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Abstract. The fourth-order lattice Gel’fand–Dikii equations in quadrilateral form are in-
vestigated. Utilizing the direct linearization approach, we present some equations of the
extended lattice Gel’fand–Dikii type. These equations are related to a quartic discrete
dispersion relation and can be viewed as higher-order members of the extended lattice
Boussinesq type equations. The resulting lattice equations given here are in five-component
form, and some of them are multi-dimensionally consistent by introducing extra equations.
Lax integrability is discussed both by direct linearization scheme and also through multi-
dimensional consistent property. Some reductions of the five-component lattice equations
to the four-component forms are considered.
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1 Introduction

The Gel’fand–Dikii (GD) hierarchy [15, 16] is a generalization of the Korteweg–de Vries (KdV)
hierarchy. The GD spectral problem is known as

Lψ = λψ, L = ∂nx + u2∂
n−2
x + · · ·+ un−1∂x + un,

where λ is a spectral parameter, ui = ui(t, x) and ∂x = ∂
∂x . When n = 2 and n = 3, the above

spectral problem gives rise to the KdV hierarchy and Boussinesq hierarchy, respectively. The
semi-discrete (differential-difference) GD hierarchy is related to the spectral problem

Lψ(n) = λψ(n), L = Em +

m+k∑
j=1

uj(n)E
m−j , m, k ≥ 1, m, k ∈ Z,

where uj(n) = uj(n, t) are functions defined on Z × R, E is the shift operator defined as
Ejf(n) = f(n + j) for j ∈ Z. The semi-discrete GD hierarchy has been systematically studied
by Kupershmidt in [23]. Some explicit lower-order members can be found in [4]. Both continuous
and semi-discrete GD hierarchies can be studied as reductions of the Kadomtsev–Petviashvili
(KP) hierarchy related to a pseudo-differential operator or differential-difference KP hierarchy
related to a pseudo-difference operator in the frame of Sato’s KP theory.

Compared with continuous and semi-discrete cases, there is no pseudo-difference operator
available for the fully discrete KP equations. Therefore, the discrete Boussinesq (DBSQ) type
equations and higher-order GD type lattice equations are expected to play more roles in under-
standing the discrete KdV/KP type integrable systems. For the DBSQ equations, one can refer
to [22, 39] and the references therein. As discrete models, the lattice GD hierarchy was first
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introduced by Nijhoff et al. [29] via direct linearization (DL) approach and transforms to the
GD differential hierarchy under continuum limits. This hierarchy has received a lot of attention
in understanding the discrete KdV/KP type equations. In [24], a Lagrangian for the generic
member of the lattice GD hierarchy was presented. This is a Lagrangian 2-form when em-
bedded in a higher-dimensional lattice, obeying a closure relation. Subsequently, an integrable
noncommutative modified lattice GD hierarchy was introduced [8]. The Lax integrability and
multidimensional consistency (MDC) were shown. Very recently, a variational perspective on
continuum limits for the lattice GD hierarchy was also discussed [37].

The simplest member of lattice GD hierarchy is the lattice (potential) KdV equation

(p− q + un,m+1 − un+1,m)(p+ q + un,m − un+1,m+1) = p2 − q2, (1.1)

where dependent variable un,m is a function defined on the two-dimensional lattice with discrete
coordinates (n,m) ∈ Z2, p and q denote lattice parameters associated with the directions in the
lattice. The equation (1.1) first appeared as a nonlinear superposition formula of the Bäcklund
transformation of the KdV equation [38]. This equation, together with the lattice modified KdV
equation as well as the lattice Schwarzian KdV equation, composes the lattice KdV type equa-
tions. Analogously, the latter two equations were, respectively, obtained as nonlinear superposi-
tion formulas of the Bäcklund transformations for the modified KdV equation and the Schwarzian
KdV equation. All these three equations can arise from the so-called Nijhoff–Quispel–Capel
equation as distinct parameter choices [30]. Besides, all of them possess a multi-dimensionally
consistent (MDC) property, which allows a lattice equation (or a system) to be consistently
embedded into a higher dimension [1, 5, 27, 32]. With this property and three additional re-
quirements on lattice equations: affine linear, D4 symmetry, and tetrahedron property, Adler,
Bobenko, and Suris (ABS) classified lattice models defined on an elementary quadrilateral [1].
Some of the lattice equations in the ABS list are the lattice KdV type equations mentioned above.

As a higher member in the lattice GD hierarchy, the potential DBSQ equation reads [29]

p3 − q3

p− q − vn+1,m+1 + vn,m+2
− p3 − q3

p− q − vn+2,m + vn+1,m+1

= (p− q − vn+1,m + vn,m+1)(2p+ q − vn+2,m+1 + vn,m)

− (p− q − vn+2,m+1 + vn+1,m+2)(2p+ q − vn+2,m+2 + vn,m+1), (1.2)

which is defined on a 3× 3 stencil on the discrete two-dimensional plane. Similar to the lattice
KdV case, here dependent variable v is a function of discrete independent variables n and m,
and p and q are lattice parameters. Together with the potential DBSQ equation (1.2), also lat-
tice versions of the modified Boussinesq and Schwarzian Boussinesq equations have been found
(see [26, 29, 39]). These equations constitute the DBSQ type equations. By introducing two ad-
ditional variables, equation (1.2) can be expressed as a three-component form, which is defined
at the vertices of an elementary square and possesses the MDC property [36]. Hietarinta [17]
generalised this result and gave a classification of the three-component equations satisfying the
MDC property, with some equations defined on the edges of the consistency cube and others
on the faces of the cube. It was revealed that the equations in the classification followed one
and the same underlying structure, and some of them can be viewed as extended DBSQ type
equations [44]. We refer the reader to the recent survey [22] and the references therein for the
DBSQ type equations and many interesting results.

The equations of each order in the extended lattice GD hierarchy are identified by the poly-
nomial of symmetric form

GN (ω, k) :=

N∑
j=1

αj

(
ωj − kj

)
, αN ≡ 1, (1.3)
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with coefficients {αj} and parameter k. It is worthy to note that parameter α1 yields trivial
extension for the whole extended lattice GD type hierarchies, while the parameters {αj}Nj=2 lead
to nontrivial extension (cf. [44]). Hence, N = 2 leads to the usual lattice KdV case and N = 3
yields the extended DBSQ case [44]. By “extended” we mean the parameters {αj} are involved
in the lattice equations. In addition, more details can be found in Section 2 on how (1.3) is used
to define plane wave factors of the KdV case and DBSQ case.

This paper is devoted to lattice GD type equations arising from quartic polynomial G4(x, k),
by using the DL approach. This method, based on the use of linear singular integral equa-
tions, was introduced by Fokas and Ablowitz in order to solve the KdV equation and treat the
initial value problem of the Painlevé II equation [10]. Soon after the discrete DL scheme was
developed [30, 33]. And then, this method has been widely used to investigate continuous, semi-
discrete, and discrete integrable systems [11, 12, 13, 14, 28, 30, 33, 34, 41, 44]. In this paper,
we are interested in the construction of the fourth-order lattice GD type equations as well as
their MDC property and Lax integrability. For the sake of brevity, we call the resulting lattice
equations as lattice GD-4 type equations. We will see that the lattice GD-4 type equations
exhibit many nontrivial features compared with the DBSQ type equations.

The paper is arranged as follows: In Section 2, we give a brief review of the DL scheme for the
extended lattice GD type equations. In Section 3, we construct the lattice GD-4 type equations
as closed-forms, which are transformed into deformed forms in Section 4. Then, Section 5 is
devoted to the MDC property and Lax representation, and Section 6 is for conclusions. There
are three appendices, where we list the DBSQ equations, present details of some calculations and
triply shifted quantities of the variables from MDC of some lattice GD-4 equations, respectively.

2 Framework of discrete direct linearisation approach

In this section, we briefly recall the DL framework for the extended lattice GD type equations
outlined in the paper [44]. Let us introduce the following conventional short hands

f = f(n,m), f̃ = f(n+ 1,m), f̂ = f(n,m+ 1),
̂̃
f = f(n+ 1,m+ 1).

Besides, we employ ωj(k), j = 1, 2, . . . , N − 1, and ωN (k) = k to represent the roots of equation
GN (ω, k) = 0 given in (1.3).

The starting point in the DL approach is the following ∞ × ∞ matrix C defined by the
integral

C =

N∑
j=1

∮
Γj

dλj(k) ρkck
tc−ωj(k)σ−ωj(k), N ≥ 2, (2.1)

where {dλj(k)} are certain measures for the integral on integration contours Γj in the space of

the spectral variable k, ck = (kj)j∈Z stands for the column vector1
(
. . . , k−2, k−1, 1, k, k2, . . .

)T
,

and tck′ denotes the transpose of ck′ . The factors ρk, σk′ are discrete exponential functions of k
and k′, respectively, given by

ρk = (p+ k)n(q + k)mρ0k, σk′ =
(
p− k′

)−n
(q − k′)−mσ0k′ ,

where ρ0k, σ
0
k′ ∈ C. We assume that basic operations (such as differentiations with respect to

parameters or applying shifts in the variables n and m) commute with the integrations. Note

1We use “t” to denote the transpose of a matrix with infinite dimensions, e.g., tc, tΛ, and use “T” for the
finite-dimensional case, e.g., equation (5.2).
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that ρk and σ−ωj(k) can be considered to be defined using the roots of GN (−p, k) = 0. When
N = 2, we have

ρ = ρkσ−ωj(k) =

(
p+ k

p− k

)n(q + k

q − k

)m

,

which leads to the lattice KdV type equations, cf. [33]. When N = 3, we have

ρ = ρkσ−ωj(k) =

(
p+ k

p+ ωj(k)

)n( q + k

q + ωj(k)

)m

,

for j = 1, 2, which leads to the extended DBSQ type equations, see more details in [44] for
how these equations are derived in DL approach. Note also that by “extended” we mean in the
lattice equations the parameters {αj} are involved.

By introducing ∞×∞ matrices Λ and tΛ defined by

Λ ck = k ck,
tck′

tΛ = k′ tck′ ,

one easily identify that matrix C obeys the linear relations [44]

C̃
(
p− tΛ

)
= (p+Λ)C, Ĉ

(
q − tΛ

)
= (q +Λ)C, (2.2a) N∏

j=1

(
ωj(−p)−Λ

)C = C

N∏
j=1

(
ωj(−p) + tΛ

)
, (2.2b)

N−1∏
j=1

(
ωj(−p)−Λ

) C̃ = C

N−1∏
j=1

(
ωj(−p) + tΛ

)
, (2.2c)

and similar relations with p replaced by q and C̃ by Ĉ. To proceed, we introduce some auxiliary
elements:

� a Cauchy kernelΩ defined by the relationΩΛ+ tΛΩ = O withO being a rank 1 projection
matrix, obeying O2 = O,

� an ∞×∞ matrix U obeying the relation U = C −UΩC,

� an ∞× 1 vector uk defined by uk = ρk(ck −UΩck).

With these elements, from (2.2) one has

Ũ
(
p− tΛ

)
= (p+Λ)U − ŨOU , (2.3a)

U

N−1∏
j=1

(
ωj(−p) + tΛ

) =

N−1∏
j=1

(
ωj(−p)−Λ

) Ũ

+U

N−2∑
j=0

[
j∏

l=1

(
ωl(−p) + tΛ

)]
O

 N−1∏
l=j+2

(
ωl(−p)−Λ

) Ũ , (2.3b)

U
N∑
j=1

αj

(
− tΛ

)j
=

N∑
j=1

αjΛ
jU −U

N∑
j=1

αj

j−1∑
l=0

(
− tΛ

)l
OΛj−1−lU , (2.3c)

as well as

ũk = (p+Λ)uk − Ũ O uk, (2.4a)
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−

 N∏
j=1

(
ωj(−p)− k

)uk =

N−1∏
j=1

(
ωj(−p)−Λ

) ũk

+U
N−2∑
j=0

[
j∏

l=1

(
ωl(−p) + tΛ

)]
O

 N−1∏
l=j+2

(
ωl(−p)−Λ

) ũk, (2.4b)

N∑
j=1

αjk
juk =

N∑
j=1

αjΛ
j uk −U

N∑
j=1

αj

j−1∑
l=0

(
− tΛ

)l
OΛj−1−l uk. (2.4c)

Similar relations to (2.3a), (2.3b), and (2.4a) and (2.4b) can be obtained with (̂, q) to re-
place (˜, p).

