make it possible for us to connect the u-variables with well-studied
objects in the cluster algebra literature as (2.2) is the defining relation for Zamolodchikov’s Y -
systems under the map yv = uv/(1−uv) and the y-variables are subsets of cluster variables [32],
also known as cluster X -coordinates [29]. The integers J |I are identified with the compatibility
degrees between two corresponding elements yI , yJ in Y -systems [52].

Let us begin by reviewing how the local u-equations or Y -system equations arise from
the An−3 configuration space, which is the moduli space of a disc with n points on the bound-
ary. Consider a triangulation of the n-gon by non-crossing diagonals. To each (i, j) diagonal we
associate a ui,j (or yi,j)-variable. Each diagonal is contained in some quadrilateral. We obtain
another triangulation by a flip: replacing a diagonal with another in the quadrilateral, as shown
in Figure 2. The local u-equations express relations between diagonals that are related by a flip

1− ui,j
ui,j

1− ui+1,j+1

ui+1,j+1
= (1− ui,j+1)(1− ui+1,j). (2.3)

The local u-equations (2.3) take particularly simple forms in terms of the y-variables

yi,jyi+1,j+1 = (1 + yi,j+1)(1 + yi+1,j).

One can associate a quiver with a triangulation where each diagonal corresponds to a node
and there is an arrow if one diagonal follows another in the counterclockwise direction around
a common vertex [33]. Consider a quiver where each node is either a source or a sink. It gives
rise to a zigzag triangulation, as shown in Figure 2. There is a notion of time evolution where
each step is represented by mutations on all the source nodes or on all the sink nodes [31]. This
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is equivalent to a simultaneous flip on the corresponding diagonals. We choose to mutate on the
source nodes. The diagonals in the (i, i+ 1, j, j + 1) quadrilateral will be mapped as

yi,j → yi+1,j+1.

Using the label in terms of the nodes of the Dynkin diagram and the number of simultaneous
mutations performed on the sources or the sinks, the local u-equations are equivalent to the
Y -system equations

yi(t− 1)yi(t) =
∏
j→i

(1 + yj(t))
−ai,j

∏
i→j

(1 + yj(t− 1))−ai,j . (2.4)

We will use yi(t), ui(t) to label the Dynkin node and time step, and yi,j , ui,j to denote the
polygon label. A key property of Y -systems of Dynkin type is periodicity: the y-variables
return to their initial values after a finite number of mutations. The period divides 2(h + 2),
where h is the Coxeter number [52]. The cross-ratio representation of y-variables was used to
prove the periodicity conjecture for the An type [50].

For the Dn type, there are additional equations for the extra nodes in the Dynkin diagram [5]

1− ui−1,i

ui−1,i

1− ui,i+1

ui,i+1
= (1− ui−1,i+1)(1− ui)(1− ũi),

1− ui
ui

1− ũi+1

ũi+1
= 1− ui,i+1,

1− ũi
ũi

1− ui+1

ui+1
= 1− ui,i+1. (2.5)

Our main result is a solution of the D-type equations in terms of a set of generalized cross ratios
of worldsheet z-variables

ui,j =
zi,j−1zi−1,j

zi,jzi−1,j−1
, uj,i =

wi,j−1wi−1,j

wi,jwi−1,j−1
,

ui =
zi,n+3wi−1,i

zi−1,n+3wi,i
, ũi =

zi,n+2wi−1,i

zi−1,n+2wi,i
, (2.6)

where 1 < j < i ≤ n+ 1. When i, j = 1, the variables are defined cyclically, e.g., u1,j := un+1,j

and u1 := un+1. Here wi,j is a cubic polynomial of the form

wi,j = z1,n+3zi,jzn+1,n+2 − z1,n+1zi,n+3zj,n+2.

The next section is devoted to a derivation of this result. We explicitly derive the formulae for
the D4 type, which allow us to infer the general form. One can then verify that the generalized
cross ratios solve the Dn u-equations for any n.

2.1 The gluing construction of the Dn configuration space

The u-variable parameterization of the cluster configuration space has the advantage that it
provides an invariant description of the moduli space and a binary approach to the boundaries.
Y -systems further allow us to generalize to cluster configuration spaces of Dynkin type. Nev-
ertheless, it is still desirable to have a description of the moduli space as a configuration space
of points. In the following, we discuss a novel construction based on gluing a pair of A-type
worldsheets.

First, observe that the Dn Dynkin diagram contains two An−1 sub-diagrams that share
n − 2 nodes, as shown on the left of Figure 3. We prepare two copies of (n + 2)-gons and
“glue” n + 1 of the common vertices together, leaving the last vertex on each polygon alone,
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y1 y2

yn-1

ynyn-2

y1 y2 yn-2

yn-3

yn-3

1

2

3

4

5

7 6

y (0)1

y (0)2

y (0)4

y (0)3

Figure 3. (1) The Dn Dynkin diagram is a union of two An−1 sub-diagrams. (2) The overlapping-poly-

gon representation of the D4 worldsheet. Each An−1 worldsheet corresponds to an (n + 2)-gon. Each

diagonal in the zigzag triangulation corresponds to a node in the Dynkin diagram.

n+11

+

-

2

n+1 n

2

un+1,2

un+1
~ un+1

un,2

Figure 4. One may relate the overlapping-polygon representation of the Dn worldsheet to the once-

punctured disc by folding the “antennae” inward and identifying zn+1 with z1 . The extra points z±
may then be identified with the interior puncture and one uses tagged arcs to distinguish whether the

diagonal belongs to the polygon containing z+ or z−.

as shown on the right of Figure 3. The vertices of the two polygons are (1, 2, . . . , n + 1, n + 2)
and (1, 2, . . . , n + 1, n + 3), respectively. The positions of the vertices z1, . . . , zn+3 will be our
worldsheet variables. We will also denote the unglued vertices zn+2 and zn+3 as z− and z+,
respectively. We end up with a pair of “antennae” corresponding to z− and z+. We take zigzag
triangulations of the (n + 2)-gons and associate y-variables to the diagonals. The common
diagonals y1, y2, . . . , yn−2 will be identified by the gluing. Note that the yn−1 and yn variables are
not identified because they belong to the (1, 2, n+1, n+2) and (1, 2, n+1, n+3) quadrilaterals,
respectively. The dihedral coordinates on the An−1 worldsheets define the initial set of y-
variables that are cross ratios of their respective z-variables. By evolving the system according
to the Y -system equations, we generate all the other variables. We shall see that in addition
to the zi − zj factors, new nonlinear factors appear in the cross ratio. The u-variables will be
expressed as generalized cross ratios of the worldsheet variables.

