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Abstract. Given a Lie algebroid with a representation, we construct a graded Lie algebra
whose Maurer–Cartan elements characterize relative Rota–Baxter operators on Lie alge-
broids. We give the cohomology of relative Rota–Baxter operators and study infinitesimal
deformations and extendability of order n deformations to order n+1 deformations of rela-
tive Rota–Baxter operators in terms of this cohomology theory. We also construct a graded
Lie algebra on the space of multi-derivations of a vector bundle whose Maurer–Cartan ele-
ments characterize left-symmetric algebroids. We show that there is a homomorphism from
the controlling graded Lie algebra of relative Rota–Baxter operators on Lie algebroids to the
controlling graded Lie algebra of left-symmetric algebroids. Consequently, there is a natural
homomorphism from the cohomology groups of a relative Rota–Baxter operator to the de-
formation cohomology groups of the associated left-symmetric algebroid. As applications,
we give the controlling graded Lie algebra and the cohomology theory of Koszul–Vinberg
structures on left-symmetric algebroids.
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1 Introduction

In this paper we use Maurer–Cartan elements to study deformations and cohomologies of relative
Rota–Baxter operators on Lie algebroids. Applications are given to study deformations and
cohomologies of Koszul–Vinberg structures on left-symmetric algebroids.

1.1 Relative Rota–Baxter operators on Lie algebroids
and Koszul–Vinberg structures

The concept of Rota–Baxter operators on associative algebras was introduced by G. Baxter [3]
and G.-C. Rota [40, 41] in the 1960s. It also plays an important role in the Connes–Kreimer’s
algebraic approach [8] to the renormalization in perturbative quantum field theory. In [23], Ku-
pershmidt introduced the notion of a relative Rota–Baxter operator (also called an O-operator)
on a Lie algebra in order to better understand the relationship between the classical Yang–Baxter
equation and the related integrable systems. In addition, the defining relationship of a relative
Rota–Baxter operator was also called the Schouten curvature in [22]. See [6, 11, 17, 18, 19, 39, 45]
for more details on relative Rota–Baxter operators and their applications.
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The notion of a Lie algebroid was introduced by Pradines in 1967, which is a generalization of
Lie algebras and tangent bundles. See [30] for the general theory about Lie algebroids. Relative
Rota–Baxter operators (also called O-operators) on Lie algebroids were introduced in [28] as
a method to construct left-symmetric algebroids. The notion of a left-symmetric algebroid is
a geometric generalization of a left-symmetric algebra (also called pre-Lie algebras, see the survey
article [5] for more details). See [4, 28, 33, 34] for more details and applications of left-symmetric
algebroids.

In [26], motivated by the theory of Lie bialgebroids [31], the notion of a left-symmetric
bialgebroid was introduced as a geometric generalization of a left-symmetric bialgebra [2]. The
double of a left-symmetric bialgebroid is not a left-symmetric algebroid anymore, but a pre-
symplectic algebroid [27]. This result is parallel to the fact that the double of a Lie bialgebroid
is a Courant algebroid [29]. As a Poisson structure π on a manifold gives rise to a Lie bialgebroid,
a Koszul–Vinberg structure H on a flat manifold gives rise to a left-symmetric bialgebroid. In
particular, if the Koszul–Vinberg structure H is nondegenerate, the inverse of H is a pseudo-
Hessian structure [42, 43] on a flat manifold. Therefore, Koszul–Vinberg structures and pseudo-
Hessian structures are respectively symmetric analogues of Poisson structures and symplectic
structures. See [1, 4, 47] for recent studies on Koszul–Vinberg structures.

1.2 Deformations and cohomologies

The theory of deformation plays a prominent role in mathematics and physics. The idea of
treating deformation as a tool to study the algebraic structures was introduced by Gerstenhaber
in his work on associative algebras [15, 16] and then was extended to Lie algebras by Nijenhuis
and Richardson [36, 38]. One remarkable result in Poisson geometry is that M. Kontsevich [21]
proved that every Poisson manifold has a deformation quantization. There is a well known
slogan, often attributed to Deligne, Drinfeld and Kontsevich: every reasonable deformation
theory is controlled by a differential graded Lie algebra, determined up to quasi-isomorphisms.

A suitable deformation theory of an algebraic structure can be summarized as the following
general principle: on the one hand, for a given object with an algebraic structure, there should
exist a differential graded Lie algebra whose Maurer–Cartan elements characterize deformations
of this object. On the other hand, there should exist a suitable cohomology so that the infinites-
imal of a formal deformation can be identified with a cohomology class, and then a theory of the
obstruction to the integration of an infinitesimal deformation can be developed using this coho-
mology theory. It is well-known that deformations of Poisson structures are controlled by the
differential graded Lie algebra constructed by the Schouten–Nijenhuis bracket of multi-vector
fields. Infinitesimal deformations and extendibility of order n deformations of a Poisson structure
are characterized in terms of the Poisson cohomology [20, 25]. There also exists a differential
graded Lie algebra and a deformation cohomology given by M. Crainic and I. Moerdijk in [9]
on the space of multi-derivations which controls deformations of Lie algebroids. See [13, 14] for
more details on simultaneous deformations of algebras and morphisms and their applications in
Poisson geometry.

1.3 Summary of the results and outline of the paper

Since Koszul–Vinberg structures are symmetric analogues of Poisson structures, while there is
a full developed deformation and cohomology theories for Poisson structures, it is natural to
develop the deformation and cohomology theories for Koszul–Vinberg structures. Note that
a Koszul–Vinberg structure on a left-symmetric algebroid is a relative Rota–Baxter operator on
its sub-adjacent Lie algebroid with respect to a certain representation (Proposition 6.5). Thus
we develop the deformation and cohomology theories for relative Rota–Baxter operators on Lie
algebroids first. Inspired by the construction of the differential graded Lie algebra controlling
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deformations of a relative Rota–Baxter operator on a Lie algebra in [44], we construct a suitable
differential graded Lie algebra that controls deformations of relative Rota–Baxter operators on
Lie algebroids. See [10, 44] for more details on cohomologies and deformations of relative Rota–
Baxter operators on Lie algebras and associative algebras. Following the idea of M. Crainic
and I. Moerdijk in [9], we also construct a differential graded Lie algebra that controls defor-
mations of a left-symmetric algebroid. There is a natural homomorphism from the controlling
algebra of relative Rota–Baxter operators to the controlling algebra of left-symmetric algebroids.
Using the controlling algebra of relative Rota–Baxter operators on Lie algebroids, we construct
a differential graded Lie algebra whose Maurer–Cartan elements are Koszul–Vinberg structures.
Consequently, we establish a cohomology theory for Koszul–Vinberg structures. We hope that
our study on Koszul–Vinberg structures will draw more attention to the geometry of Koszul–
Vinberg structures.

