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Via Carlo Alberto 10, 10123 Torino, Italy
E-mail: annamaria.fino@unito.it

b) Department of Mathematics and Statistics, Florida International University,
Miami, FL 33199, USA
E-mail: afino@fiu.edu, grantchg@fiu.edu

Received January 02, 2023, in final form May 11, 2023; Published online May 25, 2023

https://doi.org/10.3842/SIGMA.2023.028

Abstract. A Hermitian metric on a complex manifold (M, I) of complex dimension n is
called Calabi–Yau with torsion (CYT) or Bismut–Ricci flat, if the restricted holonomy of
the associated Bismut connection is contained in SU(n) and it is called strong Kähler with
torsion (SKT) or pluriclosed if the associated fundamental form F is ∂∂-closed. In the paper
we study the existence of left-invariant SKT and CYT metrics on compact semi-simple Lie
groups endowed with a Samelson complex structure I. In particular, we show that if I is
determined by some maximal torus T and g is a left-invariant Hermitian metric, which is
also invariant under the right action of the torus T , and is both CYT and SKT, then g has
to be Bismut flat.
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1 Introduction

On every Hermitian manifold (M, I, g) there exists a one-parameter family of Hermitian con-
nections which can be distinguished by their torsion tensor and coincide with the Levi-Civita
connection when M is Kähler. Among them there are the Chern connection ∇C on the holo-
morphic tangent bundle and the Bismut (or Strominger) connection ∇B, which is also called
by physicists the Kähler with torsion (KT) connection. ∇B is the unique Hermitian connec-
tion whose torsion tensor is totally skew-symmetric and its torsion TB is characterized by the
condition

g
(
TB(X,Y ), Z

)
= dF (IX, IY, IZ),

where F is the fundamental form F (X,Y ) = g(IX, Y ), and X, Y , Z are smooth vector fields.
Since∇B is a Hermitian connection, its holonomy is contained in the unitary group U(n), where n
is the complex dimension of M . If the holonomy of ∇B is reduced to SU(n), the metric g is said
to be Calabi–Yau with torsion (shortly CYT). It is also called Bismut Ricci-flat. This type of
geometry in the physical context was considered first by Strominger [25] and Hull [17]. In [15],
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it was conjectured that every compact complex manifold with vanishing first Chern class admits
a CYT metric. Counterexamples to this conjecture appear in [7]. In [14] it has been shown that
every compact complex homogeneous space with vanishing first Chern class, after an appropriate
deformation of the complex structure, admits a homogeneous CYT metric, provided that the
complex homogeneous space also has an invariant volume form.

SKT metrics, which are called also pluriclosed, are Hermitian metrics whose fundamental
form F is ∂∂-closed or equivalently, whose torsion 3-form of the Bismut connection is closed.
Interest in SKT manifolds stems from various sources [26]. They occur in physics in the context
of supersymmetric theories, see for example [11, 16, 25]. Secondly, every conformal class of
a hermitian metric on a compact complex surface contains an SKT metric [12], but this property
is no longer true in higher dimensions. Recently the SKT and CYT metrics have been studied
in relation to the pluriclosed flow and the generalized Ricci flow [2, 4, 9, 10].

Basic examples of SKT manifolds are given by compact Lie groups endowed with a bi-
invariant metric and any of the compatible Samelson’s complex structures [24]. These SKT
metrics are also CYT, but the associated Bismut connection is flat. Note that a simply connected
compact Riemannian manifold admitting a flat metric connection with closed skew symmetric
torsion is isometric to a product of compact simple Lie groups with bi-invariant metrics (see [10,
Theorem 3.54]), however it is currently not known whether there are other metrics, which are
both SKT and CYT, but with non-flat Bismut connection. Many of the CYT examples in [14]
have non-vanishing curvature of the Bismut connection. Recently in [22, 23] non-Hermitian
examples which are Bismut Ricci-flat, which have closed torsion form and non-vanishing Bismut
curvature have been constructed on compact homogeneous spaces.

By [24], every compact Lie group G of even dimension admits a complex structure such
that left translations are holomorphic mappings and the complex structure is determined by
a choice of a maximal torus T . This result is an extension of Borel’s theorem which states that
the quotient of a compact Lie group by its maximal torus always has a homogeneous complex
structure. Note that the Samelson’s construction depends on a choice of the maximal torus and
such complex structures are compatible if they are compatible with the metric restricted to this
torus.

More generally, the existence of SKT metrics on the class of Wang C-spaces, which are
defined as compact complex manifolds admitting a transitive action by a compact Lie group
of biholomorphisms and finite fundamental group, was investigated in [8]. By [8], it turns out
that SKT structures could only appear on a product of a compact Lie group and a Kähler
homogeneous C-space (generalized flag manifold). Note that these spaces admit left-invariant
SKT metrics.

Therefore, in view of the above, it is natural to investigate whether on an even dimensional
compact Lie group with a Samelson complex structure there exist left-invariant metrics which
are both SKT and CYT, but not Bismut flat.

Motivated by this question, in the current paper we study left-invariant SKT and CYT
metrics on compact semi-simple Lie groups endowed with a Samelson’s complex structure I.
Using a symmetrization, we show that the existence of left-invariant SKT or CYT metrics
leads to an existence of such metrics which are left-invariant and right T -invariant. As a first
consequence we show that if g is a left-invariant SKT metric compatible with I, then the complex
structure I has to be compatible with a bi-invariant metric g0. Then we provide characterizations
of left-invariant SKT and CYT metrics which are also invariant under the right T -action. As
a consequence, we prove that on every compact semi-simple Lie group a metric of this type
which is both CYT and SKT must be a bi-invariant one, or equivalently a product of metrics
proportional to the Killing forms on the simple factors. Therefore, in particular, such metric
must be Bismut flat. We also construct an explicit 5-parameter family of SKT metrics on SO(9),
which are T -invariant for the natural choice of the torus T .
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2 Preliminaries on compact semi-simple Lie groups

It was shown independently by Samelson [24] and Wang [28] that every compact Lie group G
of even dimension admits left-invariant complex structures I. Moreover, there exists a maximal
toral subgroup T of G that is I-complex and the quotient G/T is a complete flag variety of G
with a complex structure such that the quotient map π : G → G/T is holomorphic.