We comment on how this construction may be related to the previous picture of the Dn

moduli space as a once-punctured disc [30]. We draw the first n+ 1 points on the boundary of
a disc, as shown on the left of Figure 4. We fold the “antennae” inward and then identify zn+1

with z1, which can be thought of as a one-point compactification of the moduli space. The
diagonals connecting z1 and zn+1 are also folded. We will replace z− and z+ with a single point
and use tagged arcs to distinguish the two diagonals. The plain arc corresponds to the diagonal
in the z+ polygon and the notched arc corresponds to the diagonal in the z− polygon, as shown
on the right of Figure 4. Thus we have recovered the construction of the Dn surface cluster
algebra as tagged triangulations of the once-punctured disc.
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The D4 example. We take the initial y- (or u-) variables according to the triangulation of
Figure 3:

{u1(0), u2(0), u3(0), u4(0)} =

{
z1,4z2,3
z1,3z2,4

,
z1,5z2,4
z1,4z2,5

,
z4,1z5,6
z4,6z5,1

,
z4,1z5,7
z4,7z5,1

}
:= {u4,2, u5,2, ũ5, u5}. (2.7)

In the second line we have labeled the initial u-variables according to (2.6). We evolve the
system according to the Y -system equations (2.4) and more specifically (2.5). The diagonals are
mapped as

ui,j → ui+1,j+1, ui → ũi+1, ũi → ui+1.

One important observation is that the indices of ui,j , ui, ũi range from 2 ≤ i, j ≤ n+ 1, which
makes manifest the periodicity of the Dn-type Y -system. For example, the variable that comes
after u5,2 would be u2,3. At t = 1, we find

{u5,3, u2,3, u2, ũ2} =

{
z2,5z3,4
z2,4z3,5

,−z1,5z3,5z2,6z2,7
w2,3z2,5

,
z1,6z2,5
z1,5z2,6

,
z1,7z2,5
z1,5z2,7

}
.

Here a nonlinear factor appears in the expression for u2,3 which is a cubic polynomial in zi’s

wi,j = z1,n+3zi,jzn+1,n+2 − z1,n+1zi,n+3zj,n+2.

Noting that wi,j factorizes into a product of zi,j ’s when i = 1 or i = j, one can conveniently
rewrite u2,3 as a cross ratio of wi,j ’s

u2,3 =
w1,3w2,2

w1,2w2,3
.

In this way we generate all the u-variables explicitly, noting that they can be elegantly written
as cross ratios of zi,j ’s and wi,j ’s

{u2,4, u3,4, ũ3, u3} =

{
w1,4w2,3

w1,3w2,4
,
w2,4w3,3

w2,3w3,4
,
w2,3z3,6
w3,3z2,6

,
w2,3z3,7
w3,3z2,7

}
,

{u3,5, u4,5, u4, ũ4} =

{
w2,5w3,4

w2,4w3,5
,
w3,5w4,4

w3,4w4,5
,
w3,4z4,7
w4,4z3,7

,
w3,4z4,6
w4,4z3,6

}
,

{u4,2, u5,2, ũ5, u5} =

{
z1,4z2,3
z1,3z2,4

,
z1,5z2,4
z1,4z2,5

,
z4,1z5,6
z4,6z5,1

,
z4,1z5,7
z4,7z5,1

}
.

In the final step, we recover the initial set of u-variables as guaranteed by periodicity.
Inspired by the result for D4, one can conjecture the form for general n. The u-variables are

written as cross ratios involving the z’s and w’s, which can be compactly expressed as (2.6). It
is straightforward to verify that (2.6) is a solution to the local u-equations (2.5).

2.2 The positive Dn moduli space and its boundaries

The positive region corresponds to a further restriction on the real line and a choice of ordering.
We shall denote zn+2 = z− and zn+3 = z+ for the two special points. Because the set of
worldsheet variables does not include the z− − z+ factor, z± are not ordered with respect to
each other. A natural choice of ordering would be z−, z+ ≤ z1 ≤ · · · ≤ zn+1. The y-variables are
positive and the u-variables lie in the unit interval. We may also use other orderings, as long as
the u-variables are positive and lie in the unit interval.
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j-1
n+1 j

1

+

i-1

-

i

ui,j 0

j-1

n+1 j

1 i-1
uj,i 0

uj,i 0

u i 0

i
+-

Figure 5. The boundary of the Dn moduli space as seen by the worldsheet variables. Each boundary

of the positive region corresponds to the pinching of a pair of points and all the points lying in between.

The boundaries. We find the following patterns of pinching take us to the boundaries of
the positive moduli space (1 < j < i ≤ n+ 1). This is shown in Figure 5.

� The ui,j boundary: zi−1 pinches with zj .

� The uj,i boundary: zi pinches with zn+1, zj−1 pinches with z1.

� The ui boundary: zi−1 pinches with z− (but not with z+).

� The ũi boundary: zi−1 pinches with z+ (but not with z−).

By “pinching”, we mean that the two points, along with all the ordered points in between, are
identified.

In the An configuration space, the pinching of two points always corresponds to a boundary of
the moduli space. In the Dn configuration space, the pinching of z− with z+ is not a boundary.
Instead, we find the Bn−1 configuration space as a subspace of Dn.

2.3 The configuration space for other types

In an upcoming paper, we show that the construction can be extended to the En types by gluing
a pair of An−1 and An−2 worldsheets. By defining the initial variables using a triangulation
and evolving the Y -system equations, we can generate solutions in terms of the worldsheet
coordinates. For the nonlinear factors of E6, we find sextic polynomials of the form

wi,j,k,l = z1,9z1,6zi,8zj,7zk,9zl,6 − z1,9z1,6z6,9zi,8zj,kzl,7 + z1,iz1,6z6,9zj,9zk,8zl,7

+ z1,8z1,9z6,7z6,9zi,lzj,k. (2.8)

The u-variables can be written as generalized cross ratios of zi,j and wi,j,k,l.
4

By generalizing the cross-ratio parameterization of the An-type Y -systems, we may obtain
worldsheet parameterizations for all ADE-type Y -systems. The non-simply-laced types may be
obtained from the simply-laced types by a folding procedure: identifying diagonals in worldsheets
in a way consistent with folding the Dynkin diagrams. Further details will be presented in [51].