The paper is organized as follows. In Section 2, first we construct a differential graded Lie
algebra that controls deformations of relative Rota–Baxter operators on Lie algebroids. Then we
give the cohomology theories of relative Rota–Baxter operators on Lie algebroids induced by this
differential graded Lie algebra. In Section 3, we give the cohomology of Rota–Baxter operators
on Lie algebroids and analyze the cohomology of the Rota–Baxter operator on an action Lie
algebroid. In Section 4, first we show that infinitesimal deformations of a relative Rota–Baxter
operator are classified by the first cohomology group. Then for an order n deformation, we
define its obstruction class, which is a cohomology class in the second cohomology group, and
show that an order n deformation of a relative Rota–Baxter operator is extendable if and only
if its obstruction class is trivial. In Section 5, we construct a graded Lie algebra whose Maurer–
Cartan elements are precisely left-symmetric algebroids. The deformation cohomology of left-
symmetric algebroids can be given directly using this graded Lie algebra. We show that there is
a homomorphism from the controlling graded Lie algebra of relative Rota–Baxter operators on
Lie algebroids to the controlling graded Lie algebra of left-symmetric algebroids. Consequently,
there is a natural homomorphism from the cohomology groups of a relative Rota–Baxter operator
to the deformation cohomology groups of the associated left-symmetric algebroid. In Section 6,
we give the deformation and cohomology theories of Koszul–Vinberg structures on left-symmetric
algebroids as applications of the above general framework.

1.4 Conventions and notations

We will adopt the following notations and conventions throughout the paper. Let i, j be positive
integers. A permutation σ of {1, 2, . . . , i+ j} is called an (i; j)-unshuffle if σ(1) < · · · < σ(i) and
σ(i+ 1) < · · · < σ(i+ j). The set of all (i; j)-unshuffle will be denoted by S(i;j). The notion of
an (i1, . . . , ik)-unshuffle and the set S(i1,...,ik) are defined analogously.

2 Maurer–Cartan characterizations and cohomologies
of relative Rota–Baxter operators on Lie algebroids

2.1 The controlling algebra of relative Rota–Baxter operators
on Lie algebroids

In this subsection, given a Lie algebroid with a representation we construct a graded Lie algebra
whose Maurer–Cartan elements characterize relative Rota–Baxter operators on Lie algebroids.
Consequently, we obtain the differential graded Lie algebra that controls deformations of a rela-
tive Rota–Baxter operator.

Definition 2.1. A Lie algebroid structure on a vector bundle A −→ M is a pair that consists
of a Lie algebra structure [·, ·]A on the section space Γ(A) and a bundle map aA : A −→ TM ,
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called the anchor, such that the following relation is satisfied:

[x, fy]A = f [x, y]A + aA(x)(f)y, ∀f ∈ C∞(M), x, y ∈ Γ(A).

When the image of aA is of constant rank, we call A a regular Lie algebroid.

For a vector bundle E −→ M , we denote by D(E) the gauge Lie algebroid of the frame
bundle F(E), which is also called the covariant differential operator bundle of E. See [30] for
more details on the gauge Lie algebroid.

Let (A, [·, ·]A, aA) and (B, [·, ·]B, aB) be two Lie algebroids (with the same base), a base-
preserving homomorphism from A to B is a bundle map φ : A −→ B such that

aB ◦ φ = aA, φ[x, y]A = [φ(x), φ(y)]B, ∀x, y ∈ Γ(A).

Recall that a representation of a Lie algebroid A on a vector bundle E is a base-preserving
morphism ρ form A to the Lie algebroid D(E). Denote a representation by (E; ρ). The dual
representation of a Lie algebroid A on E∗ is the bundle map ρ∗ : A −→ D(E∗) given by

⟨ρ∗(x)(ξ), u⟩ = aA(x)⟨ξ, u⟩ − ⟨ξ, ρ(x)(u)⟩, ∀x ∈ Γ(A), ξ ∈ Γ(E∗), u ∈ Γ(E).

Given a representation (E; ρ), the cohomology ofA with coefficients in E is the cohomology of the
cochain complex (⊕+∞

k=0C
k(A, E), ∂ρ), where Ck(A, E) = Γ(Hom(∧kA, E)) and the coboundary

operator ∂ρ : C
k(A, E) → Ck+1(A, E) is defined by

∂ρϖ(x1, . . . , xk+1) =
k+1∑
i=1

(−1)i+1ρ(xi)ϖ(x1, . . . , x̂i, . . . , xk+1)

+
∑
i<j

(−1)i+jϖ([xi, xj ]A, x1, . . . , x̂i, . . . , x̂j , . . . , xk+1),

for ϖ ∈ Ck(A, E) and x1, . . . , xk+1 ∈ Γ(A).

Definition 2.2. A LieRep pair is a pair of a Lie algebroid (A, [·, ·]A, aA) and a representation ρ
of A on a vector bundle E. We denote a LieRep pair by (A, [·, ·]A, aA; ρ), or simply by (A; ρ).

Definition 2.3 ([28]). Let (A, [·, ·]A, aA; ρ) be a LieRep pair. A bundle map T : E −→ A is
called a relative Rota–Baxter operator on a LieRep pair (A, [·, ·]A, aA; ρ) if

[T (u), T (v)]A = T (ρ(T (u))(v)− ρ(T (v))(u)), ∀u, v ∈ Γ(E).

Definition 2.4. Let (g = ⊕k∈Zgk, [·, ·], d) be a differential graded Lie algebra. An element
θ ∈ g1 is called a Maurer–Cartan element of g if it satisfies

dθ +
1

2
[θ, θ] = 0.

In particular, a Maurer–Cartan element of a graded Lie algebra (g = ⊕k∈Zgk, [·, ·]) is an
element θ ∈ g1 satisfying [θ, θ] = 0.

Let (A, [·, ·]A, aA; ρ) be a LieRep pair. Consider the graded vector space

C∗(E,A) = ⊕k≥0Ck(E,A), where Ck(E,A) := Γ
(
Hom

(
∧kE,A

))
.

Now we give the controlling algebra of relative Rota–Baxter operators on Lie algebroids, which
is the main tool in the following study.
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Theorem 2.5. For P ∈ Cm(E,A) and Q ∈ Cn(E,A), we define a bracket operation

[[P,Q]] (u1, u2, . . . , um+n)

=
∑

σ∈S(m,1,n−1)

(−1)σP (ρ(Q(uσ(1), . . . , uσ(m)))uσ(m+1), uσ(m+2), . . . , uσ(m+n)) (2.1)

− (−1)mn
∑

σ∈S(n,1,m−1)

(−1)σQ(ρ(P (uσ(1), . . . , uσ(n)))uσ(n+1), uσ(n+2), . . . , uσ(m+n))

+ (−1)mn
∑

σ∈S(n,m)

(−1)σ[P (uσ(1), uσ(2), . . . , uσ(n)), Q(uσ(n+1), uσ(n+2), . . . , uσ(m+n))]A,

where u1, u2, . . . , um+n ∈ Γ(E). Then (C∗(E,A), [[·, ·]]) is a graded Lie algebra and its Maurer–
Cartan elements are precisely relative Rota–Baxter operators on (A; ρ).

