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Abstract. We present a reciprocal transformation which links the Geng–Xue equation to
a particular reduction of the first negative flow of the Boussinesq hierarchy. We discuss two
reductions of the reciprocal transformation for the Degasperis–Procesi and Novikov equa-
tions, respectively. With the aid of the Darboux transformation and the reciprocal trans-
formation, we obtain a compact parametric representation for the smooth soliton solutions
such as multi-kink solutions of the Geng–Xue equation.
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1 Introduction

The Degasperis–Procesi (DP) equation

mt + 3uxm+ umx = 0, m = u− uxx

was derived by applying the method of asymptotic integrability to a many-parameter family of
third order dispersive PDEs [9]. It may be viewed as an approximate model describing shallow
water wave propagation in the small amplitude and long wavelength regime [7, 10, 16, 17]. The
DP equation is a completely integrable equation. It admits a Lax pair, bi-Hamiltonian structure,
and is reciprocally related to a negative flow in the Kaup–Kupershmidt hierarchy [8]. Moreover,
the DP equation has been studied by the inverse scattering method [1, 6], and was shown
to possess various periodic-wave solutions and travelling-wave solutions [19, 37]. Its smooth
multi-soliton solutions were constructed by means of the τ function approach, Riemann–Hilbert
method, dressing method and Darboux transformation (DT) [1, 5, 24, 30]. In particular, the DP
equation is an equation of Camassa–Holm (CH) type, which has an unusual feature of admitting
non-analytic solutions called peakons [26, 27]. There exists an interesting connection between
the DP peakon lattice and the finite C-Toda lattice [3].

By using the method of perturbative symmetry to classifying integrable equations of gener-
alised CH form, a new equation with cubic nonlinearity

mt + u2mx + 3uuxm = 0, m = u− uxx

was discovered by Vladimir Novikov [33]. Soon afterwards, Hone and Wang [15] confirmed
its integrability by presenting a Lax representation, infinitely many conserved quantities as
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well as a bi-Hamiltonian structure. They also related this equation to a negative flow of the
Sawada–Kotera hierarchy via a reciprocal transformation. Smooth multi-soliton solutions of
the Novikov equation have been presented via several approaches such as the Hirota bilinear
method, Riemann–Hilbert method and DT [2, 31, 39]. Furthermore, multipeakons of the Novikov
equation may be computed by the inverse spectral method [14]. Dynamical system of the
multipeakons of the Novikov equation is a Hamiltonian system, which is connected to the finite
Toda lattice of BKP type [4, 15].

Subsequently, Geng and Xue [12] proposed a two-component generalization of the Novikov
equation and the DP equation

mt + 3uxvm+ uvmx = 0,

nt + 3vxun+ uvnx = 0, m = u− uxx, n = v − vxx. (1.1)

Indeed, for u = 1 and u = v, the Geng–Xue equation (1.1) reduces to the DP equation and the
Novikov equation, respectively. This equation is a completely integrable system with a Lax pair
and bi-Hamiltonian structure [12, 22]. The homogeneous and local properties of the Hamiltonian
functionals were discussed [20]. Also, the Geng–Xue equation is related to a negative flow in
a modified Boussinesq hierarchy by a reciprocal transformation [23] and the behaviour of the
bi-Hamiltonian structures under the transformation was studied [21]. Moreover, the Geng–Xue
equation was shown to admit multi-peakon solutions [28, 29, 35] and its Cauchy problem was
considered [13, 36]. However, to the best of our knowledge, smooth solutions such as multi-
soliton solutions of the Geng–Xue equation have not been constructed.

The purpose of this paper is to propose a method for building soliton solutions of the Geng–
Xue equation. To this end, we find it is convenient to relate the Geng–Xue equation to a par-
ticular reduction of the first negative flow in the Boussinesq hierarchy via a reciprocal transfor-
mation. Different from the works of [21, 23], this reciprocal transformation may be reduced to
that of the DP equation and the Novikov equation. Furthermore, by combining the reciprocal
transformation with DT of the negative flow in the Boussinesq hierarchy, we are able to obtain
a parametric representation for the multi-kink solutions of the Geng–Xue equation.

The paper is arranged as follows. In Section 2, we introduce a reciprocal transformation and
relate the Geng–Xue equation to a particular reduction of the first negative flow of the Boussinesq
hierarchy. The reductions of the reciprocal transformation to the DP equation and the Novikov
equation will also be discussed. In Section 3, with the aid of the reciprocal transformation
and DT, we construct the smooth multisoliton or multi-kink solutions of the Geng–Xue equation.
Interestingly the solutions will be represented in terms of Wronksians, and the simplest nontrivial
cases will be given explicitly.