The gluing method can be formally extended to infinite types whose Dynkin types can be
written as a union ofA-types. For example, the affineDn diagram can be obtained from twoAn−1

diagrams by gluing all but a pair of nodes at each end. This results in overlapping polygons
with antennae at both ends. Upon identifying the unglued vertices with internal punctures as
described earlier, we recover the affine Dn moduli space as a disc with two internal punctures
and n boundary points [30]. The main difficulty with the infinite types is that the Y -system

4The dihedral coordinates for E6 have also been constructed in connection with the Grassmannian cluster
algebra of Gr(4, 7) [23], which are related by a sequence of mutations. We directly construct them from the
Y -systems associated with the E6 Dynkin diagram. It would be interesting to find a map between the worldsheet
variables and the cluster A-coordinates.
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equations generate an infinite number of complicated expressions. It would be an interesting
question to understand the form of the polynomials that appear in the u-variables and the
alphabet.

2.4 Summary of alphabets

Once we obtain the worldsheet description of u-variables in terms of polynomial factors of z-
variables, we find the alphabets by fixing the SL(2) redundancy. We summarize the results for
the alphabets of finite types below.

The An alphabet may be obtained by fixing three points in the zi − zj factors as z1 = −1,
z2 = 0, and zn+3 = ∞:

ΦAn(z3, z4, . . . , zn+2) =
⋃

3≤i≤n+2

{zi, 1 + zi} ∪
⋃

3≤i<j≤n+2

{zi,j},

Using the same canonical gauge choice (z1 = −1, z2 = 0, zn+1 = ∞), we recover the Dn alphabet
found in [21]

ΦDn(z3, z4, . . . , zn, z−, z+) = ΦAn−1(z3, z4, . . . , zn, z−) ∪ {z+, 1 + z+}

∪
⋃

3≤i≤n

{zi,+, zi + z−z+}

∪
⋃

3≤i<j≤n

{−zi + zj + zizj − ziz− − ziz+ + z−z+}. (2.9)

An alphabet for Bn−1 follows from Dn by a simple folding identifying z− = z+. An alphabet
for Cn−1 has appeared explicitly in [21]. We find that it can be obtained from the A2n−2 alphabet
by the identification z2n+1−i = zn+1/zn+1−i for i = 1, . . . , n− 2. They are polynomials that are
at most quadratic in the z-variables

ΦBn−1(z3, z4, . . . , zn, z−) = ΦAn−1(z3, z4, . . . , zn, z−) ∪
⋃

3≤i≤n

{
zi + z2−

}
∪

⋃
3≤i<j≤n

{
−zi + zj + zizj − 2ziz− + z2−

}
,

ΦCn−1(z3, z4, . . . , zn, z−) = ΦAn−1(z3, z4, . . . , zn, z−) ∪
⋃

3≤i≤j≤n

{zizj + z−}. (2.10)

Alphabets for E6, F4 and G2 are not known in the literature. A detailed derivation will be
given in [51] and here we summarize the results. An E6 alphabet is obtained from the sextic
polynomial (2.8) by fixing three points. In the canonical gauge choice (z1 = −1, z2 = 0, z6 = ∞),
it consists of 42 letters that are polynomials with degree at most 4:

ΦE6(z3, z4, z5, z7, z8, z9) = ΦA5(z3, z4, z5, z7, z8) ∪ {z9, 1 + z9}}

∪
⋃

3≤i≤5

{zi,9, zi + z7z9, zi + z8z9

∪
⋃

3≤i<j≤5

{−zi + zj + zizj − ziz7 − ziz9 + z7z9,−zi + zj + zizj

− ziz8 − ziz9 + z8z9,

zizj − ziz7 + ziz8 − zjz8 + ziz8z9 − z7z8z9}
∪
{
− z3z4 + z3z7 + z4z5 − z4z7 + z4z8 − z5z8 + z3z4z5 − z3z4z7

− z3z4z9 − z3z5z8 + z3z7z8 + z3z7z9 + z4z8z9 − z7z8z9,
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− z3z5 + z4z5 + z3z4z5 − z3z4z7 + z3z4z8 − z3z5z8 − z3z5z9

− z3z8z9 + z4z7z9 + z5z8z9 + z3z4z8z9 − z3z7z8z9 − z3z8z
2
9

+ z7z8z
2
9

}
. (2.11)

An F4 alphabet may be obtained by “folding” the E6 alphabet (2.11) as (z7 = −z5/z3, z8 =
−z5/z4) and examining all the polynomial factors that appear. It consists of 28 polynomial
letters with degree at most 5:

ΦF4(z3, z4, z5, z9) = ΦA4(z3, z4, z5, z9) ∪
⋃

3≤i≤j≤4

{zizj + z5, zizj − z5z9}

∪
{
− z23 + z3z4 + z3z5 − z5z9 + z23z4 − z23z9,−z23 + 2z3z5 − z5z9 + z23z5 − z23z9,

−z3z4 + z3z5 + z24 − z5z9 + z3z
2
4 − z3z4z9,−z3z4 + z3z5 + z4z5 − z5z9 + z3z4z5 − z3z4z9

−z24 + 2z4z5 − z5z9 + z24z5 − z24z9,−z23z5 + 2z3z4z5 − z25z9 + z23z
2
4 − z23z5z9,

−2z23z4 + 2z3z
2
4 + z23z5 + z23z9 − 2z3z5z9 − z24z9 + z5z

2
9 + z23z

2
4 − 2z23z4z9 + z23z

2
9 ,

−2z3z4z5 + 2z3z
2
5 + z24z5 − z25z9 − z23z

2
4 + 2z3z

2
4z5 + z23z

2
5 − 2z3z4z5z9 + z23z

2
4z5 − z23z

2
4z9

}
.

A G2 alphabet may be obtained by folding the B3 alphabet (2.10) as z− = −z4/z3 and consists
of 8 polynomial letters with degree at most 4:

ΦG2(z3, z4) =
{
z3, z4, 1 + z3, 1 + z4, z3 − z4, z

2
3+z4, z

3
3+z24 ,−z33+z24+3z23z4+z33z4

}
. (2.12)

3 Cluster string integrals and scattering equations in z-variables

Having discussed the configuration spaces for finite-type cluster algebras, now we move to the
study of cluster string integrals and the associated saddle-point equations in z-variables. We
will focus on the type-D case but the discussion directly extends to any other finite type.