Proof. It is straightforward to check that [[·, ·]] is skew-symmetric in all arguments and function
linear. Thus [[P,Q]] ∈ Cm+n(E,A) for all P ∈ Cm(E,A) and Q ∈ Cn(E,A), which implies that
[[·, ·]] is well defined.

It was shown in [44] that the bracket [[·, ·]] provides a graded Lie algebra structure on the
graded vector space ⊕k≥0HomR

(
∧kΓ(E),Γ(A)

)
. Thus (C∗(E,A), [[·, ·]]) is a graded Lie algebra.

Let T : E → A be a bundle map. By a direct calculation, we have

[[T, T ]] (u1, u2) = 2(T (ρ(Tu1)u2)− T (ρ(Tu2)u1)− [Tu1, Tu2]A), ∀u1, u2 ∈ Γ(E).

Thus T is a Maurer–Cartan element of the graded Lie algebra (C∗(E,A), [[·, ·]]) if and only if T
is a relative Rota–Baxter operator on the LieRep pair (A, [·, ·]A, aA; ρ). ■

Let T : E −→ A be a relative Rota–Baxter operator on the LieRep pair (A, [·, ·]A, aA; ρ).
By Theorem 2.5, T is a Maurer–Cartan element of the graded Lie algebra (C∗(E,A), [[·, ·]]).
Note that d̃T := [[T, ·]] is a graded derivation on the graded Lie algebra (C∗(E,A), [[·, ·]]) satisfying
d̃2T = 0. Therefore, (C∗(E,A), [[·, ·]] , d̃T ) is a differential graded Lie algebra.

Theorem 2.6. Let (A, [·, ·]A, aA; ρ) be a LieRep pair and T : E −→ A a relative Rota–Baxter
operator. Then for a bundle map T ′ : E −→ A, T +T ′ is still a relative Rota–Baxter operator on
the LieRep pair (A, [·, ·]A, aA; ρ) if and only if T ′ is a Maurer–Cartan element of the differential
graded Lie algebra

(
C∗(E,A), [[·, ·]] , d̃T

)
.

Proof. Assume that T + T ′ is a relative Rota–Baxter operator on the LieRep pair
(A, [·, ·]A, aA; ρ). By the fact that T is a relative Rota–Baxter operator, we have

d̃TT
′ +

1

2

[[
T ′, T ′]] = [[T, T ′]]+ 1

2

[[
T ′, T ′]] = 1

2

[[
T + T ′, T + T ′]] = 0.

Thus T ′ is a Maurer–Cartan element of the differential graded Lie algebra (C∗(E,A), [[·, ·]] , d̃T ).
The converse can be proved similarly. We omit the details. ■

2.2 Cohomologies of relative Rota–Baxter operators on Lie algebroids

In this subsection, we give a cohomology theory of relative Rota–Baxter operators on Lie alge-
broids, which will be used to study formal deformations of relative Rota–Baxter operators.

Let T : E −→ A be a relative Rota–Baxter operator on a LieRep pair (A, [·, ·]A, aA; ρ). Define
dT : Ck(E,A) → Ck+1(E,A) by

dTP = (−1)kd̃TP = (−1)k [[T, P ]] , ∀P ∈ Ck(E,A).

Since d̃T ◦ d̃T = 0, we have dT ◦ dT = 0. Thus (C∗(E,A) = ⊕k≥0Ck(E,A), dT ) is a cochain
complex. Note the sign in the differential dT is motivated by Theorem 2.12 below.
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Definition 2.7. The cochain complex (C∗(E,A) = ⊕k≥0Ck(E,A), dT ) is called the cohomology
complex of the relative Rota–Baxter operator T on the LieRep pair (A, [·, ·]A, aA; ρ). The corre-
sponding k-th cohomology group, denoted by Hk

T (E,A), is called the k-th cohomology group for
the relative Rota–Baxter operator T .

We give the coboundary operator dT explicitly.

Proposition 2.8. For P ∈ Ck(E,A) and u1, . . . , uk+1 ∈ Γ(E), we have

dTP (u1, u2, . . . , uk+1)

=

k+1∑
i=1

(−1)i+1[Tui, P (u1, u2, . . . , ûi, . . . , uk+1)]A

+
k+1∑
i=1

(−1)i+1Tρ(P (u1, u2, . . . , ûi, . . . , uk+1))(ui)

+
∑

1≤i<j≤k+1

(−1)i+jP (ρ(Tui)(uj)− ρ(Tuj)(ui), u1, . . . , ûi, . . . , ûj , . . . , uk+1). (2.2)

Proof. It follows from a direct calculation. ■

It is obvious that P ∈ C1(E,A) is closed if and only if

[Tu, P (v)]A − [Tv, P (u)]A − T (ρ(P (u))(v)− ρ(P (v))(u))− P (ρ(Tu)(v)− ρ(Tv)(u)) = 0,

where u, v ∈ Γ(E).
In the sequel, we give an alternative characterization of dT using the cohomology of Lie

algebroids. First we recall a useful fact.

Lemma 2.9 ([28]). Let T : E −→ A be a relative Rota–Baxter operator on a LieRep pair
(A, [·, ·]A, aA; ρ). Then (E, [·, ·]T , aT = aA ◦ T ) is a Lie algebroid, where the bracket [·, ·]T is
given by

[u, v]T = ρ(T (u))v − ρ(T (v))u, ∀u, v ∈ Γ(E).

Furthermore, T is a Lie algebroid homomorphism from (E, [·, ·]T , aT ) to (A, [·, ·]A, aA).

Moreover, the Lie algebroid (E, [·, ·]T , aT ) represents on the vector bundle A.

Lemma 2.10. Let T : E −→ A be a relative Rota–Baxter operator on a LieRep pair (A; ρ).
Define ϱ : E → D(A) by

ϱ(u)(x) := [Tu, x]A + Tρ(x)(u), x ∈ Γ(A), u ∈ Γ(E).

Then ϱ is a representation of the Lie algebroid (E, [·, ·]T , aT = aA ◦ T ) on the vector bundle A.

Proof. By a direct calculation, we have

ϱ(fu)(x) = [T (fu), x]A + Tρ(x)(fu)

= f [Tu, x]A − aA(x)(f)(Tu) + fTρ(x)(u) + TaA(x)(f)u

= fϱ(u)(x)

and

ϱ(u)(fx) = [Tu, fx]A + Tρ(fx)(u)

= f [Tu, x]A + aA(Tu)(f)(x) + fTρ(x)(u)

= fϱ(u)(x) + aT (u)(f)(x).

It is straightforward to check that ϱ[u, v]T = ϱ(u)ϱ(v)− ϱ(v)ϱ(u). Thus ϱ is a representation of
the Lie algebroid (E, [·, ·]T , aT ) on A. ■



Deformations and Cohomologies of Relative Rota–Baxter Operators on Lie Algebroids 7

Remark 2.11. Let T : E −→ A be a relative Rota–Baxter operator on a LieRep pair (A; ρ).
It is straightforward to check that (A, E, ρ, ϱ) is a matched pair of Lie algebroids, where the Lie
algebroid structure on E is the Lie algebroid (E, [·, ·]T , aT ). See [32] for more details on matched
pairs of Lie algebroids.