2 A reciprocal transformation and negative flow
of the Boussinesq hierarchy

In this section, we present a proper reciprocal transformation and establish a link between the
Geng–Xue equation and a special negative flow of the Boussinesq hierarchy. Also, we consider the
possible reductions of the reciprocal transformation and show that the reciprocal transformations
for both the DP equation and Novikov equation are recovered.

2.1 A reciprocal transformation of the Geng–Xue equation

The Geng–Xue equation (1.1) has a Lax representation [12], namely it is the compatibility
condition of

Φx =MΦ, Φt = NΦ, (2.1)
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where Φ = (φ1, φ2, φ3)
T and

M =

0 mλ 1
0 0 nλ
1 0 0

 , N =


−uxv

ux
λ

− uvmλ uxvx
v

λ
uxv − uvx −

1

λ2
−uvnλ− vx

λ
−uv u

λ
uvx

 .

Use of the above linear spectral problem (2.1) and a standard algorithm lead to infinitely many
conservation laws for the Geng–Xue equation. One of them is

ht = −(uvh)x, h = (mn)
1
3 ,

which allows us to introduce new independent variables y and τ via the following reciprocal
transformation

dy = hdx− uvhdt, dτ = dt. (2.2)

Setting w = (mn )
1
3 and eliminating φ1, φ2, we find that the linear system (2.1) may be rewritten

in terms of φ ≡ φ3 as[
(wh)−

3
2 (h(hφy)y − φ)

]
y
− λ2h

1
2w− 3

2φ = 0,

φτ − λ−2u(wh)−
3
2 [h(hφy)y − φ]− uvyhφ = 0. (2.3)

To bring (2.3) into a familiar form, we introduce a gauge transformation

φ = h−
1
2w

1
2ϕ, (2.4)

and have

ϕyyy + ξϕy + ηϕ = λ2ϕ, ϕτ −
p

λ2
[
ϕyy + qϕy +

(
ξ − qy + q2

)
ϕ
]
= 0, (2.5)

where

p = uh
1
2w− 3

2 , q =
wy

w
(2.6)

and

ξ =
3wyy

2w
−

9w2
y

4w2
− hyy

2h
+
h2y − 4

4h2
, η = ξy −

wyyy + ξwy

w
+

6wywyy

w2
−

6w3
y

w3
.

It is noted that the first equation of (2.5) is the linear spectral problem of the Boussinesq
hierarchy. Now, the compatibility condition of the two equations of (2.5) yields the associated
Geng–Xue equation, which reads

ξτ = −3py, s1y = 0, ητ = −3pyy − 3(pq)y, s2 = 0, (2.7)

where

s1 = pyy + 3pyq + 3pq2 + ξp+ 1, s2 = η − ξy + qyy − 3qqy + ξq + q3.

It is mentioned that the Geng–Xue equation under the transformation (2.2) implies the as-
sociated Geng–Xue equation (2.7). As system (2.7) possesses a Lax pair, one may construct
infinitely many conserved quantities for it. Furthermore, it passes the standard Painlevé test of
Weiss, Tabor and Canevale (WTC) [38].
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As mentioned, the spatial part of the spectral problem (2.5) is the one for the Boussinesq
hierarchy. The first equation in this hierarchy is the Boussinesq equation [34, 41]

ξt = −ξxx + 2ηx, ηt = ηxx −
2

3
(ξxxx + ξξx).

Thus the associated Geng–Xue equation (2.7) should have connection with a particular flow of
this hierarchy. To see it, let us consider a more general spectral problem

ϕyyy + ξϕy + ηϕ = λ2ϕ,

ϕτ −
1

λ2

[
aϕyy + bϕy +

1

3
(2aξ − 3by − ayy)ϕ

]
= 0.

Its compatibility condition yields(
ξ
η

)
τ

= J1

(
a
b

)
,

(
z1
z2

)
≡ J2

(
a
b

)
= 0, (2.8)

where

J1 =

(
−3∂ 0
−3∂2 −3∂

)
,

J2 =

(
∂4 + ξ∂2 − ∂ξy + 3η∂ + 2ηy 2∂3 + ξ∂ + ∂ξ

1
3

(
∂5 + ξ∂3 − 2∂3ξ − 2ξ∂ξ

)
+ 3∂η∂ + ηyy ∂4 + ξ∂2 + 3η∂ + ηy

)
.