3.1 Cluster string integrals and their factorization

From the general form of cluster (open-) string integrals, all we need to do is to express the
“Koba–Nielsen” factor, the canonical forms and the integration domain in worldsheet-like vari-
ables; given the map from u-variables as discussed above, all of these can be obtained by trans-
lating those in u-variables. To keep the notation compact, we set α′ = 1 in the following. The
Koba–Nielsen factor for the Dn type takes the form

∏
I

uXI
I =

∏
1≤j<i≤n+1

z
−ci,j
i,j

∏
1<j<i<n+1

w
−cj,i
j,i

n+1∏
i=1

zi,+
−cizi,−

−c̃i . (3.1)

Recall that there is an XI kinematical variable for each uI variable. All the ci,j , ci, c̃i variables
are linear combinations of the XI variables

ci,j = Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j for non-adjacent 1 ≤ i, j ≤ n+ 1,

cn+1,1 =

n∑
i=1

(
Xi + X̃i −Xi,i+1

)
,

ci,i+1 = Xi,i+1 +Xi+1,i+2 −Xi,i+2 −Xi+1 − X̃i+1 for 1 ≤ i ≤ n,

ci = Xi + X̃i+1 −Xi,i+1, c̃i = X̃i +Xi+1 −Xi,i+1 for 1 < i < n+ 1,

c1 = −X2, c̃1 = −X̃2, cn+1 = −X̃1, c̃n+1 = −X1. (3.2)

Here Xi are defined cyclically, e.g., Xn+1 := X1, and Xi,i = Xi,i−1 = 0.
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As mentioned, the most basic property of such stringy integrals is that the convergence
domain is given by a generalized associahedron. In the An−3 case, the variablesXi,j = (pi+pi+1+
· · ·+pj−1)

2 are called planar variables, and ca,b = −(pa+pb)
2 are the Mandelstam variables (with

a minus sign). By requiring all Xi,j ≥ 0 and asking all but n−3 ca,b to be positive constants, they
carve out an ABHY subspace that is a “kinematic associahedron” of type An−3 which gives the
convergence domain, and its boundaries exactly encode the factorization properties of the stringy
integral [3].5 TheDn case is completely analogous: by setting all but n of cI as positive constants
and requiring all XI ≥ 0, they carve out a generalized associahedron of type Dn, which gives the
convergence domain, and its boundaries are in one-to-one correspondence with the boundaries
of the configuration space that we studied in the previous section [3, 8]. In a close connection
with Y -systems, the equations can also be regarded as an evolution in a discrete spacetime with
extra boundary conditions. We will come back to such ABHY generalized associahedron as we
discuss the pushforward map from considering saddle-point equations.

Note that when we study stringy integrals, it is always convenient to fix the gauge, e.g., in
the Koba–Nielsen factor exponents of zn+1 sum to zero and decouple. Next, we need to find the
positive part M+

Dn
and its canonical forms, when all the u-variables are positive (thus between 0

and 1). Since all Y = u/(1−u) are manifestly positive given positive initial Y ’s, e.g., (2.7), it is
easy to see that this is equivalent to the following ordering: z1 < z2 < · · · < zn+1 and z± < z1
(note that there is no ordering between z+ and z−). The canonical form can be obtained as
the wedge product of d log y for any initial cluster with acyclic quiver, e.g., those in (2.7). It is
a remarkable fact that the result does not depend on which initial cluster we start with, and for
convenience we work with gauge-fixed variables, e.g., with zn+1 → ∞, and we obtain a compact
“Parke–Taylor-like” form in the remaining z-variables

ωDn :=

∏n
i=±,3 dzi

z1,+z1,−z2,3z3,4 · · · zn−1,n
,

where in our gauge-fixing z1,± = 1 + z± and z2,3 = z3 (also z1,2 = 1). Thus we have written all
the ingredients of the Dn string integral in z-variables.

Returning to the D4 example, one may readily write down the stringy integral (1.1) in terms
of the worldsheet variables

ID4 =

∫
0<z3<z4
z±<−1

dz3dz4dz−dz+
(1 + z−)(1 + z+)z3z3,4

z
X4,2

3 z
X1,2−X1,3−X4,2

4 z
−X̃2−X3+X2,3

− z
−X̃2−X3+X2,3

+

× (1 + z3)
−X3,1+X4,1−X4,2(1 + z4)

X1+X̃1−X1,2−X4,1+X4,2(1 + z−)
X̃2(1 + z+)

X2

× z3,4
X1,3z3,−

−X̃3+X3,4−X4z3,+
−X3−X̃4+X3,4z4,−

−X1−X̃4+X4,1z4,+
−X̃1−X4+X4,1

× (z3 + z−z+)
X3+X̃3−X2,3+X2,4−X3,4(z4 + z−z+)

−X2,4−X3,1+X3,4

× (z3 − z4 − z3z4 + z3z− + z3z+ − z−z+)
X4+X̃4+X3,1−X3,4−X4,1 .

We may see factorization into lower-point amplitudes at the boundaries of the moduli space.
The u1,3 boundary corresponds to z4 → z3, where X1,3 must also tend to 0 and the stringy
integral reduces to the D3 integral∫

0<z3
z±<−1

dz3dz−dz+
z3(1 + z−)(1 + z+)

z
X1,2−X1,3

3 z
−X̃2−X3+X2,3

− z
−X2−X̃3+X2,3

+ (1 + z3)
X1+X̃1−X1,2−X3,1

× (1 + z−)
X̃2 (1 + z+)

X2z3,−
−X1−X̃3+X3,1z3,+

−X̃1−X3+X3,1 (z3 + z−z+)
X3+X̃3−X2,3−X3,1 .

5Note that there are same number of ca,b and Xi,j , thus one must pick n−3 ca,b not to be set to constants
but rather as basis variables for the associahedron; see [3, 8] for precisely which n−3 ca,b cannot be chosen as
constants, which are dictated by the “mesh” or spacetime picture.
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Similarly for the z3 → 0. At the z+ → −1 (or z− → −1) poles, the D4 integral reduces to the A3

integral, which is equivalent to the D3 integral but appears in a different parameterization∫
0<z3<z4
z−<−1

dz3dz4dz−
z3z4(1 + z−)

z
X4,2

3 z
X1,2−X1,3−X4,2

4 z
−X̃2+X2,3−X3

− (1 + z3)
−X4,2−X3+X4

× (1 + z4)
−X1,2+X4,2+X1−X4 (1 + z−)

X̃2z3,4
X1,3z3,−

−X2,3+X2,4+X3−X4z4,−
−X2,4−X1+X4 .

For other types, the stringy integral can be obtain in an analogous manner. The Parke–
Taylor form is the wedge product of d log of all the initial y-variables, written in terms of the
alphabets. The Koba–Nielsen factor can be obtained by expressing the u-variables as cross ratios
of the alphabets. This determines the linear combinations of the kinematical variables XI ’s that
appear in the exponents of the alphabets. The B3 stringy integral is

IB3 =

∫
0<z3<z4
z−<−1

dz3dz4dz−
(1 + z−)z3z3,4

z
X4,2

3 z
X1,2−X1,3−X4,2

4 z
2X2,3−X2−X3

−

× (1 + z3)
−X3,1+X4,1−X4,2(1 + z4)

−X1,2−X4,1+X4,2+X1(1 + z−)
X2

× z3,4
X1,3z3,−

2X3,4−X3−X4z4,−
2X4,1−X1−X4

(
z3 + z2−

)−X2,3+X2,4−X3,4+X3

×
(
z4 + z2−

)−X2,4−X3,1+X3,4
(
−z3 + z4 + z3z4 − 2z3z− + z2−

)
X3,1−X3,4−X4,1+X4 .