We now review the Samelson’s construction of left-invariant complex structures on compact
semi-simple Lie groups. We will follow the conventions of Alekseevsky–Perelomov [1], and
Bordemann–Forger–Romer [5]. Let Gc be the complexification of a compact semi-simple Lie
group G. Then G may be regarded as a Lie subgroup of Gc, and the Lie algebra of Gc is the
complexification gc of the Lie algebra g of G.

If we fix a maximal abelian subalgebra t of g, then h = tc is a maximal abelian subalgebra
of gc and we have the root space decomposition

gc = h⊕
⊕
α∈Φ

gα,

where Φ is the finite subset of nonzero elements of h∗ called roots, and each gα is the complex
1-dimensional subspace of gc given by

gα := {X ∈ gc | [H,X] = α(H)X, ∀H ∈ h}.

Therefore, there exists a system of positive roots, that is a set P ⊂ Φ satisfying P∩(−P ) = ∅,
P ∪ (−P ) = Φ, and α, β ∈ P , α + β ∈ Φ ⇒ α + β ∈ P , and such that spanC(P ) = h. We
note that Φ is also invariant under a set of reflections which leads to the classification of all
irreducible root systems. Moreover, the structure of Φ determines the structure of gc in a sense
that [gα, gβ] ⊆ gα+β when α+ β ∈ Φ, [h, gα] = gα and [gα, g−α] ⊆ h and the other commutators
vanish.

Among the roots in P there is a set of simple roots, which we denote by α1, α2, . . . , αr and
forms a basis of the space t∗. For any α ∈ P , we have α =

∑r
i=1miαi, with mi being a non-

negative integer. The basis (αl) also determines a partial order of the set of positive roots and r
is called rank of gc.

Denote by B(X,Y ) = tr(adX ◦ adY ) the Killing–Cartan bilinear form of gc. The restriction
of B to t is non-degenerate and gα is B-orthogonal to gβ for β ̸= −α. For every α ∈ P we choose
(E±α, Hα) such that g±α = spanC⟨E±α⟩, [Eα, E−α] = Hα, B(Eα, E−α) = 1, [H,Eα] = α(H)Eα

and B(H,Hα) = α(H) for all H ∈ t.
Note that t = spanR⟨iHα⟩ is the Lie algebra of T . Moreover, since all compact forms of

a complex semi-simple Lie algebra are conjugate, we can assume that g is the real span of
Xα, Yα, iHα, where Xα = 1√

2
(Eα + E−α), Yα = 1√

2i
(Eα − E−α). In particular, {Xα, Yα} is an

orthonormal set with respect to −B on G.
When the rank r is even, Samelson proved that a choice of P and of a complex structure

on t determine a left-invariant complex structure I on G, which is given by I(Eα) = iEα,
I(E−α) = −iE−α, for every α ∈ P , and by a linear endomorphism of t with square −Id.

Note that if g =
∑m

i=1 gi, where gi are simple, then t =
∑m

i=1 ti and B =
∑m

i=1Bi. We denote

by E
(i)
α , E

(i)
−α the corresponding root vectors in gi with respect to ti and by Pi the set of positive

roots of the simple factor Gi with respect to ti. We will not use the upper index when there is
no confusion.

Remark 2.1. Let I be a Samelson complex structure on G. If h is a left-invariant I-Hermitian
metric on G which is also invariant by the right T -action on G, then there exists a metric on G/T
such that π : G → G/T is a Riemannian submersion. Since the spaces ⟨Xα, Yα⟩ are T -invariant
and irreducible, the metric h can be written, up to a constant, as h(X,Y ) = −B(Λ(X), Y ),
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where Λ is a symmetric operator defined by Λ(Eα) = λαEα for every α ∈ P and any appropriate
matrix on t such that h is positive definite (see, e.g., [3]).

3 Invariant SKT metrics

We can apply the symmetrization with respect to the right T -action to prove that if we have
a left-invariant SKT I-Hermitian metric, then it is possible to construct a SKT metric which is
right T -invariant.

Lemma 3.1. Let G be a compact semi-simple Lie group of even rank endowed with a Samelson
complex structure I. Let g be a left-invariant SKT I-Hermitian metric. Then symmetrizing g
by the right T -action on G, we obtain a Hermitian metric h which is still SKT and also left-
invariant and right T -invariant.

Proof. Since I is invariant under the right T -action by the aforementioned result of Wang [28],
we can symmetrize g. Indeed, let dν be the standard volume on the torus T and denote by Rh

the right translation by h ∈ T on G. We can define

gx(u,v) :=

∫
T
(R∗

hg)x(u,v) dν(h),

for every x ∈ G,u,v ∈ TxG. By construction g is invariant by the right T -action on G and
compatible with I. Moreover, since left and right translations commute and right T - translations
are holomorphic, g is left-invariant.

Since the SKT condition ddcω = 0 is linear in ω and d, dc commute with R∗
h, for every h ∈ T ,

g is SKT. ■

Given a Samelson complex structure I, we can describe all possible left-invariant SKT I-
Hermitian metrics which are also invariant by the right T -action on G.

Theorem 3.2. Let G be a compact semi-simple Lie group of even rank endowed with a Samelson
complex structure I and let g be a left-invariant SKT I-Hermitian metric. Then the restriction
of g on the fibers of π : G → G/T coincides with the restriction of a bi-invariant metric on G.
As a consequence, the complex structure I has to be compatible with a bi-invariant metric g0.