Theorem 2.12. Let T : E −→ A be a relative Rota–Baxter operator on a LieRep pair
(A, [·, ·]A, aA; ρ). Then the coboundary operator of the relative Rota–Baxter operator T is exactly
the coboundary operator of the Lie algebroid (E, [·, ·]T , aT ) with coefficients in the representation
(A; ϱ), that is, dT = ∂ϱ.

Proof. By Proposition 2.8, for any P ∈ Ck(E,A) and u1, . . . , uk+1 ∈ Γ(E), we have

dTP (u1, u2, . . . , uk+1)

=

k+1∑
i=1

(−1)i+1[Tui, P (u1, u2, . . . , ûi, . . . , uk+1)]A

+
k+1∑
i=1

(−1)i+1Tρ(P (u1, u2, . . . , ûi, . . . , uk+1))(ui)

+
∑

1≤i<j≤k+1

(−1)i+jP (ρ(Tui)(uj)− ρ(Tuj)(ui), u1, . . . , ûi, . . . , ûj , . . . , uk+1),

=

k+1∑
i=1

(−1)i+1ϱ(ui)P (u1, . . . , ûi, . . . , uk+1)

+
∑
i<j

(−1)i+jP ([ui, uj ]T , u1, . . . , ûi, . . . , ûj , . . . , uk+1)

= ∂ϱP (u1, u2, . . . , uk+1).

The conclusion follows. ■

3 Cohomologies of Rota–Baxter operators on Lie algebroids

In this section, first we give the cohomologies of Rota–Baxter operators on Lie algebroids with
the help of the general framework of the cohomologies of relative Rota–Baxter operators. Then
we study the cohomologies of the Rota–Baxter operator arising from an action of a Rota–Baxter
Lie algebra on a manifold.

Now we recall the notion of a Rota–Baxter operator on a Lie algebroid given in [19].

Definition 3.1. A Rota–Baxter operator on a regular Lie algebroid (A, [·, ·]A, aA) is a bundle
map R : ker(aA) → A such that

[R(x), R(y)]A = R([R(x), y]A + [x,R(y)]A), ∀x, y ∈ Γ(ker(aA)).

For any x ∈ Γ(A), we define Lx : Γ(A) −→ Γ(A) by Lx(y) = [x, y]A for y ∈ Γ(A). Then L
gives a representation of the Lie algebroid A on ker(aA). Thus a Rota–Baxter operator on
a regular Lie algebroid (A, [·, ·]A, aA) is a relative Rota–Baxter operator on the LieRep pair
(A, [·, ·]A, aA;L).

A Rota–Baxter operator on a Lie algebra (g, [·, ·]g) is a linear map B : g → g such that

[B(u),B(v)]g = B([B(u), v]g + [u,B(v)]g), ∀u, v ∈ g.

The pair (g,B) is called a Rota–Baxter Lie algebra.
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Remark 3.2. Since a vector space is a vector bundle over a point, a Lie algebra is naturally
a Lie algebroid with the anchor being zero. It is not hard to see that a Rota–Baxter operator
on a Lie algebroid reduces to a Rota–Baxter operator on a Lie algebra when the underlying Lie
algebroid reduces to a Lie algebra.

By Theorem 2.5, we have

Corollary 3.3. Let (A, [·, ·]A, aA) be a regular Lie algebroid. Then

(i)
(
⊕dim(ker(aA))

k=0 Γ
(
Hom

(
∧kker(aA),A

))
, [[·, ·]]

)
is a graded Lie algebra, where the graded Lie

bracket [[·, ·]] is given by (2.1).

(ii) R is a Rota–Baxter operator on the regular Lie algebroid A if and only if R is a Maurer–

Cartan element of
(
⊕dim(ker(aA))

k=0 Γ
(
Hom

(
∧kker(aA),A

))
, [[·, ·]]

)
.

By Lemmas 2.9 and 2.10, we have

Corollary 3.4. Let R : ker(aA) −→ A be a Rota–Baxter operator on a regular Lie algebroid
(A, [·, ·]A, aA). Then (ker(aA), [·, ·]R, aR = aA ◦R) is a Lie algebroid, where the bracket [·, ·]R is
given by

[u, v]R := [Ru, v]A + [u,Rv]A, ∀u, v ∈ Γ(ker(aA)).

Furthermore, ϱ : ker(aA) → Der(A) defined by

ϱ(u)y := [R(u), y]A −R[u, y]A, ∀y ∈ Γ(A)

gives a representation of the Lie algebroid (ker(aA), [·, ·]R, aR) on the vector bundle A.

As a special case of Definition 2.7, we have

Definition 3.5. Let R be a Rota–Baxter operator on a regular Lie algebroid (A, [·, ·]A, aA). The
cohomology of the cochain complex

(
⊕kCk(ker(aA),A), dR

)
, where the coboundary operator

dR : Ck(ker(aA),A) → Ck+1(ker(aA),A) is given by (2.2) with T = R and ρ = L, is called the
cohomology of the Rota–Baxter operator R. The corresponding k-th cohomology group, which we
denote by Hk

R(ker(aA),A), is called the k-th cohomology group for the Rota–Baxter operator R.

At the end of this section, we analyze the cohomology of the Rota–Baxter operator arising
from an action of a Rota–Baxter Lie algebra on a manifold.

Let (g, [·, ·]g) be a Lie algebra. An action of g on a manifold M is a homomorphism of
Lie algebras ϕ : (g, [·, ·]g) → (X(M), [·, ·]X(M)). For a Rota–Baxter operator B on a Lie algebra
(g, [·, ·]g), the bracket

[u, v]B = [B(u), v]g + [u,B(v)]g, ∀u, v ∈ g

defines another Lie algebra structure on g. Recall from [19] that an action of a Rota–
Baxter Lie algebra (g,B) on a manifold M is a homomorphism of Lie algebras ϕ : (g, [·, ·]B) →
(X(M), [·, ·]X(M)). Let ϕ : (g, [·, ·]B) → (X(M), [·, ·]X(M)) be an action of the Rota–Baxter
Lie algebra (g,B) on M . Consider the direct sum bundle A := (M × g) ⊕ TM . Then
Γ(A) = (C∞(M)⊗g)⊕X(M). There is naturally a Lie algebroid structure on A whose anchor aA
is the projection to TM and whose bracket is determined by

[fu+X, gv + Y ]A := fg[u, v]g +X(g)v − Y (f)u+ [X,Y ]X(M),
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for all X,Y ∈ X(M), u, v ∈ g, f, g ∈ C∞(M). Consider the bundle map R : ker(aA) = M × g →
(M × g)⊕ TM defined by

R(m,u) := (m,B(u), ϕ(u)(m)), ∀m ∈ M, u ∈ g. (3.1)

It was proved in [19] that the bundle map R defined by (3.1) is a Rota–Baxter operator on the
Lie algebroid ((M × g)⊕ TM, [·, ·]A, aA).