Relations (2.3a) and (2.3b), together with their (̂, q) analogues, supply important informa-
tion for the construction of lattice GD type equations. Note that although relation (2.3c) does
not exert any role in the construction of discrete equations (e.g., [9, 43, 44]) and semi-discrete
equations (e.g., [25]), it is indispensable in the construction of continuous equations (e.g., [40]).
Relations (2.4) are linear with respect to uk and usually used, together with their (̂, q) ana-
logues, to construct Lax pairs for the derived lattice equations (e.g., [44]).

3 Lattice GD-4 type equations as quadrilateral closed forms

In this section, we will restrict our attention to the relations (2.3) and (2.4) in the case of N = 4,
and construct the lattice GD-4 type equations as quadrilateral closed forms. In this case, ωj(k),
j = 1, 2, 3, 4, in (2.3) and (2.4) are the roots of G4(ω, k) = 0, where G4(ω, k) is the polynomial
defined as in (1.3). In the following, we show step by step how quadrilateral closed forms of
scalar functions arise from (2.3) and (2.4).

3.1 Basic objects and their relations

When N = 4 the set of relations (2.3) and (2.4) take the form

Ũ
(
p− tΛ

)
= (p+Λ)U − ŨOU , (3.1a)

U
(
A3(−p) +A2(−p) tΛ+A1(−p) tΛ2 + tΛ3

)
=

(
A3(−p)−A2(−p)Λ+A1(−p)Λ2 −Λ3

)
Ũ +U

[
A2(−p)O

−A1(−p)
(
OΛ− tΛO

)
+
(
OΛ2 − tΛOΛ+ tΛ2O

)]
Ũ , (3.1b)

U
4∑

j=1

αj

(
− tΛ)j =

4∑
j=1

αjΛ
jU −U

4∑
j=1

αj

j−1∑
l=0

(
− tΛ)lOΛj−1−lU , (3.1c)

and

ũk = (p+Λ)uk − ŨOuk, (3.2a)

−

 4∏
j=1

(
ωj(−p)− k

)uk =
(
A3(−p)−A2(−p)Λ+A1(−p)Λ2 −Λ3

)
ũk

+U
[
A2(−p)O −A1(−p)

(
OΛ− tΛO

)
+
(
OΛ2 − tΛOΛ+ tΛ2O

)]
ũk, (3.2b)

4∑
j=1

αjk
juk =

4∑
j=1

αjΛ
juk −U

4∑
j=1

αj

j−1∑
l=0

(
− tΛ

)l
OΛj−1−luk, (3.2c)
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and these relations hold when (˜, p) is replaced by (̂, q). Here {Aj(k)} are defined as

A1(k) = ω1(k) + ω2(k) + ω3(k) = −(k + α3),

A2(k) = ω1(k)ω2(k) + ω1(k)ω3(k) + ω2(k)ω3(k) = k2 + α3k + α2,

A3(k) = ω1(k)ω2(k)ω3(k) = −
(
k3 + α3k

2 + α2k + α1

)
,

and {ωj(k)} are the roots of G4(ω, k) = 0, i.e.,

G4(ω, k) =

4∏
j=1

(ω − ωj(k)), ω4(k) = k.

Next, in order to construct the lattice equations, let us introduce the following scalar objects:

va := 1− te (a+Λ)−1Ue, wb := 1 + teU
(
b− tΛ

)−1
e, (3.3a)

sa := a− te (a+Λ)−1U tΛe, tb := −b+ teΛU
(
b− tΛ

)−1
e, (3.3b)

ra := a2 − te (a+Λ)−1U tΛ2 e, zb := b2 + teΛ2U
(
b− tΛ

)−1
e, (3.3c)

fa := a3 − te(a+Λ)−1U tΛ3e, gb := −b3 + teΛ3U
(
b− tΛ

)−1
e, (3.3d)

ui,j :=
teΛiU tΛje, sa,b :=

te(a+Λ)−1U
(
−b+ tΛ

)−1
e, i, j ∈ Z. (3.3e)

Here a and b are parameters, e is a fixed column vector (. . . , 0, 0, 1, 0, 0, . . . )T where the only
nonzero entry 1 is in the central, the adjoint vector te is the transpose of e. It then turns out that

teck = 1, tck′e = 1, O = e te.

Except fa and gb, all others take the same forms as in [44] for the DBSQ case. Based on the
shift relations (3.1a) and (3.1b), for the objects (3.3) we have the following relations: multiply-
ing (3.1a) and (3.1b) from the left by te and from the right by e, we have

pũi,j − ũi,j+1 = pui,j + ui+1,j − ũi,0u0,j , (3.4a)

A3(−p)ui,j +A2(−p)ui,j+1 +A1(−p)ui,j+2 + ui,j+3

= A3(−p)ũi,j −A2(−p)ũi+1,j +A1(−p)ũi+2,j − ũi+3,j

+A2(−p)ui,0ũ0,j +A1(−p)
(
ui,1ũ0,j − ui,0ũ1,j

)
+ ui,0ũ2,j − ui,1ũ1,j + ui,2ũ0,j ,(3.4b)

where pa, pb are defined as

pa = G4(−p,−a)/(p− a) = A3(−p) + aA2(−p) + a2A1(−p) + a3, (3.5a)

pb = G4(−p,−b)/(p− b) = A3(−p) + bA2(−p) + b2A1(−p) + b3; (3.5b)

we can also derive (as examples of derivation, we provide details in Appendix B for equations
(3.6b), (3.9a) and (3.10a))

1 + (p− a)sa,b − (p− b)s̃a,b = ṽawb, (3.6a)[
A2(−p) + (a+ b)A1(−p) + a2 + ab+ b2

]
+ pbsa,b − pas̃a,b

= vaz̃b − sat̃b + raw̃b +A2(−p)vaw̃b −A1(−p)
(
vat̃b − saw̃b

)
, (3.6b)

and

s̃a = (p+ u0)ṽa − (p− a)va, (3.7a)

tb = (p− b)w̃b − (p− ũ0)wb, (3.7b)
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and

r̃a = ps̃a − (p− a)sa + ṽau0,1, (3.8a)

zb = (p− b)t̃b − ptb + ũ1,0wb, (3.8b)

and

f̃a = pr̃a − (p− a)ra + ṽau0,2, (3.9a)

gb = (p− b)z̃b − pzb + ũ2,0wb, (3.9b)

and

fa = paṽa −
[
A3(−p)−A2(−p)ũ0 +A1(−p)ũ1,0 − ũ2,0

]
va

−
[
A2(−p)−A1(−p)ũ0 + ũ1,0

]
sa −

(
A1(−p)− ũ0

)
ra, (3.10a)

g̃b = −pbwb + [A3(−p) +A2(−p)u0 +A1(−p)u0,1 + u0,2]w̃b

− [A2(−p) +A1(−p)u0 + u0,1]t̃b + (A1(−p) + u0)z̃b, (3.10b)

where we have used a simplified notation u0 = u0,0. All these relations, (3.6)–(3.10), also hold
for their hat-q counterparts obtained by replacing (˜, p) with (̂, q). It should be emphasized
that qa and qb appear in the rest part of the paper have the same form with pa and pb just with
replacement p→ q.

A further set of relations is[
H(p, q) + ̂̃u1,0 − (p+ q − α3)̂̃u0 + (

(p+ q − α3 − ̂̃u0)sa + ra
)
/va

](
p− q + û0 − ũ0

)
=

(
paṽa − qav̂a

)
/va, (3.11a)

p− q + û0 − ũ0 =
[
(p− a)v̂a − (q − a)ṽa

]
/̂̃va, (3.11b)(

r̃a − ps̃a
)
/ṽa −

(
r̂a − qŝa

)
/v̂a = −(p− a)sa/ṽa + (q − a)sa/v̂a, (3.11c)

which are derived from equations (3.4a), (3.7a), (3.8a), (3.10a) and their hat-q counterparts,
where

H(p, q) = (A3(−p)−A3(−q))/(p− q).

Similarly, from (3.4a), (3.7b), (3.8b), (3.10b) and their hat-q versions one has[
H(p, q) + u0,1 + (p+ q − α3)u0 −

(
(p+ q − α3 + u0)̂t̃b − ̂̃zb)/ ̂̃wb

]
×
(
p− q + û0 − ũ0

)
=

(
pbŵb − qbw̃b

)
/ ̂̃wb, (3.12a)

p− q + û0 − ũ0 = [(p− b)w̃b − (q − b)ŵb]/wb, (3.12b)(
ẑb + pt̂b

)
/ŵb −

(
z̃b + qt̃b

)
/w̃b = (p− b)̂t̃b/ŵb − (q − b)̂t̃b/w̃b. (3.12c)

3.2 Lattice equations as quadrilateral closed forms

We have achieved many relations with respect to the scalar elements defined in equation (3.3).
With these relations in hand, we are able to derive quadrilateral closed forms of some elements,
which can be considered as lattice equations.

We start by presenting a set of lattice equations, which are made up of variables va, sa, ra, u0
and u1,0. To do that, we first set i = j = 0 in equation (3.4a) and its hat-q counterpart, which
yield

pũ0 − ũ0,1 = pu0 + u1,0 − ũ0u0, qû0 − û0,1 = qu0 + u1,0 − û0u0. (3.13)
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It then follows that

û1,0 − ũ1,0 =
(
p− q + û0 − ũ0

)̂̃u0 − pû0 + qũ0, (3.14a)

û0,1 − ũ0,1 =
(
p− q + û0 − ũ0

)
u0 − pũ0 + qû0. (3.14b)

Obviously, equation (3.7a) and its hat-q counterpart, (3.11a), (3.11c) and (3.14a) give rise to
a closed-form with respect to va, sa, ra, u0 and u1,0, i.e.,

s̃a = (p+ u0)ṽa − (p− a)va, ŝa = (q + u0)v̂a − (q − a)va, (3.15a)(
r̃a − ps̃a

)
/ṽa −

(
r̂a − qŝa

)
/v̂a = −(p− a)sa/ṽa + (q − a)sa/v̂a, (3.15b)

û1,0 − ũ1,0 =
(
p− q + û0 − ũ0

)̂̃u0 − pû0 + qũ0, (3.15c)[
H(p, q) + ̂̃u1,0 − (p+ q − α3)̂̃u0 + ((

p+ q − α3 − ̂̃u0)sa + ra
)
/va

]
×
(
p− q + û0 − ũ0

)
=

(
paṽa − qav̂a

)
/va. (3.15d)

This is a set of equations consisting of five equations of five scalar functions. We will revisit it
in Section 4. A similar closed-form is composed by (3.7b), its hat-q counterpart, (3.12), (3.12c)
and (3.14b), i.e.,

tb = (p− b)w̃b − (p− ũ0)wb, tb = (q − b)ŵb − (q − û0)wb, (3.16a)

(ẑb + pt̂b)/ŵb − (z̃b + qt̃b)/w̃b = (p− b)̂t̃b/ŵb − (q − b)̂t̃b/w̃b, (3.16b)

û0,1 − ũ0,1 = (p− q + û0 − ũ0)u0 − pũ0 + qû0, (3.16c)[
H(p, q) + u0,1 + (p+ q − α3)u0 −

(
(p+ q − α3 + u0)̂t̃b − ̂̃zb)/ ̂̃wb

]
× (p− q + û0 − ũ0) = (pbŵb − qbw̃b)/ ̂̃wb, (3.16d)

which are equations of tb, wb, zb, u0,1 and u0.
There are more closed forms. Taking i = j = 0 in (3.4b) and its hat-q counterpart yields