Proof. By Lemma 3.1, using the symmetrization it is not restrictive to suppose that g is
invariant under the right T -action. Suppose that G up to a finite cover is given by the product
G1 ×G2 × · · · ×Gm of simple Lie groups Gi (dimGi > 1). Then t =

∑m
i=1 ti, with ti the Cartan

subalgebra of the Lie algebra gi of every factor Gi.
Select a g-unitary basis (θ1, . . . , θ2k) of t∗, such that I(θ2l−1) = θ2l. Then by [13], we have

F =
∑k

l=1 θ2l−1 ∧ θ2l + π∗(Fb), where Fb is a (1, 1)-form of an invariant Hermitian structure
on G/T . Also by [13, Section 5],

ddcF = π∗ddcFb −
k∑

l=1

(
ω2
2l−1 + ω2

2l

)
,

where ωi = dθi are the curvature forms of the connection on π : G → G/T determined by θi.
This in particular means that

k∑
l=1

(
[ω2l−1]

2 + [ω2l]
2
)
=

2k∑
i=1

[dθi]
2 = 0

in the cohomology H2(G/T,R).
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Now, the flag manifold G/T decomposes as G/T = G1/T1 × · · · ×Gm/Tm and by the results
of Chevalley [6], H2(Gi/Ti,R) is generated by the (exterior derivatives of the) simple roots in t∗i ,
and moreover, there is a unique quadratic relation among them. This quadratic relation can

be written as
∑si

j=1

[
dθ̃

(i)
j

]2
= 0 for a −Bi-orthonormal basis

(
θ̃
(i)
1 , . . . , θ̃

(i)
si

)
of t∗i , which can be

easily checked by direct calculations. Since B =
∑m

i=1Bi, the basis is also −B-orthonormal.
It follows that the only quadratic relations among the cohomology classes in H2(G/T,R) are

given by

m∑
i=1

ci

si∑
j=1

[
dθ̃

(i)
j

]2
= 0, (3.1)

for some constants c1, . . . , cm.
Then

2k∑
i=1

[dθi]
2 =

m∑
i=1

ci

si∑
j=1

[
dθ̃

(i)
j

]2
. (3.2)

Denote the −B-orthonormal basis
(
θ̃
(1)
1 , . . . , θ̃

(1)
s1 , . . . , θ̃

(m)
1 , . . . , θ̃

(m)
sm

)
by σl for l = 1, 2, . . . , 2k.

Then θi =
∑2k

l=1 qliσl for a transition matrix Q = (qij) and we can rewrite
∑2k

i=1[dθi]
2 as

2k∑
i=1

[dθi]
2 =

2k∑
i=1

2k∑
l,j=1

qliqji[dσl ∧ dσj ].

On the other hand,

m∑
i=1

ci

si∑
j=1

[
dθ̃

(i)
j

]2
= c1

s1∑
i=1

[dσi]
2 + c2

s2∑
i=1

[dσs1+i]
2 + · · ·+ cm

sm∑
i=1

[dσs1+···+sm−1+i]
2.

Therefore, from the equality (3.2) we have

2k∑
i=1

2k∑
l,j=1

qliqji[dσl ∧ dσj ] = c1

s1∑
i=1

[dσi]
2 + c2

s2∑
i=1

[dσs1+i]
2 + · · ·+ cm

sm∑
i=1

[dσs1+···+sm−1+i]
2.

Using that [dσl ∧ dσj ] are independent, for every l ̸= j we get that

2k∑
i=1

qliqji = 0, l ̸= j,

and by (3.1)

s1∑
i=1

(qli)
2 = c1, . . . ,

sm∑
i=sm−1

(qli)
2 = cm,

i.e., that QQt = D, where D is a diagonal matrix with entries ci. From here we conclude,
that ci > 0 and Q preserves the metric −

∑m
i=1 ciBi. In particular θi are −

∑m
i=1 ciBi-orthonor-

mal. As the θis are g- and −
∑m

i=1 ciBi-orthonormal, the restriction of g to t coincides with the
restriction of a biinvariant metric, the theorem follows. ■

Remark 3.3. It is well known that on an even dimensional compact Lie group equipped with
a bi-invariant metric g0 there is always a g0-compatible complex structure, which is necessary
SKT and also Bismut-flat. But there exist Samelson’s complex structures which are not com-
patible with any bi-invariant metric on G as long as the rank of G is at least 2.
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As a consequence of Theorem 3.2, we have the following

Corollary 3.4. Let G be a compact semi-simple Lie group with Samelson’s complex structure I
as above. Let g be a left-invariant I-Hermitian metric on G, which is also invariant under the
right action of the torus T in the Tits fibration G → G/T , where T is a maximal torus in G. We

can write the fundamental form F of the metric g as F = F |t+
∑m

i=1

∑
α∈Pi

λ
(i)
α e

(i)
α ∧Ie

(i)
α , where

e
(i)
α , Ie

(i)
α are dual to X

(i)
α , Y

(i)
α and λ

(i)
α = g(E

(i)
α , E

(i)
−α). Then g is SKT iff g|t = −

∑m
i=1 νiB|ti

and
∑m

i=1

∑
α∈Pi

(
λ
(i)
α −νi

)
e
(i)
α ∧Ie(i)α is a linear combination of the basis ωj = dαj of H

2(G/T,R),
where αj are the simple roots.

Equivalently, g is SKT iff d
(∑m

i=1

∑
α∈Pi

(
λ
(i)
α − νi

)
e
(i)
α ∧ Ie

(i)
α

)
= 0 and Λ|t =

∑m
i=1 νiId|ti,

for some constants νi, i = 1, 2, . . . ,m.