At the same u1,3 boundary when z4 → z3, it reduces to the B2 integral∫
0<z3

z−<−1

dz3dz−
(1 + z−)z3

z
X1,2−X1,3

3 z
2X2,3−X2−X3

− (1 + z−)
X2(1 + z3)

−X1,2−X3,1+X1

×(z− − z3)
2X3,1−X1−X3

(
z2− + z3

)−X2,3−X3,1+X3 .

At the z− → −1 pole, the B3 integral reduces to the A2 integral∫
0<z3<z4

dz3dz4
z3z3,4

z
X4,2

3 z
X1,2−X1,3−X4,2

4 (1 + z3)
−X2,3+X2,4−X4,2(1 + z4)

−X1,2−X2,4+X4,2z3,4
X1,3 .

Finally, the G2 stringy integral is

IG2 =

∫
0<z3<z4

dz3dz4
z3z3,4

z
X4,2

3 z
X1,2−X1,3+2X2,3−X2,4−X3,1+X3,4+2X4,1−X4,2

4

×(1 + z3)
−X3,1+3X4,1−X4,2(1 + z4)

−X1,2−X4,1+X4,2(z3 − z4)
X1,3

(
z23 + z4

)−X2,4−X3,1+3X3,4

×
(
z33 + z24

)−X2,3+X2,4−X3,4
(
−z33 + z24 + 3z23z4 + z33z4

)
X3,1−X3,4−X4,1 . (3.3)

One may readily check that it reduces drastically to the A1 integral when z4 → z3∫
0<z3

dz3
z3

z
X1,2−X1,3

3 (1 + z3)
−X1,2−X2,3 .

3.2 The scattering equations of finite type and numbers of solutions

The so-called scattering equations arise as the saddle-point equations of the stringy integrals.
The Dn scattering equations can be read off from the Koba–Nielsen factor (3.1) as∑

1≤j<i≤n+1

ci,j d log zi,j +
∑

1<j<i<n+1

cj,i d logwj,i +
∑

1≤i≤n+1

(
ci d log zi,+ + c̃i d log zi,−

)
= 0.

Note that with gauge-fixing, e.g., z1 = −1, z2 = 0, zn+1 = ∞, we have only n variables, z3, . . . , zn
and z±, and n equations. An important comment is that by pulling back the scattering equations
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to any ABHY subspace explained below (3.2), we will have a diffeomorphism from the positive
part of the space to the interior of the ABHY generalized associahedron [3]. For example, for D4,
there are 42 = 16 X’s. By choosing a subspace constraint, for instance, by choosing exactly
the 12 combinations of X’s given in the first three lines of (3.2) as positive constants, only
4 X’s are left as variables and we find a map from (z3, z4, z+, z−) to (X4,2, X1,3, X2, X̃2). It
is straightforward to check that this maps the positive part of the space to the interior of the
ABHY D4 polytope.

Another important question regards the number of solutions for such scattering equations,
or the number of saddle points. Recall that for type An−3, the number of saddle points is
(n− 3)!, which can be nicely interpreted as (n− 3)! orderings of n− 3 “particles” on a line, e.g.,
labeled by z2, . . . , zn−2 and bounded by z1 = 0, zn−1 = 1 with a “potential” given by the log of
the Koba–Nielsen factor [18, 41]. It is a remarkable fact that given real Mandelstam variables
(which are coupling constants in the potential), these (n−3)! solutions are all real. Now it is an
open question if we can interpret saddle points, or solutions of scattering equations, for other
finite-type cluster string integrals in this way. If so, we might find physical applications for them
as color factors or open string disk integrals [43] for An−3 string integrals. As an illustrative
example, the G2 scattering equations can be written explicitly as

c1
z3

+
c2

1 + z3
+

c5
z3 − z4

+
2c6z3
z4 + z23

+
3c7z

2
3

z24 + z33
+

3c8z3 (−z3 + 2z4 + z3z4)

−z33 + z24 + 3z23z4 + z33z4
= 0,

c2
z4

+
c4

1 + z4
− c5

z3 − z4
+

c6
z4 + z23

+
2c7z4
z24 + z33

+
c8

(
2z4 + 3z23 + z33

)
−z33 + z24 + 3z23z4 + z33z4

= 0.

Here ci are the exponents that appear in the stringy integral (3.3). The system generically has
13 solutions. As we will show in the next section, out of all 25 connected components of the
configuration space we find exactly 13 bounded regions. However, if we choose real values of ci,
we only find numerically 9 real solutions for (z3, z4) (and two pairs of complex solutions).

The problem of finding the number of saddle points becomes computationally difficult for
higher-rank cases. We may numerically search for the solutions using the package Homotopy-
Continuation.jl [11] in the software Julia (see some applications in physics in [2, 49]).6 For Dn,
we found the following numbers of solutions to the scattering equations:

D4 D5 D6 D7 D8

55 674 10215 183256 ≥3787649
(3.4)

These numerical calculations can be completed in several hours for Dn up to n = 7 while
for D8, we aborted the computation after the software has struggled to search for the remaining
possible solutions for several days. So we can only confirm that there are at least 3787649
solutions for D8.

7 We also found 2411 solutions for F4 and 51466 solutions for E6.

6The main idea of the package HomotopyContinuation.jl is to solve polynomial equations using homotopy
continuation. It is easy to construct certain parameters c such that there is a solution z for a set of equations F (c, z)
with the parameters c. If there is a continuous way to transform c to another set of parameters c′, the package
will track the path and find the new solutions z′ for the new set of equations F (c′, z). There is an even fancier way
to find more solutions called monodromy. The idea is to continue to transform c′ to another set of parameters c′′,
and transform c′′ back to c′′′ = c. Correspondingly, the package will find solutions z′′ for c′′, and z′′′ for
c′′′ = c while z′′′ could be a new solution for the original parameters c. Repeating such kind of loops for
all solutions already obtained until there are no new solutions after 10 loops (by default), the package will
gather all solution obtained and treat them as the whole set of the solutions for F (c, z). Using homotopy
continuation again, the package can find all solutions z∗ for any given parameters c∗. See more in https:

//www.juliahomotopycontinuation.org/guides/introduction/.
7The solutions found in Julia usually only have accuracy at order O

(
10−16

)
due to the use of floating numbers

but it is very convenient to increase their accuracy to order, for example, O
(
10−100

)
in Mathematica. We have

verified the solutions for D4, D5, D6, D7, F4, E6 both in Julia at order O
(
10−16

)
using its built-in commands

and in Mathematica at order O
(
10−100

)
. We have verified 3787649 solutions for D8 in Julia.

https://www.juliahomotopycontinuation.org/guides/introduction/
https://www.juliahomotopycontinuation.org/guides/introduction/


Notes on Worldsheet-Like Variables for Cluster Configuration Spaces 17

4 Topological properties of the spaces

In this section, we study the topology of cluster configuration spaces using a finite-field method.
Recall that this has been initiated in [5] for at least types An, Bn and Cn, where for each case
the number of points in the space over Fp is shown to be a polynomial of p. Let us list these
polynomials for completeness

|MAn(Fp)| = (p− 2)(p− 3) · · · (p− n− 1),

|MBn(Fp)| = (p− n− 1)n,

|MCn(Fp)| = (p− n− 1)(p− 3)(p− 5) · · · (p− 2n+ 1).

Note that when all the letters can be written as linear factors, the space can be realized as
a hyperplane arrangement complement and it is known that we have polynomials for point
counts. This is the case for type A in terms of worldsheet variables and type B using certain
“linear” variables as in [5] (for type C we have not been able to determine whether or not it
can be realized as a hyperplane arrangement complement). In such hyperplane cases, it is well
known that the coefficients of point-count polynomial give dimensions of the k-th cohomology
for k = 1, 2, . . . , n, which are exactly the number of independent k-forms generated by wedging
d log of these letters. By plugging in p = 1 we find the Euler characteristics for types ABC as
expected, and also by plugging in p = −1, we obtain the number of connected components.8

However, for type Dn and exceptional cases, it is expected that the point count will no longer
be polynomials (thus the space cannot be realized as hyperplane arrangement complement),
and it is not clear how to get dimensions of cohomology, etc. in these cases. In this section, we
mainly focus on the type-Dn case and perform numerical “experiments” of counting points for
a sufficient number of prime numbers, all the way up to n = 10. We then conjecture that the
point count is always a quasi-polynomial of p with special “correction terms”. Our conjecture
thus yields predictions for dimensions of cohomology for the Dn space, which up to n = 6 are
supported by the number of saddle points we find. Note that in general we do not expect the
cohomology to be generated by d log forms only, but we conjecture that this is still the case
for 2-forms and 3-forms and we propose an all-n formula for these dimensions. Finally, we will
summarize all the linear relations we find for d log 2-forms, which are useful for bootstrap based
on such an alphabet.

Before proceeding, we also review the simple example of G2, whose point count was found
to be a quasi-polynomial using F -polynomials in [5]. It is easy to see that the same quasi-
polynomial can be found by using the 8 letters in (2.12)

|MG2(Fp)| =

{
(p− 4)2 if p = 2 mod 3,

(p− 4)2 + 4 if p = 1 mod 3.

Note that by plugging in p = −1, the point count predicts that there are 25 connected compo-
nents, which agrees with the number of sign patterns of the 8 letters and can be visualized by
directly plotting them; by plugging in p = 1 it gives the Euler characteristic as 13, which agrees
with the number of saddle points as we found above.

4.1 Point count of Dn over Fp

As explained in [5], the point count shows that MDn cannot be a hyperplane arrangement
complement already for n = 4, 5. For D4 and D5, by counting the number of points in the space

8Note that the Dynkin classification is with respect to the cluster algebra, not the crystallographic Coxeter
arrangement. For example, the braid arrangement corresponding to the Coxeter group of type An would reduce
to our An−3 space after an SL(2) gauge-fixing.
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over Fp for prime numbers p ≥ 5, it was previously found that they can be interpolated by the
quasi-polynomials

|MD4(Fp)| = p4 − 16p3 + 93p2 − 231p+ 207 + δ3(p),

|MD5(Fp)| = p5 − 25p4 + 244p3 − 1156p2 + 2649p− 2355 + δ3(p) (5p− 36)− δ4(p).

where δi(p) is defined as (note that it differs from the δi(p) defined in [5]):

δi(p) :=

{
1 if p = 1 mod i,

−1 otherwise.

These point counts were previously performed using the F -polynomials of the cluster algebra.
We find that the counting with the worldsheet variables yields the same result, as expected.

Substituting p = 1, we get 55 and −674 respectively, which agrees with the Euler charac-
teristic, or the number of saddle points up to a sign (see (3.4)). For the D4 space, we can also
determine the dimensions of 1-, 2-, 3- and 4-cohomology to be exactly 16, 93, 231 and 208, which
agree with (up to alternating signs) coefficients of p3, p2, p1 and p0 if we keep δ3(p) = 1. This is
of course consistent with the fact that the alternate sum of these numbers (including 1 for p4)
should give the Euler characteristic (with p = 1). We also remark that by substituting p = −1,
we get 547 and 6388 respectively, which agree with the number of consistent sign patterns of the
u-variables and the alphabet in terms of the z-variables.9 We find that the worldsheet variables
allow us to perform numerical computations for higher-Dn cases, which were not feasible using
F -polynomials. For example, we can apply the finite-field method to the D6, D7 and D8 cases,
and by assuming that the result should be quasi-polynomials with δi(p) terms with i < n, we
find the following formulas which exhibit a nice pattern

|MD6(Fp)| = p6 − 36p5 + 530p4 − 4070p3 + 17140p2 − 37465p+ 33301

+ δ3(p)
(
15p2 − 246p+ 987

)
− δ4(p)(6p− 62) + 2δ5(p),

|MD7(Fp)| = p7 − 49p6 + 1014p5 − 11460p4 + 76215p3 − 297641p2 + 631280p− 562269

+ δ3(p)
(
35p3 − 966p2 + 8736p− 25823

)
− δ4(p)

(
21p2 − 476p+ 2584

)
+ δ5(p)(14p− 212)− 2δ6(p),

|MD8(Fp)| = p8 − 64p7 + 1771p6 − 27629p5 + 265335p4 − 1603427p3 + 5944309p2

− 12347924p+ 11024276 + δ3(p)
(
70p4 − 2856p3 + 43092p2 − 284445p

+ 691145
)
− δ4(p)

(
56p3 − 2072p2 + 24648p− 94824

)
+ δ5(p)

(
56p2 − 1808p

+ 13206
)
− δ6(p)(16p− 368) + 3δ7(p).