A3(−p)u0 +A2(−p)u0,1 +A1(−p)u0,2 + u0,3

= A3(−p)ũ0 −A2(−p)ũ1,0 +A1(−p)ũ2,0 − ũ3,0

+A2(−p)u0ũ0 +A1(−p)
(
u0,1ũ0 − u0ũ1,0

)
+ u0ũ2,0 − u0,1ũ1,0 + u0,2ũ0, (3.17a)

A3(−q)u0 +A2(−q)u0,1 +A1(−q)u0,2 + u0,3

= A3(−q)û0 −A2(−q)û1,0 +A1(−q)û2,0 − û3,0

+A2(−q)u0û0 +A1(−q)
(
u0,1û0 − u0û1,0

)
+ u0û2,0 − u0,1û1,0 + u0,2û0. (3.17b)

We further set (i, j) = (1, 0) and (0, 1) in (3.4a) and obtain

pũ1,0 − ũ1,1 = pu1,0 + u2,0 − ũ1,0u0, qû1,0 − û1,1 = qu1,0 + u2,0 − û1,0u0, (3.18a)

pũ0,1 − ũ0,2 = pu0,1 + u1,1 − ũ0u0,1, qû0,1 − û0,2 = qu0,1 + u1,1 − û0u0,1. (3.18b)

Eliminating u1,1 in (3.18a) and (3.18b), respectively, we reach to

û2,0 − ũ2,0 = −pû1,0 + qũ1,0 +
(
p− q + û0 − ũ0

)̂̃u1,0, (3.19a)

û0,2 − ũ0,2 = −pũ0,1 + qû0,1 +
(
p− q + û0 − ũ0

)
u0,1. (3.19b)

Next, subtracting (3.17b) from (3.17a) yields an equation without u0,3 but containing u3,0. To
delete u3,0, we make use of equations (3.19a) and (3.4a) with (i, j) = (2, 0) and (1, 0). Then,
after some algebra we arrive at

G4(−p,−q)
p− q + û0 − ũ0

=
G4(−p,−q)

p− q
+H(p, q)

(
u0 − ̂̃u0)

− (p+ q − α3)
(
u0̂̃u0 − ̂̃u1,0 + u0,1

)
+ u0̂̃u1,0 − ̂̃u0u0,1 − ̂̃u2,0 + u0,2. (3.20)
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Equation (3.13) and (3.19) together with (3.20) compose a new closed-form with respect to u0,
u0,1, u1,0, u0,2 and u2,0, i.e.,

pũ0 − ũ0,1 = pu0 + u1,0 − ũ0u0, qû0 − û0,1 = qu0 + u1,0 − û0u0, (3.21a)

û2,0 − ũ2,0 = −pû1,0 + qũ1,0 +
(
p− q + û0 − ũ0

)̂̃u1,0, (3.21b)

û0,2 − ũ0,2 = −pũ0,1 + qû0,1 +
(
p− q + û0 − ũ0

)
u0,1, (3.21c)

G4(−p,−q)
p− q + û0 − ũ0

=
G4(−p,−q)

p− q
+H(p, q)

(
u0 − ̂̃u0)

− (p+ q − α3)
(
u0̂̃u0 − ̂̃u1,0 + u0,1

)
+ u0̂̃u1,0 − ̂̃u0u0,1 − ̂̃u2,0 + u0,2. (3.21d)

Finally, we look for a closed-form containing the element sa,b. By transformation

sa,b = Sa,b − 1/(b− a), a ̸= b,

the relation (3.6) and its hat-q counterpart are rewritten as

(p− a)Sa,b − (p− b)S̃a,b = ṽawb, (q − a)Sa,b − (q − b)Ŝa,b = v̂awb, (3.22a)

pbSa,b − paS̃a,b = A2(−p)vaw̃b −A1(−p)
(
vat̃b − saw̃b

)
+ vaz̃b − sat̃b + raw̃b, (3.22b)

qbSa,b − qaŜa,b = A2(−q)vaŵb −A1(−q)
(
vat̂b − saŵb

)
+ vaẑb − sat̂b + raŵb. (3.22c)

Deleting ̂̃zb in ̂(3.22b) (the hat-shifted (3.22b)) by utilizing (3.12) and deleting ŝa by using the
hat-q version of (3.7a) and also making use of (3.12b) we get

(q − a)
(
va
̂̃tb − sa ̂̃wb

)
=

−v̂awb(pbŵb − qbw̃b)

(p− b)w̃b − (q − b)ŵb

+ (q − a)(p+ q − α3)va ̂̃wb + pbŜa,b − pa
̂̃
Sa,b. (3.23)

Making use of (3.22a) again, equation (3.23) goes to the following desired form

va
̂̃tb − sa ̂̃wb = −wb

pb
p−a ŵbṽa − qb

q−a w̃bv̂a

(p− b)w̃b − (q − b)ŵb
+ (p+ q − α3)va ̂̃wb +

G4(−a,−b)
(p− a)(q − a)

̂̃
Sa,b. (3.24)

This procedure is not apparent. Let add some details. First, we rewrite (3.23) as

va
̂̃tb − sa ̂̃wb =

qbv̂aw̃b
q−a − pbṽaŵb

p−a

(p− b)w̃b − (q − b)ŵb
wb +

pbṽaŵb
p−a − pbv̂aŵb

q−a

(p− b)w̃b − (q − b)ŵb
wb

+ (p+ q − α3)va ̂̃wb −
pa
q − a

̂̃
Sa,b +

pb
q − a

Ŝa,b. (3.25)

Then, noticing that

pbṽaŵb
p−a − pbv̂aŵb

q−a

(p− b)w̃b − (q − b)ŵb
wb =

pbŵb
1

(p−a)(q−a)

[
− (p− a)v̂a + (q − a)ṽa

]
(p− b) w̃b

wb
− (q − b) ŵb

wb

,

and from (3.11b) and (3.12b) we can express va terms using wb and its shifts, and then we get

pbṽaŵb
p−a − pbv̂aŵb

q−a

(p− b)w̃b − (q − b)ŵb
wb = − pb

(p− a)(q − a)
ŵb

̂̃va.
The right-hand side can be expressed as the hat shift of the first part of (3.22a), i.e.,

(p− a)Ŝa,b − (p− b)
̂̃
Sa,b = ̂̃vaŵb.
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Thus, we have

pbṽaŵb
p−a − pbv̂aŵb

q−a

(p− b)w̃b − (q − b)ŵb
wb = − pb

q − a
Ŝa,b +

pb(p− b)

(p− a)(q − a)
̂̃
Sa,b. (3.26)

Then using the relations (3.25), (3.26) and making some algebras, we get

va
̂̃tb − sa ̂̃wb =

qbv̂aw̃b
q−a − pbṽaŵb

p−a

(p− b)w̃b − (q − b)ŵb
wb + (p+ q − α3)va ̂̃wb

+
̂̃
Sa,b

(
−pa
q − a

+
pb(p− b)

(q − a)(p− a)

)
. (3.27)

Since

pa =
G4(−p,−a)

p− a
, pb =

G4(−p,−b)
p− b

,

and

−pa
q − a

+
pb(p− b)

(q − a)(p− a)
=

1

(p− a)(q − a)

(
G4(−a,−b)

)
,

(3.27) gives rise to (3.24).
In view of the equations (3.7a) and (3.7b) and their hat-q versions, we delete variable u0 and

obtain

s̃a/ṽa − ŝa/v̂a = p− q − va
(
(p− a)/ṽa − (q − a)/v̂a

)
, (3.28a)

t̃b/w̃b − t̂b/ŵb = p− q − ̂̃wb

(
(p− b)/ŵb − (q − b)/w̃b

)
. (3.28b)

The system composed by (3.22a), (3.24) and (3.28) can be viewed as a closed-form for elements
sa, va, tb, wb and Sa,b, i.e.,

(p− a)Sa,b − (p− b)S̃a,b = ṽawb, (q − a)Sa,b − (q − b)Ŝa,b = v̂awb, (3.29a)

s̃a/ṽa − ŝa/v̂a = p− q − va
(
(p− a)/ṽa − (q − a)/v̂a

)
, (3.29b)

t̃b/w̃b − t̂b/ŵb = p− q − ̂̃wb

(
(p− b)/ŵb − (q − b)/w̃b

)
, (3.29c)

va
̂̃tb − sa ̂̃wb = −wb

pb
p−a ŵbṽa − qb

q−a w̃bv̂a

(p− b)w̃b − (q − b)ŵb

+ (p+ q − α3)va ̂̃wb +
G4(−a,−b)

(p− a)(q − a)
̂̃
Sa,b. (3.29d)

We note that the equation (3.29d) can alternatively be replaced by the following equation

va
̂̃tb − sa ̂̃wb = −wb

pa
p−b ŵbṽa − qa

q−b w̃bv̂a

(p− b)w̃b − (q − b)ŵb
+ (p+ q − α3)va ̂̃wb +

G4(−a,−b)
(p− b)(q − b)

Sa,b, (3.30)

which can be derived in a similar way to (3.24). Therefore, we may have another closed form
composed by (3.29a), (3.29b), (3.29c) and (3.30).

4 Lattice GD-4 type equations

We have got quadrilateral closed forms (3.15), (3.16), (3.21) and (3.29). All the elements, va, sa,
ra, u0, etc., are well defined through (3.3), which means these closed forms (if they are considered
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as equations) allow multi-soliton solutions.2 In an ideal multicomponent quadrilateral equation,
all dependent variables should evolve under certain boundary conditions. In this section, first,
we will revisit these obtained closed forms. We will try introducing extra equations so that these
closed forms (3.15), (3.16) and (3.21) can well evolve for some given boundary conditions, and
therefore they can be considered in a more general sense as lattice equations of the GD-4 type.
After that, we will provide deformations of these equations. Evolutions of these deformed lattice
equations will be examined in Section 4.4. We will see that these lattice equations (see (4.8),
(4.10), (4.12)) are the counterparts of the Hietarinta’s (A-2), (B-2) and (C-3) equations of the
DBSQ type [17, 44].

4.1 Closed forms: revisited

The purpose of this part is to look for extra equations to compensate for the previously obtained
closed forms so that the new systems can evolve under various boundary conditions.

In the closed form (3.15), ̂̃ra and u0,1 are missed. In the next we look for an equation that

involves with ̂̃ra and u0,1. For this sake, take ̂-shift of (3.8a) and using (3.13) to delete û0,1, we
get

̂̃ra = p̂̃sa − (p− a)ŝa + ̂̃va(qû0 − qu0 − u1,0 + û0u0
)
.

Replacing the shift ˜ by the shift ̂ whilst replacing the parameter p by q, we have another
equation on ̂̃ra:̂̃ra = q̂̃sa − (q − a)s̃a + ̂̃va(pũ0 − pu0 − u1,0 + ũ0u0

)
.

Adding them together yields

2̂̃ra = (p+ q)̂̃sa − (p− a)ŝa − (q − a)s̃a

+ ̂̃va(pũ0 + qû0 − (p+ q − ũ0 − û0)u0 − 2u1,0
)
.