Proof. By [13], we can rewrite F =
∑k

l=1 µ
2
l θ2l−1 ∧ θ2l + π∗(Fb), where Fb is a (1,1)-form of

an invariant Hermitian structure on G/T and (θi) is a (−B)-orthonormal basis of t∗ =
∑m

i=1 t
∗
i ,

which is also g-orthogonal. Note that θi are linear combinations of the simple roots αi and

F |t =
k∑

l=1

µ2
l θ2l−1 ∧ θ2l, π∗(Fb) =

m∑
i=1

∑
α∈Pi

λ(i)
α e(i)α ∧ Ie(i)α ,

where Pi denotes the set of positive roots of the simple factor Gi with respect to ti. Suppose

that g|t = −
∑m

i=1 νiB|ti and
∑m

i=1

∑
α∈Pi

(
λ
(i)
α − νi

)
e
(i)
α ∧ Ie

(i)
α is a linear combination of the

basis ωj = dαj of H2(G/T,R). Using that every I-Hermitian bi-invariant metric is SKT, we

have that ddc
(
F |t + νie

(i)
α ∧ Ie

(i)
α

)
= 0. Since d

(∑m
i=1

∑
α∈Pi

(
λ
(i)
α − νi

)
e
(i)
α ∧ Ie

(i)
α

)
= 0, then it

follows that g is SKT.
Conversely, if g is SKT, then by Theorem 3.2, we have that I is compatible with −

∑m
i=1 νiBi

and g|t = −
∑m

i=1 νiBi|ti , for some positive νi. This implies that Λ is of the form
∑m

i=1 νiId|ti .
Then, the difference between F and the fundamental form associated to the metric −

∑m
i=1 νiBi

is given by
∑m

i=1

∑
α∈Pi

(
λ
(i)
α −νi

)
e
(i)
α ∧ Ie

(i)
α . As a consequence

∑m
i=1

∑
α∈Pi

(
λ
(i)
α −νi

)
e
(i)
α ∧ Ie

(i)
α

is ddc-closed.
Since

∑m
i=1

∑
α∈Pi

(
λ
(i)
α −νi

)
e
(i)
α ∧Ie(i)α is the pull-back by π of a ddc-closed (1, 1)-form on G/T

and the Aepply cohomology of G/T is isomorphic to the Dolbeault cohomology, we have that∑m
i=1

∑
α∈Pi

(
λ
(i)
α − νi

)
e
(i)
α ∧ Ie

(i)
α is d-closed, and so

∑m
i=1

∑
α∈Pi

(
λ
(i)
α − νi

)
e
(i)
α ∧ Ie

(i)
α is a linear

combination of ωi = dαi. ■

Example 3.5. We will now construct an explicit 5-parameter family of SKT metrics on the
real compact Lie group SO(9) compatible with a Samelson complex structure. Recall that the
complexification of SO(9) has rank 4 and its Lie algebra corresponds to B4. Denote by Eij the
matrix in so(9,C), whose unique non-zero entry is 1 at the place (i, j). Let fix the maximal
abelian subalgebra t of so(9) whose complexification h = tc = span⟨H1, H2, H3, H4⟩, where

H1 = i(E12 − E21), H2 = i(E34 − E43), H3 = i(E56 − E65), H4 = i(E78 − E87).

The weights for the fundamental representation of the Cartan subalgebra are ±fk, where

f1 = (1, 0, 0, 0), . . . , f4 = (0, 0, 0, 1),

and the roots are given by ±f j ± fk, for k ̸= j and ±f j . In particular, the set P of positive
roots is the set consisting of f j ± fk, for j < k, and f j (see, for instance, [27] for more details).
We can choose a basis (E±α, Hα)α∈P such that

g±α = spanC⟨E±α⟩, [Eα, E−α] = Hα, B(Eα, E−α) = 1, [H,Eα] = α(H)Eα
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and B(H,Hα) = α(H) for all H ∈ t. The vectors (E±α) satisfying the previous conditions are
given by

E+
1 =

√
2

2
(E19 + iE29 − E91 − iE92), E−

1 =

√
2

2
(E19 − iE29 − E91 + iE92),

E+
2 =

√
2

2
(E39 + iE49 − E93 − iE94), E−

2 =

√
2

2
(E39 − iE49 − E93 + iE94),

E+
3 =

√
2

2
(E59 + iE69 − E95 − iE96), E−

3 =

√
2

2
(E59 − iE69 − E95 + iE96),

E+
4 =

√
2

2
(E79 + iE89 − E97 − iE98), E−

4 =

√
2

2
(E79 − iE89 − E97 + iE98),

[E+
1 , E

+
2 ], [E+

1 , E
+
3 ], [E+

1 , E
+
4 ], [E+

2 , E
+
3 ], [E+

2 , E
+
4 ], [E+

3 , E
+
4 ],

[E−
1 , E

−
2 ], [E−

1 , E
−
3 ], [E−

1 , E
−
4 ], [E−

2 , E
−
3 ], [E−

2 , E
−
4 ], [E−

3 , E
−
4 ],

[E+
1 , E

−
2 ], [E+

1 , E
−
3 ], [E+

1 , E
−
4 ], [E+

2 , E
−
1 ], [E+

2 , E
−
3 ], [E+

2 , E
−
4 ],

[E+
3 , E

−
1 ], [E+

3 , E
−
2 ], [E+

3 , E
−
4 ], [E+

4 , E
−
1 ], [E+

4 , E
−
2 ], [E+

4 , E
−
3 ].