It is not difficult to check that J2J
−1
1 is the well-known recursion operator of the Boussinesq

hierarchy, and hence the system (2.8) is just the first negative flow in the Boussinesq hierarchy.
Now, setting a = p, b = pq, we have the following relation(

z1
z2

)
=

(
∂ − q 2p∂ + 3py

1
3∂

2 +
(
qy − 2

3ξ − q2
)

p∂2 + (3py + pq)∂ + 3pyy + 3(pq)y

)(
s1y
s2

)
.

Thus, the associated Geng–Xue equation (2.7) indeed is a particular reduction of the negative
Boussinesq equation (2.8).

2.2 Reductions of the reciprocal transformation

Recall that the Geng–Xue equation may be reduced to the DP equation and the Novikov equa-
tion by setting u = 1 and u = v respectively. So it is interesting to consider the reciprocal
transformation (2.2) under these reductions.

Case 1: u = 1. In this case, the reciprocal transformation (2.2) becomes

dy = hdx− vhdt, dτ = dt,

where h = n
1
3 . A direct calculation shows that the associated equation (2.7) and the spectral

problem (2.5) reduce to

ξτ = −6hhy, 2hyyy + hξy + 2ξhy = 0,

and

ϕyyy + ξϕy +
1

2
ξyϕ = λ2ϕ, ϕτ =

1

λ2
[
h2ϕyy − hhyϕy +

(
h2y − hhyy − 1

)
ϕ
]
,

respectively. These are just the associated DP equation and its spectral problem [8, 24].
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Case 2: u = v. Now, the reciprocal transformation (2.2) turns into

dy = hdx− u2hdt, dτ = dt,

where h = m
2
3 . In this case, the spectral problem (2.5) becomes

ϕyyy + ξϕy + ξyϕ = λ2ϕ, ϕτ =
p

λ2
(ϕyy + ξϕ), (2.9)

where

ξ = −hyy
2h

+
h2y
4h2

− 1

h2
, p = uh

1
2 .

Meanwhile, (2.7) yields

ξτ = −3py, (pyy + pξ)y = 0. (2.10)

Setting ϕ = ψy, from (2.9) we have

ψyyy + ξψy = λ2ψ, ψτ =
1

λ2
(pψyy − pyψy + pyyψ + pξψ). (2.11)

It is easy to see that by integrating the second equation of (2.10) and substituting it into (2.11),
we reach the results appeared in [15, 39].

3 Multisoliton solutions of the Geng–Xue equation

In the previous section, we have related the Geng–Xue equation (1.1) to the associated equa-
tion (2.7), which was shown to be a reduction of the first negative flow in the Boussinesq
hierarchy. In what follows, we will take a similar approach as done for the CH, modified CH
and DP equations [24, 25, 40] and explain that this connection, together with the DT for the
associated Geng–Xue equation, allows us to propose an algorithm to build multisoliton solutions
of the Geng–Xue equation.

As a first step, we have the following

Proposition 3.1. The spectral problem (2.5) is covariant with respect to the following N -DT

ϕ[N ] =
W (f1, f2, . . . , fN , ϕ)

WN
,

ξ[N ] = ξ + 3(lnWN )yy,

η[N ] = η +

(
Nξ +

3

2
[(lnWN )y]

2 + 3(lnWN )yy −
3FN

WN

)
y

,

p[N ] = p− (lnWN )yτ ,

q[N ] =
1

p[N ]

(
pq +Npy − (lnWN )y(lnWN )yτ +

(
FN

WN

)
τ

)
, (3.1)

where f1, . . . , fN are solutions of the spectral problem (2.5) at λ = λ1, . . . , λN , respectively.
W denotes the Wronskian,

WN =W (f1, f2, . . . , fN ) =

∣∣∣∣∣∣∣
f1 · · · f

(N−1)
1

...
...

fN · · · f
(N−1)
N

∣∣∣∣∣∣∣ =
∣∣f, . . . , f (N−1)

∣∣ = ∣∣N̂ − 1
∣∣,
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and

FN =


0, N = 1,

W (f1y, f2y), N = 2,∣∣N̂ − 3, N − 1, N
∣∣, N ≥ 3.

Here and in the sequel all determinant notations are adopted according to [11].