This equation together with the closed form (3.15) can make up a new set of lattice equations, i.e.,

s̃a = (p+ u0)ṽa − (p− a)va, ŝa = (q + u0)v̂a − (q − a)va, (4.2a)(
r̃a − ps̃a

)
/ṽa −

(
r̂a − qŝa

)
/v̂a = −(p− a)sa/ṽa + (q − a)sa/v̂a, (4.2b)

2̂̃ra = (p+ q)̂̃sa − (p− a)ŝa − (q − a)s̃a

+ ̂̃va(pũ0 + qû0 −
(
p+ q − ũ0 − û0

)
u0 − 2u1,0

)
, (4.2c)

û1,0 − ũ1,0 =
(
p− q + û0 − ũ0

)̂̃u0 − pû0 + qũ0, (4.2d)[
H(p, q) + ̂̃u1,0 − (p+ q − α3)̂̃u0 + (

(p+ q − α3 − ̂̃u0)sa + ra
)
/va

]
×
(
p− q + û0 − ũ0

)
= (paṽa − qav̂a)/va, (4.2e)

which evolves when initial values are given on the staircase (see Section 4.4 and Figure 2). In
a quite similar fashion, one can elaborate (3.16), and we get

tb = (p− b)w̃b −
(
p− ũ0

)
wb, tb = (q − b)ŵb −

(
q − û0

)
wb, (4.3a)(

ẑb + pt̂b
)
/ŵb −

(
z̃b + qt̃b

)
/w̃b = (p− b)̂t̃b/ŵb − (q − b)̂t̃b/w̃b, (4.3b)

û0,1 − ũ0,1 =
(
p− q + û0 − ũ0

)
u0 − pũ0 + qû0, (4.3c)

2One can introduce a particular measure dλj(k) in (2.1) and this will finally lead to an explicit expression of U
by means of a Cauchy matrix. Thus the objects va, wb, ui,j , etc are well defined. One can refer to [44, Section 5]
for the DBSQ case and [31, Section 6.4] for the elliptic solution case.
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2zb = (p− b)t̃b + (q − b)t̂b − (p+ q)tb

+ wb

((
p+ q + ũ0 + û0

)̂̃u0 − 2̂̃u0,1 − qũ0 − pû0
)
, (4.3d)[

H(p, q) + u0,1 + (p+ q − α3)u0 −
(
(p+ q − α3 + u0)̂t̃b − ̂̃zb)/ ̂̃wb

]
×
(
p− q + û0 − ũ0

)
=

(
pbŵb − qbw̃b

)
/ ̂̃wb, (4.3e)

where (4.3d) is the extra equation we added. This system can evolve with initial values that are
given on the staircase.

For the closed form (3.21), we need to have an extra equation involved with u0,2 and ̂̃u0,2.
To achieve that, taking ̂-shift of the first equation in (3.18b) and making use of the second
equation in (3.18a), we have

̂̃u0,2 = p̂̃u0,1 − (
p− ̂̃u0)û0,1 − (q + u0)û1,0 + qu1,0 + u2,0. (4.4a)

Similarly, we also have

̂̃u0,2 = q̂̃u0,1 − (
q − ̂̃u0)ũ0,1 − (p+ u0)ũ1,0 + pu1,0 + u2,0. (4.4b)

Adding (4.4a) to (4.4b) yields

2̂̃u0,2 = (p+ q)
(
u1,0 + ̂̃u0,1)− (

p− ̂̃u0)û0,1 − (
q − ̂̃u0)ũ0,1

− (p+ u0)ũ1,0 − (q + u0)û1,0 + 2u2,0. (4.5)

Inserting this equation into (3.21) leads to lattice equations

pũ0 − ũ0,1 = pu0 + u1,0 − ũ0u0, qû0 − û0,1 = qu0 + u1,0 − û0u0, (4.6a)

û2,0 − ũ2,0 = −pû1,0 + qũ1,0 +
(
p− q + û0 − ũ0

)̂̃u1,0, (4.6b)

û0,2 − ũ0,2 = −pũ0,1 + qû0,1 +
(
p− q + û0 − ũ0

)
u0,1, (4.6c)

2̂̃u0,2 = (p+ q)
(
u1,0 + ̂̃u0,1)− (

p− ̂̃u0)û0,1 − (
q − ̂̃u0)ũ0,1

− (p+ u0)ũ1,0 − (q + u0)û1,0 + 2u2,0, (4.6d)

G4(−p,−q)/
(
p− q + û0 − ũ0

)
= G4(−p,−q)/(p− q) +H(p, q)

(
u0 − ̂̃u0)

− (p+ q − α3)
(
u0̂̃u0 − ̂̃u1,0 + u0,1

)
+ u0̂̃u1,0 − ̂̃u0u0,1 − ̂̃u2,0 + u0,2, (4.6e)

which can evolve with initial values that are given on the staircase.

With regard to the closed form (3.29), unfortunately, we did not find such extra equations so
that (3.29) allows more choices for boundary conditions.

4.2 Deformation of the lattice GD-4 type equations

In [17], Hietarinta obtained DBSQ type equations that are quadrilateral and multidimensionally
consistent. Those equations are named (A-2), (B-2) and (C-3). Later, it is shown that Hietar-
inta’s equations can be obtained as deformations of the extended DBSQ equations derived from
the DL approach [44]. In the following, we introduce Hietarinta’s form of the lattice GD-4 equa-
tions (4.2), (4.3), (4.6) and (3.29). In terms of naming conventions, we will call (4.2) the GD-4
(A-2) equation, (4.6) the GD-4 (B-2) equation, and (3.29) the GD-4 (C-3) equation, as they are
the lattice GD-4 counterparts of the DBSQ (A-2), (B-2) and (C-3) equations. Equation (4.3)
also belongs to the (A-2) type as it is connected to (4.2) by reflection transformations. Here, by
“deformation” we mean to convert the equations obtained from the DL approach to Hietarinta’s
form using point transformations.
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GD-4 (A-2): Through the point transformation

va = x/xa, u0 = z − z0, sa = (y − vaya)/xa, (4.7a)

u1,0 = ξ − z0u0 − ξ0, ra = (η − z0y + ξ0x)/xa, (4.7b)

where

xa = (p− a)−n(q − a)−mc0, z0 = −pn− qm− c1, ya = xaz0,

ξ0 =
(
(np+mq + c1)

2 +
(
np2 +mq2 + c2

))
/2 + c3,

and ci are constants, the lattice equation set (4.2) can be transformed into

ỹ = zx̃− x, ŷ = zx̂− x, (4.8a)

η̃x̂− η̂x̃ = y(x̃− x̂), (4.8b)

ξ̂ − ξ̃ = (ẑ − z̃)̂̃z, (4.8c)

̂̃η =
(ỹẑ − ŷz̃)z − ξ(ỹ − ŷ)

z(z̃ − ẑ)
, (4.8d)

η = −x̂̃ξ + ŷ̃z + α3

(
y − x̂̃z)− α2x+

G4(−p,−a)x̃−G4(−q,−a)x̂
ẑ − z̃

. (4.8e)

Note that the current equation (4.8d) has been modified. In fact, in light of the transforma-
tion (4.7), equation (4.2c) gives rise to

2̂̃η = ̂̃x(z(z̃ + ẑ)− 2ξ
)
− (ỹ + ŷ). (4.9)

Making use of (4.8a), we have

̂̃x =
ỹ − ŷ

z(z̃ − ẑ)
,

substituting which into (4.9) and then we get (4.8d). We call this set of equations (4.8) the GD-4
(A-2) equation. Note that compared with (4.9), the form (4.8d) has advantage in generating
Lax pair. Analogously, by point transformation

wb = x/xb, u0 = z − z0, tb = (y − wbyb)/xb,

u0,1 = ξ − z0u0 − ξ0, zb = (η − z0y + xξ0)/xb,

with

xb = (−p+ b)n(−q + b)mc0, z0 = −pn− qm− c1, yb = xbz0,

ξ0 =
(
(np+mq + c1)

2 −
(
np2 +mq2 + c2

))
/2− c3,

and constants ci, the system (4.3) gives rise to

y = z̃x− x̃, y = ẑx− x̂, (4.10a)

η̃x̂− η̂x̃ = ̂̃y(x̃− x̂), (4.10b)

ξ̂ − ξ̃ = (ẑ − z̃)z, (4.10c)̂̃
ξ =

−η(x̂− x̃) + y(ŷ − ỹ) + x̃ŷ − x̂ỹ

x(x̂− x̃)
, (4.10d)

̂̃η = −̂̃xξ + ̂̃yz − α3

(̂̃y − ̂̃xz)− α2
̂̃x− G4(−p,−b)x̂−G4(−q,−b)x̃

ẑ − z̃
. (4.10e)
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Here we already modified (4.10d). In fact, (4.3d) gives rise to

2η = −x
(
2
̂̃
ξ − (z̃ + ẑ)̂̃z)− (ỹ + ŷ). (4.11)

From (4.10a), we have

̂̃z = ŷ − ỹ

x̂− x̃
, x(z̃ + x̂) = 2y + x̃+ x̂,

using which we eliminate z variable from (4.11) yields (4.10d). Equations (4.10) compose an
alternative form of the GD-4 (A-2) equation. It is related to (4.8) by reflection transformations

p→ −p, q → −q, n→ −n, m→ −m, α3 → −α3, α1 → −α1, b→ −a.

Besides, both equation (4.8) and (4.10) allow a symmetry ( ,̃ p) ↔ ( ,̂ q).
GD-4 (B-2): We adopt the point transformation

u0 = x− x0, u1,0 = y − x0u0 − y0, u0,1 = z − x0u0 − z0,

u2,0 = ξ − x0y + zz0 + µ, u0,2 = η − x0z + zy0 + ν,

where

x0 = −pn− qm− c1,

y0 =
(
(np+mq + c1)

2 +
(
np2 +mq2 + c2

))
/2 + c4,

z0 =
(
(np+mq + c1)

2 −
(
np2 +mq2 + c2

))
/2− c4,

µ0 =
(
np3 +mq3 + c3

)
/3,

µ = −1

6
x30 +

1

2
(y0 − z0)x0 +

1

3
µ0 + c5,

ν = −1

6
x30 −

1

2
(y0 − z0)x0 +

1

3
µ0 + c5,

and ci are constants. Then from (4.6) we have the GD-4 (B-2) equation

z̃ = xx̃− y, ẑ = xx̂− y, (4.12a)

ξ̂ − ξ̃ = (x̂− x̃)̂̃y, (4.12b)

η̂ − η̃ = (x̂− x̃)z, (4.12c)

̂̃η = ξ +
(x̂ỹ − x̃ŷ)x− y(ỹ − ŷ)

x̃− x̂
, (4.12d)

η =
̂̃
ξ − ̂̃yx+ ̂̃xz + α3

(̂̃y − x̂̃x+ z
)
+ α2

(̂̃x− x
)
+
G4(−p,−q)

x̂− x̃
. (4.12e)

Again, we have modified (4.12d). Under the transformation (4.6d) gives rise to

2̂̃η = 2ξ − x(ŷ + ỹ) + (ẑ + z̃)̂̃x. (4.13)

From (4.12a), we can have

̂̃x =
ỹ − ŷ

x̃− x̂
, z̃ + ẑ = (x̃+ x̂)x− 2y.

Substituting them into (4.13) yields (4.12d). Note that (4.12) allows a symmetry ( ,̃ p) ↔ ( ,̂ q).
GD-4 (C-3): Inserting point transformation

Sa,b =
(
(p− a)/(p− b)

)n(
(q − a)/(q − b)

)m
x, (4.14a)
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va = (p− a)n(q − a)my, wb = (p− b)−n(q − b)−mz, (4.14b)

sa = (p− a)n(q − a)m(y1 − z0y), (4.14c)

tb = (p− b)−n(q − b)−m(z1 − z0z), (4.14d)

into lattice equation (3.29), where z0 = −pn− qm− c1, we get the GD-4 (C-3) equation

x− x̃ = ỹz, x− x̂ = ŷz, (4.15a)

(ỹ1 + y)ŷ = (ŷ1 + y)ỹ,
(
ẑ1 − ̂̃z)z̃ = (

z̃1 − ̂̃z)ẑ, (4.15b)

ŷ̃z1 − y1̂̃z = z
G4(−p,−b)ẑỹ −G4(−q,−b)z̃ŷ

ẑ − z̃
− α3ŷ̃z +G4(−a,−b)̂̃x. (4.15c)

The alternative GD-4 (C-3) equation is

x− x̃ = ỹz, x− x̂ = ŷz, (4.16a)

(ỹ1 + y)ŷ = (ŷ1 + y)ỹ,
(
ẑ1 − ̂̃z)z̃ = (

z̃1 − ̂̃z)ẑ, (4.16b)

ŷ̃z1 − y1̂̃z = z
G4(−p,−a)ẑỹ −G4(−q,−a)z̃ŷ

ẑ − z̃
− α3ŷ̃z +G4(−a,−b)x, (4.16c)

where the last equation is the deformation of (3.30) in light of the transformation (4.14). Equa-
tions (4.15) and (4.16) are related by the reversal symmetry transformation

n→ −n, m→ −m, y → z, z → −y, y1 → z1, z1 → −y1, a↔ b.