Therefore, we have t = span⟨iH1, iH2, iH3, iH4⟩ and so(9) is the real span of (Xk, Yk, iHj), with
k = 1, . . . , 16, j = 1, . . . , 4, and

iH1 = −(E12 − E21), iH2 = −(E34 − E43),

iH3 = −(E56 − E65), iH4 = −(E78 − E87),

X1 = E19 − E91, Y1 = E29 − E92, X2 = E39 − E93, Y2 = E49 − E94,

X3 = E59 − E95, Y3 = E69 − E96, X4 = E79 − E97, Y4 = E89 − E98,

X5 =

√
2

2
(−E13 + E24 + E31 − E42), Y5 =

√
2

2
(−E14 − E23 + E41 + E32),

X6 =

√
2

2
(−E15 + E26 + E51 − E62), Y6 =

√
2

2
(−E16 − E25 + E61 + E52),

X7 =

√
2

2
(−E17 + E28 + E71 − E82), Y7 =

√
2

2
(−E18 − E27 + E81 + E72),

X8 =

√
2

2
(−E35 + E46 + E53 − E64), Y8 =

√
2

2
(−E36 − E45 + E63 + E54),

X9 =

√
2

2
(−E37 + E48 + E73 − E84), Y9 =

√
2

2
(−E38 − E47 + E83 + E74),

X10 =

√
2

2
(−E57 + E68 + E75 − E86), Y10 =

√
2

2
(−E58 − E67 + E85 + E76),

X11 =

√
2

2
(−E13 − E24 + E31 + E42), Y11 =

√
2

2
(E14 − E23 − E41 + E32),

X12 =

√
2

2
(−E15 − E26 + E51 + E62), Y12 =

√
2

2
(E16 − E25 − E61 + E52),

X13 =

√
2

2
(−E17 − E28 + E71 + E82), Y13 =

√
2

2
(E18 − E27 − E81 + E72),

X14 =

√
2

2
(−E35 − E46 + E53 + E64), Y14 =

√
2

2
(E36 − E45 − E63 + E54),

X15 =

√
2

2
(−E37 − E48 + E73 + E84), Y15 =

√
2

2
(E38 − E47 − E83 + E74),

X16 =

√
2

2
(−E57 − E68 + E75 + E86), Y16 =

√
2

2
(E58 − E67 − E85 + E76).
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If we denote by I the Samelson complex structure defined by IH1 = H2, IH3 = H4 and by the
choice of positive roots, i.e., by IXj = Yj , j = 1, . . . , 16, we get that (SO(9), I) has the following
complex structure equations

dφ1 =
i

2
(φ3 ∧ φ3 + φ7 ∧ φ7 + φ8 ∧ φ8 + φ9 ∧ φ9 + φ13 ∧ φ13 + φ14 ∧ φ14 + φ15 ∧ φ15)

− 1

2
(φ4 ∧ φ4 + φ7 ∧ φ7 + φ10 ∧ φ10 + φ11 ∧ φ11 − φ13 ∧ φ13 + φ16 ∧ φ16

+ φ17 ∧ φ17),

dφ2 =
i

2
(φ5 ∧ φ5 + φ8 ∧ φ8 + φ10 ∧ φ10 + φ12 ∧ φ12 − φ14 ∧ φ14 − φ16 ∧ φ16 + φ18 ∧ φ18)

− 1

2
(φ6 ∧ φ6 + φ9 ∧ φ9 + φ11 ∧ φ11 + φ12 ∧ φ12 − φ15 ∧ φ15 − φ17 ∧ φ17

− φ18 ∧ φ18),

dφ3 =
i

2
(φ1 ∧ φ3 + φ1 ∧ φ3)−

√
2

2
(φ4 ∧ φ7 + φ4 ∧ φ13 + φ5 ∧ φ8 + φ5 ∧ φ14)

−
√
2

2
(φ6 ∧ φ9 + φ6 ∧ φ15),

dφ4 =
1

2
(φ1 ∧ φ4 − φ1 ∧ φ4) +

√
2

2
(φ3 ∧ φ7 + φ3 ∧ φ13 − φ5 ∧ φ10 − φ5 ∧ φ16)

−
√
2

2
(φ6 ∧ φ17 + φ6 ∧ φ11)

dφ5 =
i

2
(φ2 ∧ φ5 + φ2 ∧ φ5) +

√
2

2
(φ3 ∧ φ8 + φ3 ∧ φ14 + φ4 ∧ φ10 + φ4 ∧ φ16)

−
√
2

2
(φ6 ∧ φ12 + φ6 ∧ φ18),

dφ6 =
1

2
(φ2 ∧ φ6 − φ2 ∧ φ6) +

√
2

2
(φ3 ∧ φ9 + φ3 ∧ φ15 + φ4 ∧ φ11 + φ4 ∧ φ17)

+

√
2

2
(φ5 ∧ φ12 + φ5 ∧ φ18),

dφ7 =
1

2
(φ1 ∧ φ7 − φ1 ∧ φ7) +

i

2
(φ1 ∧ φ7 + φ1 ∧ φ7)

−
√
2

2
(φ3 ∧ φ4 + φ8 ∧ φ16 + φ9 ∧ φ17) +

√
2

2
(φ10 ∧ φ14 + φ11 ∧ φ15),

dφ8 =
i

2
(φ1 ∧ φ8 + φ1 ∧ φ8) +

i

2
(φ2 ∧ φ8 + φ2 ∧ φ8)

−
√
2

2
(φ3 ∧ φ5 − φ7 ∧ φ16 + φ9 ∧ φ18)−

√
2

2
(φ10 ∧ φ13 − φ12 ∧ φ15),

dφ9 =
i

2
(φ1 ∧ φ9 + φ1 ∧ φ9) +

1

2
(φ2 ∧ φ9 − φ2 ∧ φ9)

−
√
2

2
(φ3 ∧ φ6 − φ7 ∧ φ17 − φ8 ∧ φ18)−

√
2

2
(φ11 ∧ φ13 + φ12 ∧ φ14),

dφ10 =
1

2
(φ1 ∧ φ10 − φ1 ∧ φ10) +

i

2
(φ2 ∧ φ10 + φ2 ∧ φ10)

−
√
2

2
(φ4 ∧ φ5 + φ7 ∧ φ14 − φ8 ∧ φ13)−

√
2

2
(φ11 ∧ φ18 − φ12 ∧ φ17),

dφ11 =
1

2
(φ1 ∧ φ11 − φ1 ∧ φ11) +

1

2
(φ2 ∧ φ11 − φ2 ∧ φ11)