Proof. For the Lax operator L = ∂3y + ξ∂y + η, it is well known that the operator of the 1-DT

is given by T1 = ∂y − f1y
f1

(see [18, 32]). It is straightforward to check that the transformed
variables solve

(ϕ[1])yyy + ξ[1](ϕ[1])y + η[1]ϕ[1] = λ2ϕ[1],

(ϕ[1])τ −
p[1]

λ2
(
(ϕ[1])yy + q[1](ϕ[1])y +

(
ξ[1]− (q[1])y + q[1]2

)
ϕ[1]

)
= 0,

namely the proposition is valid for N = 1 case. For the general case, we may assume that the
operator of the N -DT takes the form T = ∂Ny +a1∂

N−1
y + · · ·+aN , where coefficients a1, . . . , aN

are functions of f1, . . . , fN and their derivatives with respect to y. Hence, for this iterated DT,
we have

L̂T = TL, L̂ = ∂3y + ξ[N ]∂y + η[N ]. (3.2)

Plugging the expressions of T , L into the first equation of (3.2) and considering the coefficients
of ∂N+1 and ∂N , we obtain

ξ[N ] = ξ − 3a1y, η[N ] = η +Nξy + 3a1a1y − 3a1yy − 3a2y. (3.3)

The coefficients of the operator T may be determined from the conditions Tfi = 0, 1 ≤ i ≤ N .
In other words, we have

aNfi + aN−1f
(1)
i + · · ·+ a1f

(N−1)
i = −f (N)

i , i = 1, . . . , N. (3.4)

Using Cramer’s rule, we obtain from the system (3.4) that

a1 = −
∣∣N̂ − 2, N

∣∣∣∣N̂ − 1
∣∣ , a2 =

∣∣N̂ − 3, N − 1, N
∣∣∣∣N̂ − 1

∣∣ .

Substituting them into (3.3), we have

ξ[N ] = ξ + 3(lnWN )yy, η[N ] = η +

(
Nξ +

3

2
[(lnWN )y]

2 + 3(lnWN )yy −
3FN

WN

)
y

.

In addition, the iterated formulae for p, q may be acquired by substituting ξ[N ], η[N ] into the
associated Geng–Xue equation (2.7). This completes the proof. ■

Next, let us start with the trivial solution u = u0, v = v0 of the Geng–Xue equation, where
u0, v0 are positive constants. Then the corresponding seed solution in the above DT reads
ξ = −k−2, p = k2, η = q = 0, where k = (u0v0)

1
3 . To calculate the solutions fj of the

system (2.5) at λj , j = 1, . . . , N , it is convenient to assume αj , βj , −αj −βj being three distinct
roots of the cubic equation ω3− k−2ω = λ2j . Now, without loss of generality, from (2.5) we have

fj = eϑj + δje
σj , 1 ≤ j ≤ N, (3.5)
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where

ϑj = αjy +
k2

αj
τ + c1j , σj = βjy +

k2

βj
τ + c2j .

Herein c1j , c2j , δj are arbitrary constants. To build real solutions of the Geng–Xue equation,
let us assume αj − βj = pj > 0 and rewrite (3.5) as

fj = e
ϑj+σj

2
(
eθj + δje

−θj
)
, θj =

1

2

(
pjy +

3k2pj
p2j − k−2

τ + c1j − c2j

)
.

It is noted that 1, ey/k and e−y/k constitute a fundamental set of solutions of the first equation
of (2.5) at λ = 0 with the seed ξ = −k−2, p = k2, η = q = 0. With the help of the fj ’s given
by (3.5), it follows immediately from Proposition 3.1 that for the N -th iterated spectral problem

(ϕ[N ])yyy + ξ[N ](Φ[N ])y + η[N ]Φ[N ] = 0

at λ = 0 we may calculate its solutions, and in particular we have

ϕ[N ] = ν1ϕ
1[N ] + ν2ϕ

2[N ] + ν3ϕ
3[N ],

p[N ] = k21 − (lnWN ))yτ ,

q[N ] =
1

p[N ]

((
FN

WN

)
τ

− (lnWN )y(lnWN )yτ

)
, (3.6)

where νi, i = 1, 2, 3, are arbitrary constants and

ϕ1[N ] =
W (f1, . . . , fN , 1)

WN
, ϕ2[N ] =

W
(
f1, . . . , fN , e

1
k
y
)