In the following, we establish the relations among the cohomology of the Rota–Baxter
operator R on the Lie algebroid ((M × g) ⊕ TM, [·, ·]A, aA), the cohomology of the Rota–
Baxter operator B on the Lie algebra g and the cohomology of the Lie algebra homomorphism
ϕ : (g, [·, ·]B) → X(M).

The cohomology of a Rota–Baxter operator B on a Lie algebra g is the cohomology of the
cochain complex

(
⊕+∞

k=0C
k(g, g), dB

)
, where Ck(g, g) = Hom

(
∧kg, g

)
and the coboundary operator

dB : Hom
(
∧kg, g

)
→ Hom

(
∧k+1g, g

)
is given by

dBf(u1, . . . , uk+1)

:=
k+1∑
i=1

(−1)i+1[B(ui), f(u1, . . . , ûi, . . . , uk+1)]g

+

k+1∑
i=1

(−1)i+1B[f(u1, . . . , ûi, . . . , uk+1), ui]g

+
∑

1≤i<j≤k+1

(−1)i+jf([B(ui), uj ]g − [B(uj), ui]g, u1, . . . , ûi, . . . , ûj , . . . , uk+1).

See [44] for more details about the cohomology of Rota–Baxter operators on Lie algebras.

Let ϕ : (g, [·, ·]B) → (X(M), [·, ·]X(M)) be an action of the Rota–Baxter Lie algebra (g,B) on
a manifold M . The cohomology of the Lie algebra homomorphism ϕ is the cohomology of
the cochain complex

(
⊕+∞

k=0C
k
ϕ(g,X(M)),dϕ

)
, where Ck

ϕ(g,X(M)) = HomR
(
∧kg,X(M)

)
and the

coboundary operator dϕ : C
k
ϕ(g,X(M)) → Ck+1

ϕ (g,X(M)) is given by

dϕP (u1, . . . , uk+1) =

k+1∑
i=1

(−1)i+1[ϕ(ui), P (u1, . . . , ûi, . . . , uk+1)]X(M)

+
∑
i<j

(−1)i+jP ([ui, uj ]B, u1, . . . , ûi, . . . , ûj , . . . , uk+1),

for P ∈ Ck(g,X(M)) and u1, . . . , uk+1 ∈ g. The corresponding k-th cohomology group, which we
denote by Hk

ϕ(g,X(M)), is called the k-th cohomology group for the action of the Rota–Baxter
Lie algebra (g,B) on M . See [12, 37] for more details on cohomology and deformations of Lie
algebra homomorphisms.

The cochain complex associated to the Rota–Baxter operator R on the Lie algebroid ((M×g)
⊕ TM, [·, ·]A, aA) defined by (3.1) is given by

Ck(M × g, (M × g)⊕ TM) = Γ
(
Hom

(
∧k(M × g), (M × g)⊕ TM

))
, k ≥ 0.

For any k ≥ 0, define a linear map Ξ: Ck(g, g)⊕ Ck
ϕ(g,X(M)) → Ck(M × g, (M × g)⊕ TM) by

Ξ(P1, P2)(m, (u1, . . . , uk)) := (m,P1(u1, . . . , uk), P2(u1, . . . , uk)(m)), (3.2)

for all m ∈ M and u1, . . . , uk ∈ g.
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Proposition 3.6. Let ϕ : (g, [·, ·]B) → (X(M), [·, ·]X(M)) be an action of the Rota–Baxter Lie
algebra (g,B) on a manifold M . Then Ξ defined by (3.2), is a homomorphism of cochain com-
plexes from

(
⊕k≥0

(
Ck(g, g)⊕ Ck

ϕ(g,X(M))
)
, (dB, dϕ)

)
to
(
⊕k≥0Ck(M × g, (M × g)⊕ TM),dR

)
,

that is, Ξ ◦ (dB,dϕ) = dR ◦ Ξ. Consequently, Ξ induces a homomorphism

Ξ∗ : Hk
B(g, g)⊕Hk

ϕ(g,X(M)) → Hk
R(M × g, (M × g)⊕ TM), k ≥ 0,

between the corresponding cohomology groups.

Proof. For any P1 ∈ Ck(g, g), P2 ∈ Ck
ϕ(g,X(M)) and u1, . . . , uk+1 ∈ g, we have

dRΞ(P1, P2)(1⊗ u1, . . . , 1⊗ uk+1)

=
k+1∑
i=1

(−1)i+1[R(1⊗ ui), (P1(u1, u2, . . . , ûi, . . . , uk+1), P2(u1, . . . , ûi, . . . , uk+1))]A

+

k+1∑
i=1

(−1)i+1R[(P1(u1, u2, . . . , ûi, . . . , uk+1), P2(u1, . . . , ûi, . . . , uk+1)), ui]A

+
∑

1≤i<j≤k+1

(−1)i+j(P1([ui, uj ]B, u1, . . . , ûi, . . . , ûj , . . . , uk+1),

P2([ui, uj ]B, u1, . . . , ûi, . . . , ûj , . . . , uk+1))

=

(
k+1∑
i=1

(−1)i+1[B(ui), P1(u1, u2, . . . , ûi, . . . , uk+1)]g

+
k+1∑
i=1

(−1)i+1B[P1(u1, u2, . . . , ûi, . . . , uk+1), ui]g

+
∑

1≤i<j≤k+1

(−1)i+jP1([ui, uj ]B, u1, . . . , ûi, . . . , ûj , . . . , uk+1)

+

k+1∑
i=1

(−1)i+1[ϕ(ui), P2(u1, u2, . . . , ûi, . . . , uk+1)]X(M)

+
∑

1≤i<j≤k+1

(−1)i+jP2([ui, uj ]B, u1, . . . , ûi, . . . , ûj , . . . , uk+1)

)
= (dBP1(u1, . . . , uk+1),dϕP2(u1, . . . , uk+1))

= Ξ(dBP1,dϕP2)(1⊗ u1, . . . , 1⊗ uk+1),

which implies that Ξ ◦ (dB, dϕ) = dR ◦ Ξ. ■

4 Formal deformations of relative Rota–Baxter operators
on Lie algebroids

In this section, we use the cohomology of relative Rota–Baxter operators on Lie algebroids to
study infinitesimal deformations and extendibility of order n deformations of relative Rota–
Baxter operators.