For D6, we have generated such data for 37 prime numbers, from 7 up to 173; they are more
than enough for us to find the first quasi-polynomial, which contains only 12 non-trivial coeffi-
cients. For D7, we have generated such data of 21 prime numbers, from 7 to 89; they are more
than enough to fix all 16 non-trivial coefficients in the second quasi-polynomial. Note that the
coefficient of δ6(p) can be absorbed into that of δ3(p) since δ6(p) = δ3(p), and the reason for
splitting them in this way will become clear shortly. For D8, we have generated the data of
21 prime numbers, from 11 to 97, they are just enough to fix all 21 non-trivial coefficients in the
last quasi-polynomial. We emphasize that these are all conjectures about the point count which
we do not know how to prove.

9The number of connected components may be counted by enumerating all possible sign patterns of the
alphabet. The signs of the nonlinear wi,j letters that appear in the second line of (2.9) may sometimes be
determined by the relative order of the {zi, zj , z−, z+} variables. We may then exploit identities such as wi,j −
wi,k = (1+zi)(zj −zk) and wi,k−wj,k = (zi−zj)(−1+z−−zk +z+) to eliminate inconsistent sign configurations
of the wi,j letters.
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Substituting p = 1, we get 10215, −183256 for D6, D7 respectively, which agrees with the
Euler characteristic or numbers of saddle points (up to a sign) (3.4). The agreement provides
very strong support for these quasi-polynomials. For D8, substituting p = 1, we get 3787655,
which predicts that there should be 6 remaining solutions in addition to the 3787649 ones already
found by HomotopyContinuation.jl (3.4).

We have also conjectured quasi-polynomials of D9 and D10. For these cases, it has become
more and more time-consuming to generate data for large prime numbers. For D9, we have only
generated data of 11 prime numbers, from 11 to 47 and for D10, we have generated the data
of 9 prime numbers, from 11 to 41. In neither case do we have enough data to completely fix
the quasi-polynomials, but we can use some other data, e.g., the number of independent d log
k-forms for k = 1, 2, 3, etc. (see below) to propose the following conjectures:

|MD9(Fp)| = p9 − 81p8 + 2888p7 − 59416p6 + 776342p5 − 6671938p4 + 37657424p3

− 134394689p2 + 274922647p− 245998148

+ δ3(p)
(
126p5 − 7056p4 + 156240p3 − 1707489p2 + 9190566p− 19467332

)
− δ4(p)

(
126p4 − 6720p3 + 130320p2 − 1094400p+ 3365875

)
+ δ5(p)

(
168p3 − 8640p2 + 135630p− 670100

)
− δ6(p)

(
72p2 − 3456p+ 33786

)
+ δ7(p)(27p− 984)− 2δ8(p),

|MD10(Fp)| = p10 − 100p9 + 4464p8 − 117036p7 + 1993824p6 − 23038134p5

+ 182628726p4 − 979353469p3 + 3394906731p2 − 6862837036p

+ 6153401165

+ δ3(p)
(
210p6 − 15372p5 + 464310p4 − 7398825p3 + 65494485p2

− 304671969p+ 582450185
)

− δ4(p)
(
252p5 − 18060p4 + 504120p3 − 6878520p2 + 45974284p

− 120501116
)

+ δ5(p)
(
420p4 − 30480p3 + 767070p2 − 8145380p+ 31203370

)
− δ6(p)

(
240p3 − 18000p2 + 373140p

)
+ δ7(p)

(
135p2 − 10110p+ 131289

)
− δ8(p)(20p− 1204) + 3δ9(p).

Substituting p = 1, we get −88535634 and 2308393321, which predict the Euler characteristics
(or the number of saddle points up to a sign) of D9 and D10 respectively.

It is computationally difficult to determine the number of saddle points (or equivalently
the Euler characteristic) of the Dn space for higher n. We just make a numerical observa-
tion: for n = 4, 5, . . . , 10, the number of saddle points can be approximated by (1 − n)n ×
{0.679, 0.658, 0.654, 0.655, 0.657, 0.660, 0.662}. It would be interesting to see if one could infer
certain scaling behavior holds for large n, and if there might be some explanation for that.

Beyond D4, we have not been able to compute dimensions of cohomology (due to the lack of
efficient algorithms) except for the number of 1-forms which is the number of letters, n1 = n2.
However, we conjecture that the dimension of the k-th cohomology is given by (the absolute
value of) the coefficients of pn−k if we keep all δi(p) = 1. This conjecture is consistent with the
observation that the Euler characteristic is obtained by plugging in p = 1. To obtain some data
that provides a lower bound on the dimensions, we can alternatively compute the number of
independent d log k-forms, nk, obtained by wedging d log of all the letters, for k = 1, 2, . . . , n.

One needs to determine the rank of all the
(
n2

k

)
d log k-forms, by considering linear relations they

satisfy. For higher n, it also becomes computationally difficult to determine nk, but we have
numerically determined such linear relations and obtained the number of independent k-forms
for all k up to D6, and for k = 2, 3 up to D9, see Table 1.
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Table 1.

2-forms 3-forms 4-forms 5-forms 6-forms

D4 93 231 207 – –

D5 244 1156 2649 2355 –

D6 530 4070 17140 37465 33300

D7 1014 11460 76215

D8 1771 27629

D9 2888 59416

D10 4464

Note that in addition to n1 = n2, which is (the absolute value of) the coefficient of pn−1, n2

and n3, nicely match the next two coefficients of the quasi-polynomial, which are not affected by
the correction terms, δi(p). As part of our conjecture above, these two numbers are conjectured
to be the dimension of 2- and 3-cohomology, respectively, which seem to be generated by d log
forms (this is no longer true for k ≥ 4). We propose that the number of independent (d log) 2-
and 3-forms are

n2 =
1

2
(n− 1)

(
n3 − n+ 2

)
, n3 =

1

3

(
n− 1

2

)(
n4 − 3n2 + 5n+ 3

)
.

As we will show in the next section, we can write down all the linear relations among the 2-forms,
thus confirming the result for n2. It would be interesting to find a similar argument for n3.

4.2 Cohomology of 2-forms

The cohomology of the hyperplane arrangement complement is well understood as the Orlik–
Solomon algebra [46]. The linear relations among the d log forms are the Orlik–Solomon ideals
and the set of independent d log forms form the Orlik–Solomon algebra. Our goal is to work out
the analogues of the Orlik–Solomon ideals for nonlinear d log forms.

For Dn, there are
(
n2

2

)
2-forms of ωi,j := d log zi,j and χi,j := d logwi,j , including trivial ones:

ω1,i ∧ ω2,i = 0. The 2-forms of ωi,j satisfy the Arnold relations

ωi,j ∧ ωj,k + ωj,k ∧ ωk,i + ωk,i ∧ ωi,j = 0.