WN
,

ϕ3[N ] =
W
(
f1, . . . , fN , e

− 1
k
y
)

WN
. (3.7)

Direct calculations show that the asymptotic behaviours of the wave functions ϕ1[N ], ϕ2[N ],
ϕ3[N ] are given by

ϕ1[N ] ∼


(−1)N

N∏
i=1

αi, y → +∞,

(−1)N
N∏
i=1

βi, y → −∞,

ϕ2[N ] ∼


e

1
k
y

N∏
i=1

(
1

k
− αi

)
, y → +∞,

e
1
k
y

N∏
i=1

(
1

k
− βi

)
, y → −∞,

ϕ3[N ] ∼


e−

1
k
y

N∏
i=1

(
−1

k
− αi

)
, y → +∞,

e−
1
k
y

N∏
i=1

(
−1

k
− βi

)
, y → −∞.

(3.8)

Next, we work out the coordinate transformation between the independent variables x, t
and y, τ . To this end, we consider the spectral problem in (2.1) at λ = 0 which yields

φxx − φ = 0, (3.9)
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for φ = φ3. As ex and e−x form a fundamental set of solutions of (3.9), in view of the gauge
transformation (2.4), they may be represented as

ex =
(w
h

)1/2 (
c1ϕ

1[N ] + c2ϕ
2[N ] + c3ϕ

3[N ]
)
,

e−x =
(w
h

)1/2 (
d1ϕ

1[N ] + d2ϕ
2[N ] + d3ϕ

3[N ]
)
,

where the coefficients ck, dk, k = 1, 2, 3, are independent of y. Taking account of the asymptotic
behaviours (3.8), we find

ex = c2

(w
h

)1/2
ϕ2[N ], e−x = d3

(w
h

)1/2
ϕ3[N ],

which further imply

x = c+
1

2
ln

(
ϕ2[N ]

ϕ3[N ]

)
,

where c = c(τ). Differentiating above equation with respect to τ and using the reciprocal
transformation (2.2), we have

xτ = cτ +
1

2

(
ln
ϕ2[N ]

ϕ3[N ]

)
τ

= uv,

then by taking the limit y → ∞, we find cτ = u0v0 = k3, which leads to c = k3τ + d with d as
an integration constant. Thus we obtain

x = k3τ +
1

2
ln

(
ϕ2[N ]

ϕ3[N ]

)
+ d. (3.10)

For temporal variables, from (2.2) we have

t = τ. (3.11)

Finally, we need to work out the transformation formulae for the field variables u, v, which
can be done by means of (2.6) and the reciprocal transformation (2.2). In particular, we may
deduce w from q[N ] =

wy

w . It is interesting to observe that for p[N ] and q[N ], we have

p[N ] =W (g1, . . . , gN )W (f ′1, . . . , f
′
N )

(
k

WN

)2

, (3.12)

q[N ] = −
(
ln
W (g1, g2, . . . , gN )

WN

)
y

, (3.13)

where gi = λ−2
i

(
fiyy−k−2fi

)
, i ≥ 1. The proof of (3.12) and (3.13) is presented in the appendix.

Summarizing above discussions, we have

Proposition 3.2. The Geng–Xue equation admits the parametric representation of the multi-
kink solutions

u = k2ℓW (f ′1, . . . , f
′
N )

(
xy

WNW (g1, g2, . . . , gN )

) 1
2

, v =
xτ
u
,

where x, t are defined by (3.10) and (3.11), ℓ is an integration constant, and ϕ2[N ], ϕ3[N ] are
given by (3.7), respectively.
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It may be checked that for the solution presented above both potentials u and v have different
asymptotic behaviors as y → ∞ and y → −∞. This is a indication that the solution is of kink-
type.

In the rest part of this section, we consider the simplest cases and present two examples.

Example 3.3 (1-kink solution). For N = 1, let us take

f1 = eϑ1 + δ1e
σ1 , g1 = λ−2

1

(
f1yy − k−2f1

)
,

where δ1 may be chosen as ±1. Direct computations show that the DT (3.1) yields

ϕ2[1] =

(
1

k
− f1y

f1

)
e

1
k
y, ϕ3[1] = −

(
1

k
+
f1y
f1

)
e−

1
k
y,

p[1] = k2 − k2
(
g1
f1

)
y

, q[1] = −f1
g1

(
g1
f1

)
y

.