Let (A, [·, ·]A, aA) be a Lie algebroid. The Lie algebroid structure on A can be extended to
a Lie algebroid structure on A ⊗ R[[t]] by replacing R-linearity of the bracket and anchor by
R[[t]]-linearity and we denote it by (A ⊗ R[[t]], [·, ·]A, aA). For any representation (E; ρ) of the
Lie algebroid A, there is also a natural representation of A ⊗ R[[t]] on E ⊗ R[[t]] induced by ρ
and we also denote it by ρ.
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Definition 4.1. A formal deformation of a relative Rota–Baxter operator T : E −→ A on
a LieRep pair (A, [·, ·]A, aA; ρ) is a formal power series

Tt =
+∞∑
i=0

Titi ∈ Hom(E,A)[[t]]

such that Tt is a relative Rota–Baxter operator on the LieRep pair (A ⊗ R[[t]], [·, ·]A, aA; ρ)
and T0 = T .

By a direct calculation, we see that Tt is a relative Rota–Baxter operator on the LieRep pair
(A⊗ R[[t]], [·, ·]A, aA; ρ) if and only if∑

i+j=k

(
[Ti(u), Tj(v)]A − Tj(ρ(Ti(u))(v)− ρ(Ti(v))(u))

)
= 0, ∀k ≥ 0, u, v ∈ Γ(E). (4.1)

Definition 4.2. Let (A, [·, ·]A, aA; ρ) be a LieRep pair and T : E −→ A a relative Rota–Baxter
operator. If T(n) =

∑n
i=0 Titi with T0 = T , Ti ∈ Hom(E,A), i = 1, . . . , n is a relative Rota–

Baxter operator on the LieRep pair
(
A⊗R[[t]]/

(
tn+1

)
, [·, ·]A, aA; ρ

)
, we say that T(n) is an order n

deformation of the relative Rota–Baxter operator T . Furthermore, if there exists an element
Tn+1 ∈ Hom(E,A) such that T(n+1) = T(n) + tn+1Tn+1 is an order n + 1 deformation of the
relative Rota–Baxter operator T , we say that T(n) is extendable.

An order 1 deformation of a relative Rota–Baxter operator T on a LieRep pair (A, [·, ·]A, aA; ρ)
is called an infinitesimal deformation of the relative Rota–Baxter operator T .

Definition 4.3. Let T : E −→ A be a relative Rota–Baxter operator on (A, [·, ·]A, aA; ρ). Two
order n deformations Tt and T ′

t of T are said to be equivalent if there is a formal series Xt =∑+∞
i=1 xit

i, xi ∈ Γ(A) such that

exp(adXt)Tt = T ′
t modulo tn+1, (4.2)

where exp denotes the exponential series and

adkXt
Tt =

[[
Xt,
[[
Xt, . . . , [[Xt, T t]], k. . .

]]]]
.

An order n deformation Tt of T is called trivial if Tt is equivalent to T .

Theorem 4.4. There is a one-to-one correspondence between the equivalence classes of the
infinitesimal deformations of a relative Rota–Baxter operator T : E −→ A on a LieRep pair
(A, [·, ·]A, aA; ρ) and the first cohomology group H1

T (E,A).

Proof. For k = 1 in (4.1), we have

[Tu, T1v]A−[Tv, T1u]A−T (ρ(T1u)v−ρ(T1v)u)−T1(ρ(Tu)v−ρ(Tv)u)= 0, ∀u, v ∈ Γ(A),

which implies that (dTT1)(u, v) = 0, i.e., T1 is a 1-cocycle.
Assume that Tt and T ′

t are equivalent infinitesimal deformations of the relative Rota–Baxter
operator T . Comparing the coefficients of t on both sides of (4.2) for n = 1, we obtain

(T ′
1 − T1)(u) = [Tu, x1]A + Tρ(x1)u = dTx1(u),

which implies that

T ′
1 − T1 = dTx1.

Thus T1 and T ′
1 are in the same cohomology class.

The converse can be proved similarly. We omit the details. ■
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It is routine to check that

Proposition 4.5. Let T : E −→ A be a relative Rota–Baxter operator on a LieRep pair
(A, [·, ·]A, aA; ρ) such that H1

T (E,A) = 0. Then all infinitesimal deformations of T are trivial.

Theorem 4.6. Let T(n) =
∑n

i=0 Titi be an order n deformation of a relative Rota–Baxter ope-
rator T on a LieRep pair (A, [·, ·]A, aA; ρ). Define

Θ =
1

2

∑
i+j=n+1

i,j≥1

[[Ti, Tj ]] .

Then the 2-cochain Θ is closed, i.e., dTΘ = 0.

Furthermore, T(n) is extendable if and only the cohomology class [Θ] in H2(E,A) is trivial.

Proof. By a direct calculation, we have

Θ(u, v) =
∑

i+j=n+1
i,j≥1

(
Tj(ρ(Ti(u))(v) + ρ(Ti(v))(u))− [Ti(u), Tj(v)]A

)
, ∀u, v ∈ Γ(E).

It is not hard to check that

Θ(u, fv) = Θ(fu, v) = fΘ(u, v).

Thus Θ ∈ C2(E,A). The rest follows directly from the fact that this deformation problem is
controlled by the differential graded Lie algebra

(
C∗(E,A), [[·, ·]] , d̃T

)
. See the book [24] for more

details. ■

The above results on infinitesimal deformations and order n deformations of relative Rota–
Baxter operators on Lie algebroids can be easily applied to Rota–Baxter operators on Lie alge-
broids. We omit the details.

5 The Matsushima–Nijenhuis bracket
for left-symmetric algebroids

In this section, we construct a graded Lie algebra whose Maurer–Cartan elements are left-
symmetric algebroids and study the relation with the controlling graded Lie algebra of relative
Rota–Baxter operators on Lie algebroids.

5.1 The Matsushima–Nijenhuis bracket for left-symmetric algebroids

Recall that a left-symmetric algebra is a pair (g, ∗g), where g is a vector space, and ∗g : g⊗g −→ g
is a bilinear multiplication satisfying that for all x, y, z ∈ g, the associator

(x, y, z) := x ∗g (y ∗g z)− (x ∗g y) ∗g z

is symmetric in x, y, i.e.,

(x, y, z) = (y, x, z),

or equivalently,

x ∗g (y ∗g z)− (x ∗g y) ∗g z = y ∗g (x ∗g z)− (y ∗g x) ∗g z.
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Definition 5.1 ([28, 33]). A left-symmetric algebroid structure on a vector bundle A −→ M
is a pair that consists of a left-symmetric algebra structure ∗A on the section space Γ(A) and
a vector bundle morphism aA : A −→ TM , called the anchor, such that for all f ∈ C∞(M) and
x, y ∈ Γ(A), the following conditions are satisfied:

(i) x ∗A (fy) = f(x ∗A y) + aA(x)(f)y,

(ii) (fx) ∗A y = f(x ∗A y).

We usually denote a left-symmetric algebroid by (A, ∗A, aA).

Any left-symmetric algebra is a left-symmetric algebroid over a point.
Let (A, ∗A, aA) be a left-symmetric algebroid. For any x ∈ Γ(A), we define Lx : Γ(A) −→

Γ(A) and Rx : Γ(A) −→ Γ(A) by

Lxy = x ∗A y, Rxy = y ∗A x, ∀y ∈ Γ(A).