−
√
2

2
(φ4 ∧ φ6 + φ7 ∧ φ15 − φ9 ∧ φ13) +

√
2

2
(φ10 ∧ φ18 − φ12 ∧ φ16),
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dφ12 =
i

2
(φ2 ∧ φ12 + φ2 ∧ φ12) +

1

2
(φ2 ∧ φ12 − φ2 ∧ φ12)

−
√
2

2
(φ5 ∧ φ6 + φ8 ∧ φ15 − φ9 ∧ φ14)−

√
2

2
(φ10 ∧ φ17 − φ11 ∧ φ16),

dφ13 =
i

2
(φ1 ∧ φ13 + φ1 ∧ φ13)−

1

2
(φ1 ∧ φ13 − φ1 ∧ φ13)

−
√
2

2
(φ3 ∧ φ4 + φ8 ∧ φ10 + φ9 ∧ φ11)−

√
2

2
(φ14 ∧ φ16 + φ15 ∧ φ17),

dφ14 =
i

2
(φ1 ∧ φ14 + φ1 ∧ φ14)−

i

2
(φ2 ∧ φ14 + φ2 ∧ φ14)

−
√
2

2
(φ3 ∧ φ5 − φ7 ∧ φ10 + φ9 ∧ φ12) +

√
2

2
(φ13 ∧ φ16 − φ15 ∧ φ18),

dφ15 =
i

2
(φ1 ∧ φ15 + φ1 ∧ φ15)−

1

2
(φ2 ∧ φ15 − φ2 ∧ φ15)

−
√
2

2
(φ3 ∧ φ6 − φ7 ∧ φ11 − φ8 ∧ φ12) +

√
2

2
(φ13 ∧ φ17 + φ14 ∧ φ18),

dφ16 =
1

2
(φ1 ∧ φ16 − φ1 ∧ φ16)−

i

2
(φ2 ∧ φ16 + φ2 ∧ φ16)

−
√
2

2
(φ4 ∧ φ5 + φ7 ∧ φ8 + φ11 ∧ φ12)−

√
2

2
(φ13 ∧ φ14 + φ17 ∧ φ18),

dφ17 =
1

2
(φ1 ∧ φ17 − φ1 ∧ φ17)−

1

2
(φ2 ∧ φ17 − φ2 ∧ φ17)

−
√
2

2
(φ4 ∧ φ6 + φ7 ∧ φ9 − φ10 ∧ φ12)−

√
2

2
(φ13 ∧ φ15 − φ16 ∧ φ18),

dφ18 =
i

2
(φ2 ∧ φ18 + φ2 ∧ φ18)−

1

2
(φ2 ∧ φ18 − φ2 ∧ φ18)

−
√
2

2
(φ5 ∧ φ6 + φ8 ∧ φ9 + φ10 ∧ φ11)−

√
2

2
(φ14 ∧ φ15 + φ16 ∧ φ17).

By a direct computation, we have that the left-invariant metric F =
∑18

k=1 ibkφk ∧ φk, with
bk > 0 for every k, is SKT if and only if

F =
i

2
(b16 − b17 + b18)(φ1 ∧ φ1 + φ2 ∧ φ2) +

i

2
(b6 + b15 − b16 + b17 − b18)φ3 ∧ φ3

+
i

2
(b6 − b16 + 2b17 − b18)φ4 ∧ φ4 +

i

2
(b6 + b17 − b16)φ5 ∧ φ5 + b6φ6 ∧ φ6

+
i

2
(2b6 + b15 − 3b16 + 4b17 − 3b18)φ7 ∧ φ7+

i

2
(2b6 + b15 − 3b16 − 2b18 + 3b17)φ8 ∧ φ8

+
i

2
(2b6 + b15 − 2b16 + 2b17 − 2b18)φ9 ∧ φ9 +

i

2
(2b6 − 3b16 + 4b17 − 2b18)φ10 ∧ φ10

+
i

2
(3b17 − 2b18 + 2b6 − 2b16)φ11 ∧ φ11 +

i

2
(2b6 − 2b16 + 2b17 − b18)φ12 ∧ φ12

+
i

2
(b15 + b16 − 2b17 + b18)φ13 ∧ φ13 +

i

2
(b15 + b16 − b17)φ14 ∧ φ14

+ b15φ15 ∧ φ15 + b16φ16 ∧ φ16 + b17φ17 ∧ φ17 + b18φ18 ∧ φ18.

So we obtain a 5-parameter family of left-invariant I-Hermitian SKT metrics which are also
right T -invariant. By the results in the next section (Corollary 5.1) this family describes all
possible such metrics. Moreover, F = F0, where F0 is the fundamental form associated to −B,
if and only if b15 = b16 = b17 = b18 = b6 = 1. Since

F = (b16 − b17 + b18)F0 +
1

2
(b6 + b15 − 2b16 + 2b17 − 2b18)d(φ1 + φ1)
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+
i

2
(b6 − 2b16 + 3b17 − 2b18)d(φ1 − φ1) +

1

2
(b6 − 2b16 + 2b17 − b18])d(φ2 + φ2)

+
1

2
(b6 − b16 + b17 − b18)d(φ2 − φ2),

the Aeppli class of F coincides with the one of F0. Note that by doing similar computations as in
[20, 21] (see also [19]) it is possible to describe the minimal model for the Dolbeault cohomology
of (SO(9), I). Calculation for the Aeppli cohomology of the compact simple Lie groups of rank
two is given in [4].

4 Invariant CYT metrics

We first mention an analog of Lemma 3.1 for CYT metrics on compact semi-simple Lie groups:

Proposition 4.1. Let I be a Samelson’s complex structure on a compact semi-simple Lie
group G and g be a left-invariant CYT I-Hermitian metric. Then there is a left-invariant
CYT I-Hermitian metric on (G, I) which is also right T -invariant.

Proof. We use the same idea as in [7] combined with the symmetrization of Lemma 3.1. By
Koszul [18], the Ricci form of the Chern connection for every left-invariant I-Hermitian metric
on (G, I), is the exterior derivative of the half-sum of all positive roots, i.e.,

ρCh =
1

2
i
∑
α∈P

dα.