Both equation (4.15) and (4.16) allow a symmetry ( ,̃ p) ↔ ( ,̂ q). Besides, (4.15c) and (4.16c)
are also connected through

z(ẑỹ − z̃ŷ) =
(̂̃x− x

)
(z̃ − ẑ),

which holds in light of (4.15a). In addition, we note that, when a = b in (4.16c) and we
eliminate x from (4.16a), we can reduce the GD-4 (C-3) equation (4.16) to the following four-
component form

̂̃y(z̃ − ẑ) = −z(ỹ − ŷ), (ỹ1 + y)ŷ = (ŷ1 + y)ỹ,
(
ẑ1 − ̂̃z)z̃ = (

z̃1 − ̂̃z)ẑ,
ŷ̃z1 − y1̂̃z = z

G4(−p,−a)ẑỹ −G4(−q,−a)z̃ŷ
ẑ − z̃

− α3ŷ̃z.
GD-4 (C-4): In [17], Hietarinta also obtained a (C-4) equation of the DBSQ type (see (A.4)),

which was later shown to be another deformation of the (C-3) equation. In the following, we
show a similar deformation and present the GD-4 (C-4) equation.

First, we observe that equations (4.15) and (4.16) share the same solution through (4.14).
Thus, from (4.15) and (4.16), we have

x− x̃ = ỹz, x− x̂ = ŷz, (4.17a)

(ỹ1 + y)ŷ = (ŷ1 + y)ỹ,
(
ẑ1 − ̂̃z1)z̃ = (

z̃1 − ̂̃z1)ẑ, (4.17b)

ŷ̃z1 − y1̂̃z = z
Pa,bẑỹ −Qa,bz̃ŷ

ẑ − z̃
− α3ŷ̃z +Ga,b

(̂̃x+ x
)
, (4.17c)

where

Pa,b =
(
G4(−p,−b) +G4(−p,−a)

)
/2,

Qa,b =
(
G4(−q,−b) +G4(−q,−a)

)
/2, Ga,b = G4(−a,−b)/2.
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Then, consider the following transformation

x =
x2 −Ga,b

2Ga,b(x2 +Ga,b)
, y =

y2
x2 +Ga,b

, z =
z2

x2 +Ga,b
,

y1 =
y3

x2 +Ga,b
, z1 =

z3
x2 +Ga,b

. (4.18)

Imposing this transformation on (4.17a) and (4.17b) gives rise to

x2 − x̃2 = ỹ2z2, x2 − x̂2 = ŷ2z2,

(ỹ3 + y2)ŷ2 = (ŷ3 + y2)ỹ2,
(
ẑ3 − ̂̃z2)z̃2 = (

z̃3 − ̂̃z2)ẑ2,
which further yields

̂̃x2 = x̂2z̃2 − x̃2ẑ2
z̃2 − ẑ2

. (4.19)

Meanwhile, by the transformation (4.18), equation (4.17c) multiplied by (Ga,b + x2)
(
Ga,b + ̂̃x2)

is equivalent to

y2̂̃z3 − y3̂̃z2 = ∆− α3y2̂̃z2 + x2̂̃x2 −G2
a,b, (4.20)

where

∆ =
z2
(
Ga,b + ̂̃x2)(Pa,b ẑ2ỹ2 −Qa,b z̃2ŷ2)

(ẑ2x̃2 − z̃2x̂2) +Ga,b(ẑ2 − z̃2)
.

We substitute (4.19) into ∆ and rewrite (4.20) as

y2̂̃z3 − y3̂̃z2 = z2 (Pa,b ẑ2ỹ2 −Qa,b z̃2ŷ2)/(ẑ2 − z̃2)− α3y2̂̃z2 + x2̂̃x2 −G2
a,b.

Finally, we arrive at the GD-4 (C-4) equation

x2 − x̃2 = ỹ2z2, x2 − x̂2 = ŷ2z2, (4.21a)

(ỹ3 + y2)ŷ2 = (ŷ3 + y2)ỹ2,
(
ẑ3 − ̂̃z2)z̃2 = (

z̃3 − ̂̃z2)ẑ2, (4.21b)

y2̂̃z3 − y3̂̃z2 = z2 (Pa,b ẑ2ỹ2 −Qa,b z̃2ŷ2)/(ẑ2 − z̃2)− α3y2̂̃z2 + x2̂̃x2 −G2
a,b. (4.21c)

Four-component GD-4 (A-2): In order to reduce the GD-4 (A-2) equation (4.8) into
four-component form, we introduce variables

u =
y

x
, v =

η

x
.

Then, equation (4.8) can be rewritten as

(û− z)
(̂̃u− ẑ

)
= (ũ− z)

(̂̃u− z̃
)
, (4.22a)

ṽ − v̂ = u(ũ− û), (4.22b)

ξ̂ − ξ̃ = (ẑ − z̃)̂̃z, (4.22c)̂̃v =
1

z(z̃ − ẑ)

[
z
(
(ũ− û)z̃ẑ + (ûz̃ − ũẑ)̂̃u)− ξ

(
ũz̃ − ûẑ + (ũ− ũ)̂̃u)], (4.22d)

(ẑ − z̃)
[
v +

̂̃
ξ − (u− α3)̂̃z − α3u+ α2

]
=
G4(−p,−a)

z − ũ
− G4(−q,−a)

z − û
. (4.22e)
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We view this system as the four-component GD-4 (A-2) equation. Similarly, by introducing
variables w = y

x , ϖ = η
x , system (4.10) becomes(̂̃z − ŵ

)
(ẑ − w) =

(̂̃z − w̃
)
(z̃ − w), (4.23a)

ϖ̃ − ϖ̂ = ̂̃w(w̃ − ŵ), (4.23b)

ξ̂ − ξ̃ = (ẑ − z̃)z, (4.23c)̂̃
ξ =

−ϖ(ẑ − z̃) + w
(
ŵ(ẑ − w)− w̃(z̃ − w)

)
+ ŵ(z̃ − w)(ẑ − w)− w̃(ẑ − w)(z̃ − w)

ẑ − z̃
,(4.23d)( ̂̃ϖ + ξ − z ̂̃w + α3( ̂̃w − z) + α2

)
(ẑ − z̃) =

G4(−p,−b)
û− ̂̃z − G4(−q,−b)

ũ− ̂̃z , (4.23e)

which is viewed as the alternative four-component GD-4 (A-2) equation.
Note that both the equations in terms of DL notations (3.3) and in Hietarinta’s form in terms

of x, y, z, etc can be used to express GD-4 lattice equations. The DL approach enables us to
see how these equations follow from one and the same underlying structure, while the equations
in Hietarinta’s form are more convenient to investigate their evolution and MDC property.

As for the names (A-2), (B-2) and (C-3), we have the following comments. On one side, as
we can see, the DBSQ (A-2), (B-2) and (C-3) equations in Hietarinta’s form are embedded in
the corresponding GD-4 lattice equations. On the other side, in the DBSQ case, one needs to
employ more than one variables so that the system is quadrilateral. Different variables from
a same system can express different equations in one-component form. For example, the DBSQ
(A-2) equation (A.2) can give rise to the modified DBSQ equation in terms of x and the regular
DBSQ equation in terms of either z or w = y/x, see [22, Section 3.2]. In this context, it is not
correct to call the DBSQ (A-2) equation the modified DBSQ or regular DBSQ equation. We
prefer to use (A-2), (B-2) and (C-3) in the GD-4 case.

4.3 General description of MDC

In the past two decades, the property of multidimensional consistency (MDC) has been effec-
tively used in the study of discrete integrable systems. This property allows a lattice equation
(or a system) to be consistently embedded into a higher dimension [1, 5, 27, 32]. With regard to
the lattice GD-4 type equations we listed in Section 4.2, they can be written as a quad equation

F
(
θ, θ̃, θ̂,

̂̃
θ; p, q

)
= 0, (4.24)

where F is a nonlinear vector function of the vector θ with several components. The key idea
of the MDC property is to embed the equation consistently into a multi-dimensional lattice
by imposing copies of the same equation, albeit with different lattice parameters in different
directions. The GD-4 type equations are symmetric between the (p, n) and (q,m) coordinates
of the Z2 lattice, and therefore we introduce a third dimension l and the corresponding lattice
index r by θ → θ to keep this symmetry. This means that we have the same equation on all
planes around the cube (see Figure 1). The equations on the six faces can be written as

F
(
θ, θ̃, θ̂,

̂̃
θ; p, q

)
= 0 (bottom), F

(
θ, θ̃, θ̂,

̂̃
θ; p, q

)
= 0 (top), (4.25a)

F
(
θ, θ̃,θ, θ̃; p, r

)
= 0 (left), F

(
θ̂,

̂̃
θ, θ̂,

̂̃
θ; p, r

)
= 0 (right), (4.25b)

F
(
θ,θ, θ̂, θ̂; q, r

)
= 0 (back), F

(
θ̃,

̂̃
θ, θ̃,

̂̃
θ; q, r

)
= 0 (front). (4.25c)

For a quadrilateral equation, e.g., (4.24), that can be solved for the fourth variable given the
first three, its MDC property can be explained as follows: In the case of the initial values given
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Figure 1. Consistent cube of the lattice equation (4.24).

at black dots
(
θ, θ̃, θ̂,θ

)
(see Figure 1), we use the left-hand side equations in (4.25a), (4.25b),

(4.25c) to compute
̂̃
θ, θ̃, θ̂, respectively, and this leaves the three right-hand side equations from

which we should get the
̂̃
θ. The MDC property means that all three values thus obtained for

̂̃
θ

coincide. The MDC property for quadrilateral equations can be geometrically interpreted as
a consistency around a cube (CAC). In light of CAC property, in principle, the coupled system

F
(
θ, θ̃,θ, θ̃; p, r

)
= 0, (4.26a)

F
(
θ,θ, θ̂, θ̂; q, r

)
= 0 (4.26b)

act as a Bäcklund transformation for the equation (4.24) to transform solutions between θ and θ.
From the Bäcklund transformation, in principle, Lax pairs can be constructed [1, 6, 27].

4.4 Evolution

To explore the MDC property of the GD-4 lattice equations, we analyze their evolutions. Let
us take the GD-4 (B-2) equation (4.12) as an example. It is a system consisting of six equations
for five variables x, y, z, ξ and η. In general, such a system is over-determined. We have the
following remarks for such a situation:

Remark 4.1. If we ONLY require the equations to evolve with a certain staircase initial bound-
ary, we will not need all 6 equations.

For convenience, we introduce V to denote V = (x, y, z, ξ, η)T. It turns out that, the sys-

tem (4.12), excluding (4.12d), allows an up-left evolution for given V , Ṽ ,
̂̃
V as in Figure 2 (b)

or a down-right evolution for a given V , V̂ ,
̂̃
V . In addition, without (4.12c) the system (4.12)

allows an up-right evolution, and without (4.12b) it allows a down-left evolution. Now it is clear
that we may exclude one equation from (4.12b, 4.12c, 4.12d), and the remaining system will
consist of five equations and evolve with some suitable staircase initial values.

Remark 4.2. If we require the system (4.12) to be multidimensionally consistent, we need
ALL six equations. See Section 5 and Appendix C. Similar features of evolution hold for the
GD-4 (A-2) equations (4.8) and (4.10) and for the four-component GD-4 (A-2) equations (4.22)
and (4.23).

Remark 4.3. The GD-4 (C-3) equation (4.15) (or (4.16)) and the GD-4 (C-4) equation (4.21)
consist of 5 equations, respectively. They can have either up-left or down-right evolution, but
neither up-right nor down-left evolution.

The MDC property implies certain integrability. Since for the GD-4 equations (4.8), (4.10),
(4.12), (4.22) and (4.23), all equations are necessary to guarantee each system that they compose
to be MDC, we prefer to keep all the equations in each system.
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(a)

m

n

(b)

Figure 2. The initial values should be given on black dots of the staircase. One can compute the values

at red dots. This way, the equations can evolve up-right as in (a) and up-left as in (b).