Condition (i) in the above definition means that Lx ∈ D(A). Condition (ii) means that the map
x 7−→ Lx is C∞(M)-linear. Thus, L : A −→ D(A) is a bundle map. With the same notations,
there are two maps Lx, Rx : Γ(A∗) −→ Γ(A∗) given by

⟨Lxξ, y⟩ = aA(x)⟨ξ, y⟩ − ⟨ξ, Lxy⟩,
⟨Rxξ, y⟩ = −⟨ξ,Rxy⟩, ∀x, y ∈ Γ(A), ξ ∈ Γ(A∗). (5.1)

Proposition 5.2 ([28]). Let (A, ∗A, aA) be a left-symmetric algebroid. Define a skew-symmetric
bilinear bracket operation [·, ·]A on Γ(A) by

[x, y]A = x ∗A y − y ∗A x, ∀x, y ∈ Γ(A).

Then, (A, [·, ·]A, aA) is a Lie algebroid, denoted by Ac, called the sub-adjacent Lie algebroid of
(A, ∗A, aA). Furthermore, L : A −→ D(A) gives a representation of the Lie algebroid Ac.

A connection ∇ on M is said to be flat if the torsion tensor and the curvature tensor of ∇
vanish identically. A manifold M endowed with a flat connection ∇ is called a flat manifold.

Example 5.3. Let (M,∇) be a flat manifold. Then (TM,∇, Id) is a left-symmetric algebroid
whose sub-adjacent Lie algebroid is exactly the tangent Lie algebroid. We denote this left-
symmetric algebroid by T∇M .

Definition 5.4. Let E be a vector bundle over M , a multiderivation of degree n is a multilinear
map D ∈ Hom(ΛnΓ(E) ⊗ Γ(E),Γ(E)), such that for all f ∈ C∞(M) and ui ∈ Γ(E), i =
1, 2, . . . , n+ 1, the following conditions are satisfied:

D(u1, . . . , fui, . . . , un, un+1) = fD(u1, . . . , ui, . . . , un+1), i = 1, . . . , n,

D(u1, . . . , un, fun+1) = fD(u1, . . . , un, un+1) + σD(u1, . . . , un)(f)un+1,

where σD ∈ Γ(Hom(ΛnΓ(E), TM)) is called the symbol. We will denote by Dern(E) the space
of multiderivations of n, n ≥ 0.

We denote by Der∗(E) = ⊕mDerm(E) the space of multiderivations on a vector bundle E.

Remark 5.5. The terminology “multiderivation” is usually referred to skew-symmetric ope-
rators, like in Crainic–Moerdijk’s deformation complex of a Lie algebroid given in [9]. For
convenience, we also use the terminology “multiderivation” for the above case. Note that this
kind of operators also appeared under the name Der-valued forms in [46].
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Theorem 5.6. For D1 ∈ Derm(E) and D2 ∈ Dern(E), we define the Matsushima–Nijenhuis
bracket [·, ·]MN : Derm(E)×Dern(E) → Derm+n(E) by

[D1, D2]MN = D1 ◦D2 − (−1)mnD2 ◦D1,

where

(D1 ◦D2)(u1, u2, . . . , um+n+1)

=
∑

σ∈S(m,1,n−1)

(−1)σD1(D2(uσ(1), . . . , uσ(m+1)), uσ(m+2), . . . , uσ(m+n), um+n+1)

+ (−1)mn
∑

σ∈S(n,m)

(−1)σD1(uσ(1), . . . , uσ(n), D2(uσ(n+1), uσ(n+2), . . . , uσ(m+n), um+n+1)).

Then (Der∗(E), [·, ·]MN) is a graded Lie algebra.

Furthermore, π ∈ Der1(E) defines a left-symmetric algebroid structure on E if and only if
[π, π]MN = 0, that is, π is a Maurer–Cartan element of the graded Lie algebra (Der∗(E), [·, ·]MN).

Proof. First, we show that the space of multiderivations is closed under the Matsushima–
Nijenhuis bracket. For D1 ∈ Derm(E) and D2 ∈ Dern(E), by a direct calculation, we have

[D1, D2]MN(fu1, u2, . . . , um+n+1)

= fD1 ◦D2(u1, u2, . . . , um+n+1)− (−1)mnfD2 ◦D1(u1, u2, . . . , um+n+1)

+
∑

σ∈S(m−1,1,n−1)

(−1)σσD2(uσ(2), . . . , uσ(m+1))(f)D1(u1, uσ(m+2), . . . , uσ(m+n), um+n+1)

+ (−1)mn
∑

σ∈S(n−1,1,m−1)

(−1)σσD1(uσ(2), . . . , uσ(n+1))(f)

×D2(u1, uσ(n+2), . . . , uσ(m+n), um+n+1)

− (−1)mn
∑

σ∈S(n−1,1,m−1)

(−1)σσD1(uσ(2), . . . , uσ(n+1))(f)

×D2(u1, uσ(n+2), . . . , uσ(m+n), um+n+1)

−
∑

σ∈S(m−1,1,n−1)

(−1)σσD2(uσ(2), . . . , uσ(m+1))(f)D1(u1, uσ(m+2), . . . , uσ(m+n), um+n+1)

= f [D1, D2]MN(u1, u2, . . . , um+n+1),

which implies that

[D1, D2]MN(fu1, u2, . . . , um+n+1) = f [D1, D2]MN(u1, u2, . . . , um+n+1).

It is straightforward to check that [D1, D2]MN is skew-symmetric with respect to its first m+ n
arguments. Thus [D1, D2]MN is C∞(M)-linear with respect to its first m+ n arguments.

By a direct calculation, we have

[D1, D2]MN(u1, u2, . . . , fum+n+1) = f [D1, D2]MN(u1, u2, . . . , um+n+1)

+ σ[D1,D2]MN
(u1, u2, . . . , um+n)(f)um+n+1,

where the symbol σ[D1,D2]MN
is given by

σ[D1,D2]MN
(u1, u2, . . . , um+n)(f)
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=
∑

σ∈S(m,1,n−1)

(−1)σσD1(D2(uσ(1), . . . , uσ(m+1)), uσ(m+2), . . . , uσ(m+n)))(f)

+
∑

σ∈S(n,1,m−1)

(−1)σσD2(D1(uσ(1), . . . , uσ(n+1)), uσ(n+2), . . . , uσ(m+n))(f)

+ (−1)mn
∑

σ∈S(m,n)

(−1)σσD1(uσ(1), . . . , uσ(n))(σD2(uσ(n+1), . . . , uσ(n+m)))(f)

+
∑

σ∈S(m,n)

(−1)σσD2(uσ(1), . . . , uσ(m))(σD1(uσ(m+1), . . . , uσ(m+n)))(f).

Thus [D1, D2]MN ∈ Derm+n(E).

It was shown in [7, 35] that the Matsushima–Nijenhuis bracket provides a graded Lie algebra
structure on the graded vector space ⊕n≥1HomR

(
Λn−1Γ(E)⊗Γ(E),Γ(E)

)
. We have shown that

Der∗(E) is closed under the Matsushima–Nijenhuis bracket. Thus (Der∗(E), [·, ·]MN) is a graded
Lie algebra.