They provide
(
n
3

)
+ 2

(
n
2

)
constraints for 1 ≤ i < j < k ≤ n and 1 ≤ i < j ≤ n, k = n + 2 or

n+ 3.

Let

S+
i,j = ωi,n+3 + ωj,n+2, S−

i,j = ω1,n+3 + ωi,j ,

T+
i,j = ω1,i + ωj,n+2, T−

i,j = ω1,n+3 + ωn+2,i,

U+
i,j = ωi,n+2 + ωj,n+3, U−

i,j = ω1,n+2 + ωi,j .

There are 3
(
n−1
2

)
relations involving χi,j for 1 < i < j < n+ 1:

S+
i,j ∧ S−

i,j + S−
i,j ∧ χi,j + χi,j ∧ S+

i,j = 0,

T+
i,j ∧ T−

i,j + T−
i,j ∧ χi,j + χi,j ∧ T+

i,j = 0,

U+
i,j ∧ U−

i,j + U−
i,j ∧ χi,j + χi,j ∧ U+

i,j = 0.
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There are 2
(
n−1
3

)
relations involving χi,j ∧ χi,k and χi,k ∧ χj,k for 1 < i < j < k < n+ 1:

(ω1,i − ωj,k) ∧ χi,j + χi,j ∧ χi,k + χi,k ∧ (ω1,i − ωj,k) = 0,

(ωi,j − ωi,n+2 + ωk,n+2 + ω1,n+2) ∧ χi,k + χi,k ∧ χj,k

+ χj,k ∧ (ωi,j − ωj,n+2 + ωk,n+2 + ω1,n+2)− (ωk,n+2 + ω1,n+2) ∧ (ωi,n+2 − ωj,n+2) = 0.

While we do not know if these are all the cohomology relations among the two forms, they
provide an upper bound on the number of independent 2-forms:

n2 ≤
(
n2

2

)
−
[(

n

3

)
+ 2

(
n

2

)]
− 3

(
n− 1

2

)
− 2

(
n− 1

3

)
=

1

2
(n− 1)

(
n3 − n+ 2

)
.

It agrees with the prediction from the point count.

5 Conclusion and discussions

In this note, based on the connection between Y -systems and configuration spaces for finite-type
cluster algebras, we have introduced worldsheet-like variables that generalize the worldsheet
variables of the moduli space M0,n, and applied them for studying cluster configuration spaces.
In particular, we have studied in detail these z-variables for type Dn, which have also provided
a set of variables for the symbol alphabet of Feynman integrals as discussed in [21, 35]. Our
main results can be summarized as follows

� We provide a systematic derivation of the u-variables as generalized cross ratios of poly-
nomials of z-variables. It is based on a gluing construction that defines an initial set of
u-variables as cross ratios of a pair of An worldsheets, and generates the remaining u-
variables by the Y -system equations. We have characterized boundaries of the positive
part of the space by degenerations of these polynomials. Upon fixing the gauge redun-
dancy, such polynomials reproduce the alphabets for the ABCD types in the literature
and produce new alphabets for E6, F4, and G2.

� We write the stringy canonical form and corresponding saddle-point equations in terms
of these z-variables, which makes it easier to study their properties such as factoriza-
tions and pushforward. In particular, we find that the number of saddle points (or Euler
characteristics) for the Dn space up to n = 7 (and those for the E6, F4, and G2 spaces).

� We study topological properties of configuration spaces by counting the number of points
in Fp: we conjecture that the point count is a quasi-polynomial with specific “correction
terms” for type Dn, based on empirical evidence up to n = 10, which predicts dimensions
of cohomology and the Euler characteristic, etc.

There are numerous questions for future investigations raised by our preliminary studies.
First of all, we would like to understand possible “physical” meanings of these worldsheet-like
variables. For cluster configuration spaces, this may be related to the possible meaning of cluster
string integrals: for the Dn case, the stringy integral has not only the correct α′ → 0 limit as the
one-loop planar ϕ3 integrand, but also the correct factorization at massless poles for finite α′;
it would be highly desirable if we can understand better such stringy integrals using these z-
variables. As we have seen in [21, 35, 36], the letters of Dn using z-variables (for n ≤ 6) have
nicely appeared in the symbol of “ladder-type” Feynman integrals to all loops, where the z’s
are nothing but all the last entries. This has opened up another direction for studying possible
physical meanings of such worldsheet-like variables.

Moreover, it would be interesting to see if one can prove the quasi-polynomials for the point
count ofDn (up to n = 10) and maybe even find a general pattern. While they do not correspond
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to hyperplane arrangement complement, the z-variables make it clear that we only need to deal
with quadratic polynomials wi,j , in addition to those linear factors. We have not been able to
come up with any conjecture for the point count for the E6 or F4 case, which seems to require
at least some new forms of “correction terms”. It would be highly desirable to see what can
we learn about cluster algebras from these topological properties of the corresponding cluster
configuration spaces.

Note that the type-A cluster algebra is equivalent to the cluster structure on the Grassman-
nian of 2-planes, both of which can be used to describe moduli space for string theory and for
the Cachazo–He–Yuan formula [17]. Other finite-type cluster algebras and higher-k Grassman-
nians generalize them in two different ways. Higher-k Grassmannian stringy integrals have been
studied in [6, 38], whose leading orders are equivalent to the higher-k CHY formulas (or CEGM
generalized bi-adjoint amplitudes) [1, 15]. Tropical Grassmannian [24, 26, 39, 40, 45], ma-
troid subdivisions [13, 14, 27, 28], and the planar collections of Feynman diagrams [10, 16, 34]
are also found to be very useful to study them. Compared to higher-k Grassmannians, fac-
torization behaviors of finite-type cluster algebras are better understood. As the worldsheet
variables have been discovered for other finite-type cluster algebras, it is natural to compare our
study of cluster configuration spaces to those Grassmannian cases. It would be interesting to
compare the topological properties of their configuration spaces including the Euler characteris-
tic [2, 19, 20, 48, 49]), their ABHY realizations, and even applications to the symbol alphabets
that appeared in higher-loop integrals of SYM, etc. [9, 25, 36, 47].

Last but not least, an important question already mentioned in [5] is if we could classify all
the connected components of the Dn configuration space and find their corresponding canonical
forms, which have not been understood even for D4. It becomes much more viable now with
these z-variables, and this would enable us to understand better the cohomologies and more
importantly the extension of the stringy integrals (so far for the positive part) to general “off-
diagonal” real and complex integrals [6].
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