5 MDC property and Lax representation

5.1 MDC property of the GD-4 (A-2) and (B-2) equation

We have examined the evolution of the GD-4 type equations in Section 4.4. Among them, the
GD-4 (A-2) equation (4.8) and its alternative form (4.10), the GD-4 (B-2) equation (4.12), four-
component GD-4 (A-2) equation (4.22) and its alternative form (4.23), allow up-right evolution
with staircase initial values. Therefore, we can check whether these equations are consistent
around the cube (CAC). Note that equations (4.8b), (4.10c), (4.12b), (4.22b) and (4.23c) are
not necessary to the systems where they are to get up-right evolutions. However, in the following
we will see that these equations are really needed for their systems to be CAC. The checking is
straightforward.

GD-4 (A-2) equation: For the GD-4 (A-2) equation (4.8), we set it to be (4.24). It is clear
that from the left-hand side equations in (4.25a), (4.25b), (4.25c), we evaluate the following
second-order shifts

x̃ = (x̃− x)/(z̃ − z), ỹ = (x̃z − xz̃)/(z̃ − z), z̃ =
(
ξ̃ − ξ

)
/(z̃ − z), (5.1a)

x̂ = (x− x̂)/(z − ẑ), ŷ = (xẑ − x̂z)/(z − ẑ), ẑ =
(
ξ − ξ̂

)
/(z − ẑ), (5.1b)

ξ̃ = (y/x− α3)
ξ̃ − ξ

z̃ − z
+
α3y − η

x
− α2 −

G4(−p,−a)x̃−G4(−r,−a)x
x(z̃ − z)

, (5.1c)

ξ̂ = (y/x− α3)
ξ − ξ̂

z − ẑ
+
α3y − η

x
− α2 −

G4(−r,−a)x−G4(−q,−a)x̂
x(z − ẑ)

, (5.1d)

η̃ =
(
ỹz − yz̃ − ξ

z
(ỹ − y)

)
/(z̃ − z), η̂ =

(
ŷz − yẑ − ξ

z
(ŷ − y)

)
/(ẑ − z). (5.1e)

Furthermore, from the three right-hand side equations in (4.25) and using the data (5.1), we

have three different ways to calculate the values ̂̃x, ̂̃y, ̂̃z and ̂̃η uniquely, which are

̂̃x =
[
(x̃− x̂)z + (x̂− x)z̃ + (x− x̃)ẑ

]
/
[(
ξ̃ − ξ̂

)
z +

(
ξ̂ − ξ

)
z̃ +

(
ξ − ξ̃

)
ẑ
]
,̂̃y =

[
(x̂− x̃)ξ + (x̃− x)ξ̂ + (x− x̂)ξ̃

]
/
[
(z̃ − ẑ)ξ + (ẑ − z)ξ̃ + (z − z̃)ξ̂

]
,̂̃z = [

(α3x− y)
(
(ẑ − z)ξ̃ + (z − z̃)ξ̂ + (z̃ − ẑ)ξ

)
+ x̃(ẑ − z)G4(−p,−a) + x̂(z − z̃)G4(−q,−a) + x(z̃ − ẑ)G4(−r,−a)

]
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/
[
x
(
(ẑ − z̃)ξ + (z̃ − z)ξ̂ + (z − ẑ)ξ̃

)]
,

̂̃η =
−ξ

(
x̃z−xz̃
z̃−z − x̂z−xẑ

ẑ−z

)
+ z

(
(ξ−ξ̂)(x̃z−xz̃)
(z̃−z)(z−ẑ) − (ξ−ξ̃)(x̂z−xẑ)

(ẑ−z)(z−z̃)

)
z
(
ξ−ξ̃
z−z̃ − ξ−ξ̂

z−ẑ

) .

For the variable ξ, the formula for
̂̃
ξ is too long to be listed here. It turns out that to guarantee

the relation
̂̃
ξ =

̂̃
ξ =

˜̂
ξ holds one needs

η̃x̂− η̂x̃ = y(x̃− x̂), ηx̂− η̂x = y(x− x̂), η̃x− ηx̃ = y(x̃− x)

hold. This is nothing but the second equation (4.8b) in (4.8) and its ( , ̂) and ( , ˜) versions.
Thus we can conclude two points. One is that although (4.8b) is not needed for determining
the up-right evolution of (4.8), it is necessary for the whole system (4.8) to be MDC. In other
words, the GD-4 (A-2) equation (4.8) as a whole system satisfies the MDC property. The other
point is, if, without (4.8b) the system (4.8) is integrable in the sense of being MDC, then (4.8b)
is a consequence of the other five equations in (4.8).

For the alternative GD-4 (A-2) equation (4.10), the GD-4 (B-2) equation (4.12), the four-
component GD-4 (A-2) equation (4.22) and its alternative form (4.23), their MDC property
can be checked in a similar way and has similar results. The check is straightforward and we
present formulas of those triple shifts of variables in Appendix C. What we want to emphasize
is, for η in the alternative GD-4 (A-2) equation (4.10), ξ in the GD-4 (B-2) equation (4.12),
ξ in the four-component GD-4 (A-2) equation (4.22), and ϖ in (4.23), their triple shifts are
uniquely determined respective require (4.10c), (4.12b), (4.22c), (4.23b) and their ( , ̂) and
( , ˜) versions hold. These facts provide supports for Remark 4.2. On the other hand, if
we agree that these systems are MDC, then (4.10c), (4.12c), (4.22c) and (4.23b) will be the
consequence of the rest equations in their own system, respectively.

5.2 Lax representations

Finding a Lax pair for a given nonlinear equation, whether continuous or discrete, is generally
a difficult task. The DL scheme provides a direct procedure to construct Lax pairs of the
objective equations based on the relation (2.4). One can select specific components of these
vectors, or combinations thereof, to constitute the basic vector functions in terms of which we
obtain the relevant linear problems. This has been illustrated in the lattice KdV and DBSQ case
(e.g., [39]). Besides, the fundamental characterization of integrable partial difference equations as
being MDC is intimately related to the existence of a Lax pair [1, 6, 27]. Always the information
gained from the process of verifying MDC property is also crucial to the computation of the
corresponding Lax pair.

For the quadrilateral ABS equations [1] and 3-point discrete Burgers equation [7, 42], both of
which are CAC, they can be obtained as compatibilities of their Lax pairs constructed from the
MDC property (see [6, 7, 42]). However, for a DBSQ type equation, e.g., (B-2) or ((A-2), (C-3)),
its Lax pairs, no matter constructed from the DL scheme or by means of the MDC property, are
incomplete in the sense that the original DBSQ equation can not be fully recovered from the
compatibility of its Lax pair (see [22, 44]). Such an incompleteness of the Lax pair also happens
to the GD-4 type equations. In the following, we only take the GD-4 (A-2) equation (4.8) as
an example and present its Lax pairs derived from the DL scheme and the MDC property,
respectively. One can see that, the equations arising from the compatibility of the Lax pairs can
not yield all the equations in the GD-4 (A-2).

To determine the Lax pairs of the lattice equations using the DL approach, we should use
the relation (3.2). For the sake of the construction of the Lax pairs, we introduce (v)0 standing
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for the 0-th component of the infinite-component column vector v. Besides, we appoint that AT

stands for the transpose of matrix A.

We start by looking at the Lax pair of (3.15), which is the DL counterpart of the GD-4 (A-2)
equation (4.8). We define an eigenvector of the form

ϕ =
((
(a+Λ)−1uk

)
0
, (uk)0, (Λuk)0,

(
Λ2uk

)
0

)T
. (5.2)

Based on (3.2), one can derive the following linear relation

ϕ̃ = Lϕ, ϕ̂ = Mϕ, (5.3a)

in which

L =


p− a ṽa 0 0
0 p− ũ0 1 0
0 −ũ1,0 p 1

G4(k,−a)/va ∗42 (α3sa − ra)/va − α2 A1(−p) + sa/va

 , (5.3b)

where

∗42 = paṽa/va −
[
A2(−p) + (A1(−p)sa + ra)/va

]
(p− ũ0)− ũ1,0(A1(−p) + sa/va), (5.3c)

and M is obtained from (5.3b) by replacing p by q and ˜ by ̂. The compatibility of (5.3a), i.e.,

L̂M = M̃L, leads to equations (3.15b), (3.15c), (3.15d), (3.11b) and

p− q + ŝa/v̂a − s̃a/ṽa = va
(
(p− a)/ṽa − (q − a)/v̂a

)
.

The latter two equations follows readily from (3.15a). The incompleteness of the Lax pair is
demonstrated by the missing of (3.15a).

It is well known that the MDC property can provide Lax pairs automatically. All the de-
formed lattice equations listed above admit the MDC property. As an example, in this part we
discuss the Lax integrability of the GD-4 (A-2) equation (4.8) thanks to its MDC property. As
the discussion of the MDC property, here we extend the aforesaid lattice equations into a third
dimension by introducing a new variable l associated with a new shift and a new complex
parameter r. For the lattice equation (4.24) which is MDC, the essential procedure to construct
its Lax pair is to introduce fractional expressions (e.g., f/F, g/G, etc.) for the various com-
ponents in the third dimension in the Bäcklund transformation (4.26) in order to linearize the

numerators and denominators of the expressions for the components of θ̃ and θ̂ in terms of f , F ,
g, G, etc. This manipulation generates the Lax matrices.

For the GD-4 (A-2) equation (4.8), we consider its Bäcklund transformation (5.1). Introduc-
ing

x =
φ1

φ0
, z =

φ2

φ0
, y =

φ3

φ0
, ξ =

φ4

φ0
, η =

φ5

φ0
,

and defining

ϕ1 = (φ0, φ1, φ2, φ3, φ4, φ5)
T,

from (5.1) we have

ϕ̃1 = L1ϕ1, ϕ̂1 = M1ϕ1,
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where

L1 =



z̃ 0 −1 0 0 0
x̃ −1 0 0 0 0

ξ̃ 0 0 0 −1 0
0 −z̃ x̃ 0 0 0
∗51 G4(−r,−a)/x (η − α3y)/x+ α2 0 α3 − y/x 0

−(ξ/z)ỹ 0 ỹ ξ/z − z̃ 0 0

 ,

where ∗51 = z̃
(
(α3y − η)/x − α2

)
+ (y/x − α3)ξ̃ − G4(−p,−a)x̃/x and the matrix M1 is the

hat-q version of L1. The compatibility gives the relations:

̂̃x =
x̃− x̂

z̃ − ẑ
, ̂̃z = ξ̂ − ξ̃

ẑ − z̃
, x =

x̂ỹ − x̃ŷ

x̃− x̂
, ̂̃y =

x̂z̃ − x̃ẑ

ẑ − z̃
, y =

x̃η̂ − x̂η̃

x̂− x̃
, (5.4)

together with (4.8e). The second equation in (5.4) is (4.8b), while the rest four equations in (5.4)
are consequences of the equations (4.8a) and (4.8b) in the GD-4 (A-2) equation. Similar to the
DBSQ case [44], here we can remove the last columns and rows in L1 and M1, and examine the
remains:

ϕ̃2 = L2ϕ2, ϕ̂2 = M2ϕ2, (5.5)

in which ϕ2 = (φ0, φ1, φ2, φ3, φ4)
T and

L2 =


z̃ 0 −1 0 0
x̃ −1 0 0 0

ξ̃ 0 0 0 −1
0 −z̃ x̃ 0 0
∗51 G4(−r,−a)/x (η − α3y)/x+ α2 0 α3 − y/x

 ,

where the matrix M2 is the hat-q version of L2. The compatibility of (5.5) gives (5.4) and (4.8e)
as well.

The above are Lax pairs of the GD-4 (A-2) equation. Similarly, we can get Lax pairs for
other GD-4 type lattice equations we have obtained. However, all the Lax pairs are incomplete.
In other words, not all the equations in the GD-4 type equations can be obtained from the
compatibility of their Lax pairs.