Since the Bismut Ricci form ρB is related to the Chern Ricci form by the relation ρB = ρCh +
d(δF ), where F denotes the fundamental form associated to the Hermitian metric, to prove the
proposition it is enough to find a right T -invariant I-Hermitian metric h whose fundamental
form F satisfies

δF = −1

2
i
∑
α∈P

α = σ,

where δ = − ⋆h d⋆h denotes the codifferential with respect to h and σ is a left-invariant 1-form.
This follows from the fact that d(δF −σ) = 0 leads to δF = σ because on a compact semi-simple
Lie group a closed left-invariant 1-form has to be trivial. Since ⋆hF = − 1

(n−1)!F
n−1, where 2n

is the real dimension of G, the previous condition is equivalent to dFn−1 = (n − 1)! ⋆h (σ) =
−Iσ ∧ Fn−1. Now if we symmetrize Fn−1 with respect to the right T -action as in Lemma 3.1
we obtain a right T -invariant (n− 1, n− 1)-form which is also positive, so it is of the type F̃n−1

for a right T -invariant form F̃ . Since σ and Iσ belong to t∗ and the Ad(T )-action on t is trivial,
then dF̃n−1 = −Iσ ∧ F̃n−1. Since F and F̃ coincide on t, the proof is completed. ■

Let g be a left-invariant I-Hermitian metric on G which is also invariant by the right T -action.
Then we can write g(·, ·) = −B(Λ(·), ·), where Λ is a positive-definite Hermitian matrix on t and
diagonal on

∑
α gα. In particular, g(Eα, E−α) = λα and g(Eα, Eβ) = 0, for every α ̸= −β.

Let F (·, ·) = g(I·, ·) be the fundamental form associated to the Hermitian structure (I, g).
We can calculate the codifferential δF using the formula in [12]:

I ◦ δF (X) =
1

2

n∑
l=1

dF (el, Iel, X),
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where n is the complex dimension of G and (ei) is a I-adapted orthonormal basis of (G, I, g), such
that Ie2l−1 = e2l, l = 1, . . . , n. We can choose as I-adapted orthonormal basis (ei) of (G, I, g)(

Xα√
−λα

,
Yα√
−λα

, Hk

)
,

where (Hk) is an orthonormal basis of t such that IH2l−1 = H2l. Because

dF (X,Y, Z) = F ([X,Y ], Z) + F ([Y,Z], X) + F ([Z,X], Y )

for every left-invariant 2-form F on G and every X,Y, Z ∈ g, we get that the sum

n∑
l=1

dF (el, Jel, X) =
∑
α∈P

1

λα
dF (Xα, Yα, X) +

r/2∑
l=1

dF (H2l−1, H2l, X)

has contributions only from

ddF (Xα, Yα, Z) = idFd(Eα, E−α, Z) = id([Eα, E−α], Z)

= ig(I([Eα, E−α]), Z) = −ig(Hα, IZ)

= iB(Λ(Hα), IZ) = iB(Hα,ΛIZ) = iα(ΛIZ)

for every Z ∈ h.
Then we get

δF ◦ I = −1

2
i
∑
α∈P

1

λα
(α ◦ Λ) ◦ I.

By the above, the Ricci form ρB is given by

ρB =
1

2
i
∑
α∈P

(
dα− 1

λα
d(α ◦ Λ)

)
.

Therefore g is CYT if and only
∑

α∈P
(
dα− 1

λα
d(α ◦Λ)

)
= 0. Using this characterization we

have:

Theorem 4.2. Let G be a compact semi-simple Lie group with a Samelson’s complex structure
determined by the set P of positive roots associated to a maximal torus T of G. Let g be a left-
invariant I-Hermitian metric on G, which is also invariant under the right action of the torus T
in the Tits fibration G → G/T , where T is a maximal torus in G. We can write the fundamental

form F of the metric g as F = F |t+
∑m

i=1

∑
α∈Pi

λ
(i)
α eα∧Ie(i)α , where e

(i)
α , Ie

(i)
α are dual to Xα, Yα

and λ
(i)
α = g(Eα, E−α). Then g is CYT iff

∑
α∈P

(
dα− 1

λα
d(α ◦Λ)

)
= 0, where Λ is the positive

operator such that g|t(·, ·) = −B(Λ(·), ·).

5 CYT and SKT invariant metrics

As a consequence of Corollary 3.4 and Theorem 4.2, we can get the explicit equations to deter-
mine all left-invariant and right T -invariant CYT (or SKT) metrics on (G, I). In particular, we
can prove that if g is both SKT and CYT, then g has to be Bismut flat.

Corollary 5.1. Let G be a compact semi-simple Lie group with Samelson’s complex structure I
determined by the set P of positive roots associated to a maximal torus T of G. Let g be
a left-invariant I-Hermitian metric on G, which is also invariant under the right action of the
torus T in the Tits fibration G → G/T . Let α1, . . . , αr be the choice of simple roots and p be the
cardinality of P . Then
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(i) g is CYT if and only if for every α ∈ P there exist p positive real numbers λα > 0, α ∈ P ,
satisfying the r equations

∑
α∈P

(
xiα −

r∑
j=1

xjα
λα

Λi
j

)
= 0, i = 1, . . . , r, (5.1)

where xjα denotes the coefficient of α with respect to the simple root αj and Λj
i are the

entries of Λ in the basis (α1, . . . , αr).

(ii) g is SKT if and only if there exist r real numbers Ñj and p positive real numbers λ̃α > 0,
α ∈ P , satisfying the p equations

λ̃α − 1−
r∑

j=1

ÑjB(Hαj , Hα) = 0, α ∈ P. (5.2)

(iii) If g is both SKT and CYT, then g is Bismut flat.