Then, application of Proposition 3.2 allows us to have the following solution of the Geng–Xue
equation

x =
1

k
y + k3τ +

1

2
ln

(
k̄1
f1y − 1

kf1

f1y +
1
kf1

)
, t = τ,

u = k2
f1y
f1

(
k̄2
f1
g1
xy

) 1
2

, v =
k3f1y

(
f1y − 1

k2
g1
)(

f1y − 1
kf1
)(
f1y +

1
kf1
)
u
. (3.14)

Here and in the sequel, all k̄i, i ∈ Z, are assumed to be arbitrary constants. We take α1, β1, λ
2
1

as real constants so that we have the real-valued solutions. Furthermore, assuming that δ1 = 1,
0 < kp1 < 1, our solutions will be non singular. Under these assumptions and substituting the
expressions of f1, g1 into the solution (3.14), we obtain a parameter representation of 1-kink
solution of the Geng–Xue equation

x = k̄3 +
1

k
y + k3τ +

1

2
ln

(
2
k − r1

)
cosh θ1 − p1 sinh θ1(

2
k + r1

)
cosh θ1 + p1 sinh θ1

, t = τ,

u =
k̄4(p1 sinh θ1 + r1 cosh θ1)√

r21 cosh(2θ1)− p1r1 sinh(2θ1) + p21 + r21
,

v =
k3r1

[
3k2p1r1 sinh θ1 −

(
k2p21 + 2

)
cosh θ1

]
k̄4
(
k2p21 − 1

)√
r21 cosh(2θ1)− p1r1 sinh(2θ1) + p21 + r21

,

where k̄3 = ln
(
−k̄
)
and θ1 = 1

2

(
p1y +

3k2p1
p21−k−2 τ + θ10

)
, r1 = α1 + β1 = ±

√
4

3k2
− 1

3p
2
1 with θ10

any constant.
We now consider the first a few conserved quantities for the 1-kink solution. The Geng–Xue

equation is known to possess infinitely many conserved quantities [12, 20, 22, 23], and among
them the first three are

I1 =

∫ ∞

−∞
hdx, I2 =

∫ ∞

−∞
un dx, I3 =

∫ ∞

−∞
uxn dx.

Since 1-kink solution of the Geng–Xue equation is not explicit and written in parametric form,
we consider Ii under (2.2), namely,

I1 =

∫ ∞

−∞
1 dy, I2 =

∫ ∞

−∞

un

h
dy, I3 =

∫ ∞

−∞
uyn dy.
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Figure 1. One-kink for u at k̄3 = θ10 = 0,

p1 = 1, k1 = 1
2 , k̄4 = 1, r1 =

√
5.

Figure 2. One-antikink for v at k̄3 = θ10 = 0,

p1 = 1, k1 = 1
2 , k̄4 = 1, r1 =

√
5.

Thus, for the 1-kink solution we have

I2 =

∫ ∞

−∞
p dy = k2

∫ ∞

−∞

[
1−

(
g1
f1

)
y

]
dy = k2I1 − k2

∫ ∞

−∞

(
g1
f1

)
y

dy

= k2I1 −
k2

λ21

(
α2
1 − β21

)
≡ −k

2

λ21
p1r1 (mod I1).

For I3, using definition of p together with

xy =
1

k
+

1

2

(
f1yy − 1

kf1y

f1y − 1
kf1

−
f1yy +

1
kf1y

f1y +
1
kf1

)
=

λ21f1g1

k
(
f21y − 1

k2
f21
) ,

we arrive at

I3 =

∫ ∞

−∞

uy
u
phdy =

∫ ∞

−∞

k2 − k2
( g1
f1

)
y

xy

[
f1yy
f1y

− f1y
2f1

+
xyy
2xy

− g1y
2g1

]
dy

=

∫ ∞

−∞

k2g1f1y
xyf21

[
f1yy
f1y

−

(
f21y − 1

k2
f21
)
y

2
(
f21y − 1

k2
f21
)] dy = − k

λ21

∫ ∞

−∞

(
f1y
f1

)
y

dy = − k

λ21
p1.

Example 3.4 (2-kink solution). For N = 2, we may take

fi = eϑi + δie
σi , gi =

1

λ2i

(
fiyy − k−2fi

)
, i = 1, 2,

where δ1, δ2 are allowed to be ±1. From (3.6), it follows that

ϕ2[2] =
W
(
f1, f2, e

1
k
y
)

W (f1, f2)
, ϕ3[2] =

W
(
f1, f2, e

− 1
k
y
)

W (f1, f2)
,

p[2] = k2 − [lnW (f1, f2)]yτ , q[2] =
1

p[2]

(
W (f1y, f2y)

W (f1, f2)
− 1

2

(
Wy(f1, f2)

W (f1, f2)

)2
)

τ

.