6 Conclusions and remarks

In this paper, we have analyzed the construction of the extended lattice GD type equations
with N = 4 by DL approach. We first reviewed the DL scheme for the extended generic lattice
GD type equations, which appeared in [44]. Then we restricted ourselves to the case of N = 4
and showed the derivation of the lattice GD-4 type equations, including the lattice GD-4 (A-2),
(B-2) and (C-3) equations. In the DL scheme, these equations appear as closed forms, each of
which includes five (independent) variables. We introduced point transformations to convert
them into Hietarinta’s version, which are the GD-4 counterparts of the DBSQ type equations
(see Section 4.2). We also obtained reduced GD-4 (A-2) equations with four variables. In
addition, we investigated the evolutions and MDC property of these equations. As examples,
for the GD-4 (A-2) equation we gave its Lax pairs constructed from the DL scheme as well as
the MDC property. One can also see that some lower equations are embedded into the GD-4
type equations due to the coefficients α3 and α2 in G4(ω, k) = 0. For example, in the GD-4
(B-2) equation (4.12), equation (4.12a) and the coefficients of α3 and α2 in (4.12e) compose the
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DBSQ (B-2) equation (see (A.1)), while the coefficient of α2 in (4.12e) gives rise to the lattice

potential KdV equation (i.e., H1 equation in the ABS list)
(
x− ̂̃x)(x̂− x̃) = p2 − q2.

We finish the paper with the following remarks. First of all, compared with the DBSQ case
(N = 3, see [17, 22, 44] and also Appendix A) which are all MDC, the GD-4 type lattice
equations have something special. One needs to introduce more variables to obtain quadrilat-
eral closed forms in the DL scheme. All the obtained lattice GD-4 equations allow up-left as
well as down-right evolutions with staircase initial values, but not all of them allow up-right
evolution. For the GD-4 (B-2) equation, we introduced the sixth equation (4.5) (or (4.12d)
or (4.13) in Hietarinta’s form so that the equation set gets an up-right evolution. The enlarged
system (4.12) therefore contains six equations but with five variables. However, all six equations
are necessary to guarantee the system to be MDC. Among the six equations in the system (4.12),
equation (4.12c) is defined on the triangle

(
V, Ṽ , V̂

)
(not defined on the edge, cf. (4.12a)), which

has zero contribution in the up-right evolution, but is necessary for the relation
̂̃
ξ =

̂̃
ξ =

˜̂
ξ to be

held (see (C.2) in Appendix C). On the other side, this fact also means that, if we admit that the
GD-4 (B-2) system (4.12) excluding (4.12c) is integrable, which indicates the system is MDC,
then (4.12c) will be a consequence of the other five equations in system (4.12). Similar feature
holds for the GD-4 (A-2) equation, its alternative form and their four-component versions. Note
that the MDC property has recently been used to construct Bäcklund transformation and find
one-soliton solution to the GD-4 (B-2) equation, see [35]. Secondly, it is not clear how such GD-4
lattice equations are related to the discrete KP-type equations. In [2], the lattice modified and
lattice Schwarzian GD hierarchies were obtained as reductions of the discrete KP system (see [2,
equations (C.7) and (C.12)], and see also [3]), and those equations are presented in quadrilateral
form in terms of multi-components. For the GD-4 case, they are 3-component quad systems. It
remains open that how they are related to our GD-4 (A-2) and (C-3) equations. What’s more,
compared with the DBSQ equations (cf. [22]), there are still many topics to be considered in
order to understand the GD-4 type lattice equations. For example, first, the one-component
forms of these equations need to be determined. They are supposed to live on a 4× 4 (16-point)
stencil, considering the ( ,̃ p) → ( ,̂ q) symmetry. However, it is not easy to eliminate auxiliary
variables to get an equation for a single component, (compared with the DBSQ case in [22]). We
will leave this as a topic in the next step. Besides, one can choose specific measures dλj(k) and
integration contour Γj in (2.1) to get soliton solutions, which can be operated along the lines
of [44]. In addition, we have not touched the τ -function, which in the case of N = 3 satisfies
a trilinear equation (see [44] or [22]). It is undoubtedly that figuring out the τ -function of the
lattice GD-4 case and its bilinear equations (cf. [18, 19, 20, 21, 45] for the ABS and DBSQ
equations) is meaningful and worth considering.

A The DBSQ-type equations

The DBSQ-type equations, including (A-2), (B-2), (C-3) and (C-4) equations [17], which are
related to the third-order polynomial [44]

G3(ω, k) := ω3 − k3 + α2

(
ω2 − k2

)
+ α1(ω − k),

are listed as follows.
(A-2) equation: This equation has two forms. One is

ỹ = zx̃− x, ŷ = zx̂− x, y = x̂̃z − b0x−
(
G3(−p,−a) x̃−G3(−q,−a) x̂

)
/(ẑ − z̃),

and the other is

y = z̃x− x̃, y = ẑx− x̂, ̂̃y = ̂̃xz − b′0
̂̃x−

(
G3(−p,−b)x̂−G3(−q,−b)x̃

)
/(ẑ − z̃).
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Here b0 and b
′
0 are constants relating to parameter α2. Both of these two equations are associated

with each other by reversal symmetry

p→ −p, q → −q, n→ −n, m→ −m, α2 → −α2, b→ −a.

(B-2) equation: This equation reads

z̃ = xx̃− y, ẑ = xx̂− y, (A.1a)

z = x̂̃x− ̂̃y − α2

(̂̃x− x
)
− α1 −G3(−p,−q)/(x̂− x̃). (A.1b)

The parameter α1 can be removed by transformation.
(C-3) equation: One equation of this type is

x− x̃ = ỹz, x− x̂ = ŷz, (A.2a)

ŷ̃z = z
(
G3(−p,−b)ẑỹ −G3(−q,−b)z̃ŷ

)
/(ẑ − z̃) +G3(−a,−b)̂̃x, (A.2b)

and the other is

x− x̃ = ỹz, x− x̂ = ŷz, (A.3a)

ŷ̃z = z
(
G3(−p,−a)ẑỹ −G3(−q,−a)z̃ŷ

)
/(ẑ − z̃) +G3(−a,−b)x. (A.3b)

The equations (A.2) and (A.3) are related by reversal symmetry

n→ −n, m→ −m y → z, z → −y, a↔ b.

(C-4) equation: This equation arises from the combination of equations (A.2) and (A.3)

x− x̃ = ỹz, x− x̂ = ŷz, (A.4a)

ŷ̃z = z
(
P ′
a,b ẑỹ −Q′

a,b z̃ŷ
)
/(ẑ − z̃) + x̂̃x−G′2

a,b, (A.4b)

where

P ′
a,b =

(
G3(−p,−b) +G3(−p,−a)

)
/2, Q′

a,b =
(
G3(−q,−b) +G3(−q,−a)

)
/2, G′

a,b

= G3(−a,−b)/2.

B Derivation of some equations in Section 3.1

B.1 Equation (3.6b)

For the both sides of equation (3.1b), we multiply from the left by te(a + Λ)−1 and from the

right by
(
−b+ tΛ

)−1
e. For the left-hand side, we have

te(a+Λ)−1U
(
A3(−p) +A2(−p) tΛ+A1(−p) tΛ2 + tΛ3

)(
−b+ tΛ

)−1
e. (B.1)

Calculating it term by term and express the results in terms of the variables introduced in (3.3),
we have

A3(−p) te(a+Λ)−1U
(
−b+ tΛ

)−1
e = A3(−p)sa,b,

A2(−p) te(a+Λ)−1U tΛ
(
−b+ tΛ

)−1
e

= A2(−p) te(a+Λ)−1U
(
tΛ− b+ b

)(
−b+ tΛ

)−1
e

= A2(−p)
[
te(a+Λ)−1Ue+ b te(a+Λ)−1U

(
−b+ tΛ

)−1
e
]
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= −A2(−p)(va − 1) + bA2(−p)sa,b,

A1(−p) te(a+Λ)−1U tΛ2
(
−b+ tΛ

)−1
e

= A1(−p) te(a+Λ)−1U
(
tΛ2 − b2 + b2

)(
−b+ tΛ

)−1
e

= A1(−p)
[
te(a+Λ)−1U

(
tΛ+ b

)
e+ b2 te(a+Λ)−1U

(
−b+ tΛ

)−1
e
]

= A1(−p)[(a− sa)− b(va − 1)] + b2A1(−p)sa,b,

and

te(a+Λ)−1U tΛ3
(
−b+ tΛ

)−1
e

= te(a+Λ)−1U
(
tΛ3 − b3 + b3

)(
−b+ tΛ

)−1
e

= te(a+Λ)−1U
(
tΛ2 + b tΛ+ b2

)
e+ b3 te(a+Λ)−1U

(
−b+ tΛ

)−1
e

= a2 − ra + b(a− sa)− b2(va − 1) + b3sa,b.

Thus, equation (B.1) yields[
A2(−p) + (a+ b)A1(−p) + a2 + ab+ b2

]
+ pbsa,b

−A2(−p)va −A1(−p)(sa + bva)− ra − bsa − b2va,

where pb is defined as in (3.5).

For the right-hand side, we can calculate

te(a+Λ)−1
(
A3(−p)−A2(−p)Λ+A1(−p)Λ2 −Λ3

)
Ũ
(
−b+ tΛ

)−1
e

in a similar way, which gives rise to

−
[
A2(−p) + (a+ b)A1(−p) + a2 + ab+ b2

]
+ pas̃a,b

+A2(−p)w̃b −A1(−p)
(
t̃b − aw̃b

)
+ z̃b − at̃b + a2w̃b,

where pa is defined as in (3.5). For those terms in (3.1b) where O is involved, for example,
−U tΛOΛŨ , we make use of O = e te and have

− te(a+Λ)−1U tΛOΛŨ
(
−b+ tΛ

)−1
e

= − te(a+Λ)−1U tΛe · teŨ
(
−b+ tΛ

)−1
e = −(sa − a)(1− w̃b).

We can combine all these results together. Finally, we arrive at equation (3.6b).

B.2 Equation (3.9a)

For the both sides of equation (3.1a), multiplying from the left by te(a + Λ)−1 and from the
right by tΛ2e, we have

te(a+Λ)−1Ũ
(
p− tΛ

)
tΛ2e

= te(a+Λ)−1(p+Λ)U tΛ2e− te(a+Λ)−1ŨOU tΛ2e. (B.2)

The left-hand side of the above equation gives rise to

(B.2)|l.h.s = p te(a+Λ)−1Ũ tΛ2e− te(a+Λ)−1Ũ tΛ3e

= pa2 − pr̃a + f̃a − a3,
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and the right-hand side yields

(B.2)|r.h.s = te (a+Λ)−1(p− a+ a+Λ)U tΛ2e− te(a+Λ)−1Ũe · teU tΛ2e

= (p− a) te (a+Λ)−1U tΛ2e+ teU tΛ2e+ (ṽa − 1)u0,2

= (p− a)
(
a2 − ra

)
+ u0,2 + (ṽa − 1)u0,2

= (p− a)
(
a2 − ra

)
+ ṽau0,2.

Equation (3.9a) follows from the combination of the above results.