Proof. From Theorem 4.2, it follows that g is CYT if and only if there exist p positive real
number λα, α ∈ P, such that∑

α∈P

(
dα− 1

λα
d(α ◦ Λ)

)
= 0.

Therefore, since α =
∑r

i=1 x
i
ααi, with xiα positive integers and Λj

i the entries of Λ, we have that
the CYT condition is equivalent to

∑
α∈P

(
xiα −

r∑
j=1

xjα
λα

Λi
j

)
dαi = 0.

Since the forms dαi, i = 1, . . . , r, are linearly independent, we get the non-linear system (5.1)
of r equations in the p variables λα, α ∈ P , and (i) follows.

Let denote by Pi the set of positive roots of the simple factor Gi with respect to ti. To prove
the second part of the corollary we use that by Corollary 3.4 the SKT condition is equivalent to
the existence of r real numbers Ni, i = 1, . . . , r and p positive numbers λα, α ∈ P , such that

m∑
i=1

∑
α∈Pi

(
λ(i)
α − νi

)
e(i)α ∧ Ie(i)α =

r∑
i=1

Ni dαi

and Λ =
∑m

i=1 νiId|ti . Since

dαj =
m∑
i=1

∑
α∈Pi

B
(
Hαj , H

(i)
α

)
e(i)α ∧ Ie(i)α , j = 1, . . . , r,

we obtain

m∑
i=1

∑
α∈Pi

(
λ(i)
α − νi

)
e(i)α ∧ Ie(i)α =

m∑
i=1

r∑
j=1

Nj

∑
α∈Pi

B
(
Hαj , H

(i)
α

)
e(i)α ∧ Ie(i)α .

Therefore, using that the previous equality holds on every simple factor gi and rescaling λ
(i)
α

and Ni by νi we get the linear system (5.2) of p equations in the p+ r variables Ñi, i = 1, . . . , r,
and λ̃α, α ∈ P.
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Now to prove the last part of the theorem suppose that g is both CYT and SKT. Then using
that Λ =

∑m
i=1 νiId|ti and rescaling λα in (5.1) in the same way as for the SKT case we have

that the equations for the CYT condition become

∑
α∈P

xiα

(
1−

r∑
j=1

1

λ̃α

)
= 0, i = 1, . . . , r.

Let

P = {α1, . . . , αr, αr+1, . . . , αp},

where α1, . . . , αr are the simple roots. Imposing the SKT and CYT condition we get the following
non-linear system of p+ r equations in the variables λ̃j , j = 1, . . . , p, Ñi, i = 1, . . . , r,

λ̃j − 1−
r∑

i=1

ÑiB(Hαi , Hαj ) = 0, j = 1, . . . , p,

p∑
j=1

xiαj

(
1− 1

λ̃j

)
= 0, i = 1, . . . , r.

(5.3)

Note that the solution Ñi = 0, i = 1, . . . , r, λ̃j = 1, j = 1, . . . , p, corresponds to a Bismut flat
metric. Since λ̃j ̸= 0, for every j = 1, . . . , p, if we multiply

p∑
j=1

xiαj

(
1− 1

λ̃j

)
= 0, i = 1, . . . , r,

by the product of all the λ̃j ,we get

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃p

(
λ̃j − 1

)
= 0, i = 1, . . . , r,

where
ˆ̃
λj denotes that the element λ̃j is removed in the product. We know that

λ̃j − 1 =

r∑
k=1

ÑkB(Hαk
, Hαj )

for every j = 1, . . . , p. Therefore

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃p

(
r∑

k=1

ÑkB(Hαk
, Hαj )

)
= 0, i = 1, . . . , r,

which can be viewed as a homogeneous system of r equations in the r variables Ñi, i = 1, . . . , r.
The r × r associated matrix M = M

(
λ̃1, . . . , λ̃p

)
has (i, k)-th entry given by

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃pB(Hαk

, Hαj ).

We can rewrite B(Hαk
, Hαj ), k = 1, . . . , r, j = 1, . . . , p, in terms of B(Hαk

, Hαj ) with k, j ∈
{1, . . . , r}, using that B(H,Hα) = α(H) for every H ∈ t. Indeed, if α =

∑r
l=1 x

l
ααl we have,

B(Hαi , Hα) = α(Hαi) =

r∑
l=1

xlααl(Hαi) =

r∑
l=1

xlαB(Hαi , Hαl
),
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for every i = 1, . . . , r. As consequence the (i, k)-th entry of the matrix M = M
(
λ̃1, . . . , λ̃p

)
can

be written as

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃pB(Hαk

, Hαj ) =

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃pB(Hαj , Hαk

)

=

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃p

r∑
l=1

xlαj
B(Hαl

, Hαk
)

= B

(
r∑

l=1

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃px

l
αj
Hαl

, Hαk

)
,

where i, k = 1, . . . , r. Since

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃px

l
αj

= λ̃1 · · · λ̃p

p∑
j=1

xiαj

1

λ̃j

xlαj
,

it will be sufficient to show, for every λ̃j , the invertibility of the matrix L, whose (i, l)-entry is
given

p∑
j=1

xiαj
λ̃1 · · · ˆ̃λj · · · λ̃px

l
αj

= λ̃1 · · · λ̃p

p∑
j=1

xiαj

1

λ̃j

xlαj
.

Since the r × p matrix (xiα) has rank r, the r vectors

v1 =
(
x1α1

, . . . , x1αp

)
, . . . , vr =

(
xrα1

, . . . , xrαp

)
,

are linearly independent. Using that for every j = 1, . . . , p, λ̃j > 0, we get that
∑p

j=1
1
λ̃j
xiαj

xlαj

can be viewed as a positive definite scalar product on Rp with weights 1
λ̃j

of the two vectors vi

and vl. Therefore, the matrix L is invertible and Ñi = 0, for every i = 1, . . . , r. By (5.3), it
follows that λ̃j = 1, for every j = 1, . . . , p. ■
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