Notice that giy = fi, fiτ = k2gi, i = 1, 2. Then, after some direct calculations, we find

ϕ2[2]

ϕ3[2]
= e

2
k
yG1

G2
, p[2] = k2

W (g1, g2)W (f1y, f2y)

W 2(f1, f2)
, q[2] =

(
ln
W (f1, f2)

W (g1, g2)

)
y

,
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Figure 3. Two-kink for u. Figure 4. Two-kink for v.

where

G1 =W

(
f1y −

1

k
f1, f2y −

1

k
f2

)
, G2 = G1|k→−k.

Following Proposition 3.2 and after tedious calculations, we may get a parameter representation
of exact solution

x = k̄5 +
1

k
y + k3τ +

1

2
ln
G1

G2
, t = τ,

u = k̄6
W (f1y, f2y)√

G1G2
, v =

k3

k̄6
√
G1G2

W

(
f1y −

1

k2
g1, f2y −

1

k2
g2

)
.

Hereafter, to obtain real solution without singularity, let us assume that αi, βi, λ
2
i are real and

δ1 = δ2 = 1. Then we may establish the parameter representation of the 2-kink solution of the
Geng–Xue equation. A profile of 2-kink solution is plotted in Figures 3 and 4 for the parameters

p1 = 2, p2 =
3
2 , r1 = α1 + β1 =

√
7, r2 = α2 + β2 = −

√
91
12 , k̄5 = θ10 = θ20 = 0, k = 2

5 , k̄6 = 1.

A Proof of (3.12) and (3.13)

For N = 1, 2, the validity of (3.12), (3.13) has been shown in Examples 3.3 and 3.4. In general
case, we first introduce the following two matrices M , M̄ and N -dimensional column vectors g,
f , a, b, d as

M =

 f ′1 · · · f
(N−2)
1

...
...

...

f ′N · · · f
(N−2)
N

 , M̄ =

 f ′1 · · · f
(N−3)
1 f

(N−1)
1

...
...

...
...

f ′N · · · f
(N−3)
N f

(N−1)
N

 ,

(g, f ,a,b,d) =

 g1 f1 f
(N−2)
1 f

(N−1)
1 f

(N)
1

...
...

...
...

...

gN fN f
(N−2)
N f

(N−1)
N f

(N)
N

 .

Now we assume N ≥ 3 and note fjτ = k2gj , then we deduce

p[N ] = k2 − k2
(
|g,M,b|
WN

)
y
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Figure 5. Two-kink solution for u at τ = −200,

−100, 0, 100, 200.

Figure 6. Two-kink solution for v at τ = −200,

−100, 0, 100, 200.

=
k2

W 2
N

(
|g,M,b|WNy − |g,M,d|WN

)
=

k2

W 2
N

(
|M,g,b||M, f ,d| − |M, f ,b||M,g,d|)

=
k2

W 2
N

|M,g, f ||M,b,d|

=
k2

W 2
N

W (g1, . . . , gN )W (f ′1, . . . , f
′
N ),

where the Plücker identity

|M,g, f ||M,b,d| − |M,g,b||M, f ,d|+ |M,g,d||M, f ,b| = 0 (A.1)

is used.
Next we consider (3.13). Indeed, we have

q[N ] =
1

p[N ]

(
(FN/WN )τ − (lnWN )y(lnWN )yτ

)
=

1

p[N ]

(
WNy

(
p[N ]− k2

)
WN

+
FNτWN − FNWNτ

W 2
N

)

=
WNy

WN
+
FNτWN − FNWNτ − k2WNWNy

k2ŴN

=
WNy

WN
+

∣∣M̄,g,d
∣∣∣∣M̄,a, f

∣∣+ ∣∣M̄,g,a
∣∣∣∣M̄, f ,d

∣∣
ŴN

=
WNy

WN
+

∣∣M̄,a,d
∣∣∣∣M̄,g, f

∣∣
ŴN

=
WNy

WN
− Wy(g1, . . . , gN )

W (g1, . . . , gN )
,

where ŴN =W (g1, . . . , gN )W (f ′1, . . . , f
′
N ) and an identity similar to (A.1) is used again.
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