B.3 Equation (3.10a)

To obtain equation (3.10a), we multiply (3.1b) from the left by te(a+Λ)−1 and from the right
by tΛ2e. The left-hand side yields

te(a+Λ)−1U
(
A3(−p) +A2(−p) tΛ+A1(−p) tΛ2 + tΛ3

)
e

= A3(−p)(1− va) +A2(−p)(a− sa) +A1(−p)
(
a2 − ra

)
+
(
a3 − fa

)
= pa −A3(−a)va −A2(−p)sa −A1(−p)ra − fa,

where pa is defined as in (3.5). The right-hand side yields

te(a+Λ)−1
[(
A3(−p)−A2(−p)Λ+A1(−p)Λ2 −Λ3

)
Ũ

+U
[
A2(−p)O −A1(−p)

(
OΛ− tΛO

)
+
(
OΛ2 − tΛOΛ+ tΛ2O

)]
Ũ
]
e

= A3(−p) te(a+Λ)−1Ũe−A2(−p) te(a+Λ)−1(Λ+ a− a)Ũe

+A1(−p) te(a+Λ)−1
(
Λ2 − a2 + a2

)
Ũe+ te(a+Λ)−1

(
Λ3 + a3 − a3

)
Ũe

+A2(−p) te(a+Λ)−1Ue · teŨe−A1(−p) te(a+Λ)−1Ue · teΛŨe

+A1(−p) te(a+Λ)−1U tΛe · teŨe+ te(a+Λ)−1Ue · teΛ2Ũe

− te(a+Λ)−1U tΛe · teΛŨe+ te(a+Λ)−1U tΛ2e · teŨe

= A3(−p)(1− ṽa)−A2(−p)ũ0 + aA2(−p)(1− ṽa) +A1(−p)ũ1,0
− aA1(−p)ũ0 + a2A1(−p)(1− ṽa)− ũ2,0 + aũ1,0 − a2ũ0

+ a3(1− ṽa) +A2(−p)(1− va)ũ0 −A1(−p)(1− va)ũ1,0

+A1(−p)(a− sa)ũ0 + (1− va)ũ2,0 − (a− sa)ũ1,0 +
(
a2 − ra

)
ũ0

= pa − paṽa − va(A2(−p)ũ0 −A1(−p)ũ1,0 + ũ2,0)− sa(A1(−p)ũ0 − ũ1,0)− raũ0.

Combining them together we get (3.10a).

C MDC property of the GD-4 (A-2) and (B-2) equations

We present procedure of checking MDC property of the alternative GD-4 (A-2) equation (4.10).
Since the checking is straightforward, for the GD-4 (B-2) equation (4.12), the four-component
GD-4 (A-2) equation (4.22) and its alternative form (4.23), we only list out the triple shifts of
the involved variables.

Alternative GD-4 (A-2) equation (4.10): We have

x̃ = (x̃y − xỹ)/(x− x̃), ỹ = (x̃η − xη̃)/(x− x̃), z̃ = (ỹ − y)/(x̃− x), (C.1a)

x̂ = (x̂y − xŷ)/(x− x̂), ŷ = (x̂η − xη̂)/(x− x̂), ẑ = (ŷ − y)/(x̂− x), (C.1b)

ξ̃ =
ηx̃− yỹ − (η + ỹ)x+ (y + x̃)y

x(x− x̃)
,

ηx̂− yŷ − (η + ŷ)x+ (y + x̂)y

x(x− x̂)
, (C.1c)
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η̃ = (α3z − ξ − α2)
x̃y − xỹ

x− x̃
+ (z − α3)

x̃η − xη̃

x− x̃
− G4(−p,−b)x−G4(−r,−b)x̃

z − z̃
, (C.1d)

η̂ = (α3z − ξ − α2)
x̂y − xŷ

x− x̂
+ (z − α3)

x̂η − xη̂

x− x̂
− G4(−q,−b)x−G4(−r,−b)x̂

z − ẑ
. (C.1e)

Furthermore, from the three right-hand side equations in (4.25) and using the data (C.1) we

have three different ways to calculate the values ̂̃x, ̂̃y, ̂̃z and
̂̃
ξ uniquely, which are

̂̃x =
[
(x̂η − xη̂)ỹ + (xη̃ − x̃η)ŷ + (x̃η̂ − x̂η̃)y

]
/
[
(x̂− x)ỹ + (x− x̃)ŷ + (x̃− x̂)y

]
,̂̃z = [

(x̂− x̃)η + (x̃− x)η̂ + (x− x̂)η̃
]
/
[
(ỹ − ŷ)x+ (ŷ − y)x̃+ (y − ỹ)x̂

]
,

̂̃
ξ = B1 ×

[
(x̃y − xỹ)η

x− x̃
− (xη̃ − x̃η)y

x̃− x
−

(
η + xη̃−x̃η

x̃−x

)
(x̂y − xŷ)

x− x̂
+

(
y + x̃y−xỹ

x−x̃

)
(xη̂ − x̂η)

x̂− x

]
,

̂̃y =
B2+B3+ x

(
(y−ỹ)y + (ỹz−yz̃)x

)
G4(−q,−b) + x

(
(ỹ−ŷ)y + (ŷz̃−ỹẑ)x

)
G4(−r,−b)

x
(
(ẑ − z̃)y + (z̃ − z)ŷ + (z − ẑ)ỹ

) ,

where

B1 =
1( x̃y−xỹ

x−x̃ + x̂y−xŷ
x−x̂

)
x
, B2 = x

(
(ŷ − y)y + (yẑ − ŷz)x

)
G4(−p,−b),

B3 = (α3 − z)
[
η
(
(ỹ − ŷ)y + (ỹẑ − ŷz̃)x)

)
+ η̂

(
(ỹ − y)y + (yz̃ − ỹz)x)

)
+ η̃

(
(y − ŷ)y + (ŷz − yẑ)x)

)]
.

For the variable η, the formula for ̂̃η is somewhat long to be listed here. One can check the

coincide relation ̂̃η = ̂̃η = ˜̂η by means of mathematical softwares, e.g., Mathematica, which
holds only if (4.10c) and its ( , ̂) and ( , ˜) versions hold, i.e.,

ξ̂ − ξ̃ = (ẑ − z̃)z, ξ − ξ̃ = (z − z̃)z, ξ̂ − ξ = (ẑ − z)z.

In conclusion, the alternative GD-4 (A-2) equation (4.10) as a system is MDC; although (4.10c)
is not needed for determining the up-right evolution of (4.10), it is necessary for the whole
system (4.10) to be MDC.

GD-4 (B-2) equation (4.12): We have unique expressions for the values ̂̃x, ̂̃z, ̂̃η and ̂̃y,
which are

̂̃x =
[
(x̂− x̃)ξ + (x̃− x)ξ̂ + (x− x̂)ξ̃

]
/
[
(ỹ − ŷ)x+ (ŷ − y)x̃+ (y − ỹ)x̂

]
,̂̃z = [

(ŷ − ỹ)ξ + (ỹ − y)ξ̂ + (y − ŷ)ξ̃
]
/[(ỹ − ŷ)x+ (ŷ − y)x̃+ (y − ỹ)x̂],

̂̃η =

(
x̂ξ − xξ̂

)
ỹ +

(
xξ̃ − x̃ξ

)
ŷ +

(
x̃ξ̂ − x̂ξ̃

)
y

(x̂− x)ỹ + (x− x̃)ŷ + (x̃− x̂)y
,

̂̃y =
1

ỹ−y
x̃−x + y−ŷ

x̂−x

[
G4(−p,−r) + (x− α3)

(
ξ̃ − ξ

)
− (ỹ − y)(α2 − α3x+ z)

x̃− x

+
−G4(−q,−r) + (−x+ α3)

(
ξ̂ − ξ

)
+ (ŷ − y)(α2 − α3x+ z)

x̂− x

]
.

The formula for
̂̃
ξ is too long to be listed here. The coincident relation

̂̃
ξ =

̂̃
ξ =

˜̂
ξ holds only

if (4.12c) and its ( , ̂) and ( , ˜) versions hold, i.e.,
η̂ − η̃ = (x̂− x̃)z, η − η̃ = (x− x̃)z, η̂ − η = (x̂− x)z. (C.2)
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Thus, the GD-4 (B-2) equation (4.12) as a system is MDC; (4.12c) is not needed for determining
the up-right evolution of (4.12), but it is necessary for the whole system (4.12) to be MDC.

Four-component GD-4 (A-2) equation (4.22): ̂̃u, ̂̃z and ̂̃v are uniquely expressed as

̂̃u =
[(
ξ̃ − ξ̂

)
zu+ ũ

(
− uξ̃ + û

(
ξ̃ − ξ̂

)
+ uξ + ξ̂z − ξz

)
+ û

(
uξ̂ − uξ − ξ̃z + ξz

)]
/

/
[
ũûz̃ − ũuz̃ − ûzz̃ + uzz̃ − ũûẑ + ûuẑ + ũzẑ − uzẑ + (ũ− û)(u− z)z

]
,

̂̃z = 1

ξ−ξ̃
z̃−z + ξ̂−ξ

ẑ−z

[
G4(−q,−a)/(û− z)(ẑ − z)−G4(−p,−a)/(ũ− z)(z̃ − z)

+
(α3 − u)(u− z)

(
−ξz̃ +

(
ξ − ξ̃

)
ẑ + ξ̂(z̃ − z) + ξ̃z

)
+ (z̃ − ẑ)G4(−r,−a)

(u− z)(z̃ − z)(z − ẑ)

]
,

̂̃v =
z
(
(ẑ − z̃)uξ +

(
z − ξ̂

)
zz̃ + (z̃ − z)zẑ +

(
ξ̃ − ξ̂

)
(u− z)z

)
+ C1 + C2

(û− u)ũz̃ + (u− û)zz̃ + (u− ũ)ûẑ + (ũ− u)zẑ + (ũ− û)(u− z)z
,

where

C1 = ũ
[(
uξ − ûξ̂

)
z̃ + (z − u)ξ̃z − (z − û)ξ̃ẑ +

(
ξ̃ − ξ

)
zz̃

]
,

C2 = û
[
− uξẑ +

(
− ξ̃ + ξ

)
zẑ + ξ̂(z̃ − z)z + uz

]
.

For the variable ξ, the formula for
̂̃
ξ is somewhat long to be listed here. The coincident relation̂̃

ξ =
̂̃
ξ =

˜̂
ξ holds only if (4.22b) and its ( , ̂) and ( , ˜) versions hold, i.e.,

ṽ − v̂ = u(ũ− û), ṽ − v = u(ũ− u), v̂ − v = u(û− u).

This indicates that the four-component GD-4 (A-2) equation (4.22) as a system is MDC; (4.22b)
is not needed for determining the up-right evolution of (4.22), but it is necessary for the whole
system (4.22) to be MDC.

Alternative four-component GD-4 (A-2) equation (4.23): For z, w and ξ, their triple
shifts are uniquely expressed as

̂̃z = ϖ(z̃ − ẑ)(w − z)− ϖ̂(w − ẑ)(z̃ − z) + ϖ̃(w − z̃)(ẑ − z)

(z̃ − z)ŵẑ + (ẑ − z̃)wz + (z − ẑ)w̃z̃ + w
(
z̃ − z)w + (ẑ − z)w̃ + (z − z̃)ŵ

) ,
̂̃w =

1
ϖ̃−ϖ
w̃−w + ϖ−ϖ̂

ŵ−w

[
1

w − ŵ

(
(w̃ − ϖ̂)ϖ + (ŵ − w)ϖ̃ + ϖ̂(w − w̃)(α3 − z)

w̃ − w
− G4(−q,−b)

w − ẑ

)
+

1

w̃ − w

(
(ŵ − w̃)G4(−r,−b)
(ŵ − w)(w − z)

− G4(−p,−b)
w − z̃

)]
,

̂̃
ξ =

−ϖ(ww̃ − wŵ − w̃z̃ + ŵẑ)(w − z) + ϖ̃(w − z̃)(−wŵ + ww + ŵẑ − wz) + C3

ŵz̃ẑ − wz̃z − ŵẑz + wẑz + w̃z̃(z − ẑ) + w
(
wz̃ + w̃ẑ − wẑ − w̃z + ŵ(z − z̃)

) ,
where

C3 = ϖ(w − ẑ)(w(w̃ − w)− w̃z̃ + wz).

For the variable ϖ, the formula for ̂̃ϖ is long and one can check the coincident relation ̂̃ϖ =̂̃ϖ = ˜̂ϖ holds only if (4.23c) and its ( , ̂) and ( , ˜) versions hold, i.e.,
ξ̂ − ξ̃ = (ẑ − z̃)z, ξ − ξ̃ = (z − z̃)z, ξ̂ − ξ = (ẑ − z)z.

In conclusion, the four-component alternative GD-4 (A-2) equation (4.23) as a system is MDC;
although (4.23c) is not needed for determining the up-right evolution of (4.23), it is necessary
for the whole system (4.23) to be MDC.
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