For π ∈ Der1(E), we have

π(fu1, u2) = fπ(u1, u2), π(u1, fu2) = fπ(u1, u2) + σπ(u1)(f)u2, ∀u1, u2 ∈ Γ(E).

Furthermore, by a direct calculation, we have

[π, π]MN(u1, u2, u3) = 2(π(π(u1, u2), u3)− π(π(u2, u1), u3)− π(u1, π(u2, u3))

+ π(u2, (u1, u3))).

Thus (E, π, σπ) is a left-symmetric algebroid if and only if [π, π]MN = 0. ■

Remark 5.7. The cohomology of left-symmetric algebras first appeared in the unpublished
paper of Y. Matsushima. Then A. Nijenhuis constructed a graded Lie bracket in [35], which
produces the cohomology theory for left-symmetric algebras. Thus the aforementioned graded
Lie bracket is usually called the Matsushima–Nijenhuis bracket.

Let (E, π, σπ) be a left-symmetric algebroid. By Theorem 5.6, we have [π, π]MN = 0. Because
of the graded Jacobi identity, we get a coboundary operator ddef : Dern−1(E) → Dern(E) defi-
ned by

ddef(D) = (−1)n−1[π,D]MN, ∀D ∈ Dern−1(E).

Proposition 5.8. For all D ∈ Dern−1(E), we have

ddefD(u1, u2, . . . , un+1)

=
n∑

i=1

(−1)i+1π(ui, D(u1, u2, . . . , ûi, . . . , un+1))

+

n∑
i=1

(−1)i+1π(D(u1, u2, . . . , ûi, . . . , un, ui), un+1)

−
n∑

i=1

(−1)i+1D(u1, u2, . . . , ûi, . . . , un, π(ui, un+1))

+
∑

1≤i<j≤n

(−1)i+jD(π(ui, uj)− π(uj , ui), u1, . . . , ûi, . . . , ûj , . . . , un+1) (5.2)
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for all ui ∈ Γ(E), i = 1, 2, . . . , n+ 1 and σddefD is given by

σddefD(u1, u2, . . . , un) =
n∑

i=1

(−1)i+1[σπ(ui), σD(u1, u2, . . . , ûi, . . . , un)]X(M)

+
∑

1≤i<j≤n

(−1)i+jσD(π(ui, uj)− π(uj , ui), u1, . . . , ûi, . . . , ûj , . . . , un)

+

n∑
i=1

(−1)i+1σπ(D(u1, u2, . . . , ûi, . . . , un, ui)).

Proof. It follows from straightforward verification. ■

Definition 5.9. The cochain complex
(
Der∗(E) =

⊕
n≥0Dern(E), ddef

)
is called the deforma-

tion complex of the left-symmetric algebroid E. The corresponding k-th cohomology group,
which we denote by Hk

def(E), is called the k-th deformation cohomology group.

Remark 5.10. The coboundary operator ddef given by (5.2) is exactly the coboundary oper-
ator given in [28] in the study of deformations of left-symmetric algebroids. Here we give this
coboundary operator ddef intrinsically using the Matsushima–Nijenhuis bracket.

5.2 Relations between the graded Lie algebra (C∗(E,A), [[·, ·]])
and (Der∗(E), [·, ·]MN)

Let (A, [·, ·]A, aA; ρ) be a LieRep pair. We define a bundle map Φ: Ck(E,A) → HomR(Λ
kΓ(E)⊗

Γ(E),Γ(E)) as follows: for P ∈ Ck(E,A),

Φ(P )(u1, . . . , uk, uk+1) = ρ(P (u1, . . . , uk))uk+1, ∀u1, . . . , uk+1 ∈ Γ(E). (5.3)

Lemma 5.11. With the above notations, Φ(P ) ∈ Derk(E) and σΦ(P ) = aA ◦ P.

Proof. By the properties of the representation ρ, we have

Φ(P )(fu1, . . . , uk, uk+1) = ρ(P (fu1, . . . , uk))uk+1

= fρ(P (u1, . . . , uk))uk+1

= fΦ(P )(u1, . . . , uk, uk+1).

Since Φ(P ) is skew-symmetric with respect to its first k arguments, Φ(P ) is C∞(M)-linear with
respect to its first k arguments.

Similarly, by a direct calculation, we have

Φ(P )(u1, . . . , uk, fuk+1) = ρ(P (u1, . . . , uk))(fuk+1)

= fρ(P (u1, . . . , uk))(uk+1) + aA(P (u1, . . . , uk))(f)uk+1

= fΦ(P )(fu1, . . . , uk, uk+1) + σΦ(P )(u1, . . . , uk)(f)uk+1.

Thus Φ(P ) ∈ Derk(E). ■

Recall from Theorems 2.5 and 5.6 that (C∗(E,A), [[·, ·]]) and (Der∗(E), [·, ·]MN) are graded Lie
algebras whose Maurer–Cartan elements are relative Rota–Baxter operators and left-symmetric
algebroids respectively.

Theorem 5.12. Let (A, [·, ·]A, aA; ρ) be a LieRep pair. Then Φ given by (5.3) is a homomor-
phism of graded Lie algebras from (C∗(E,A), [[·, ·]]) to (Der∗(E), [·, ·]MN).
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Proof. On the one hand, for P ∈ Cn(E,A), Q ∈ Cm(E,A), we have

Φ([[P,Q]])(u1, u2, . . . , um+n+1)

= ρ([[P,Q]] (u1, . . . , um+n))um+n+1

=
∑

S(m,1,n−1)

(−1)σρ(P (ρ(Q(uσ(1), . . . , uσ(m)))uσ(m+1), uσ(m+2), . . . , uσ(m+n)))um+n+1

−(−1)mn
∑

S(n,1,m−1)

(−1)σρ(Q(ρ(P (uσ(1), . . . , uσ(n)))uσ(n+1), uσ(n+2), . . . , uσ(m+n)))um+n+1

+(−1)mn
∑

S(n,m)

(−1)σρ([P (uσ(1), . . . , uσ(n)), Q(uσ(n+1), uσ(n+2), . . . , uσ(m+n))]A)um+n+1

=
∑

S(m,1,n−1)

(−1)σρ(P (ρ(Q(uσ(1), . . . , uσ(m)))uσ(m+1), uσ(m+2), . . . , uσ(m+n)))um+n+1

−(−1)mn
∑

S(n,1,m−1)

(−1)σρ(Q(ρ(P (uσ(1), . . . , uσ(n)))uσ(n+1), uσ(n+2), . . . , uσ(m+n)))um+n+1

+(−1)mn
∑

S(n,m)

(−1)σρ(P (uσ(1), . . . , uσ(n)))ρ(Q(uσ(n+1), uσ(n+2), . . . , uσ(m+n)))um+n+1

+(−1)mn
∑

S(n,m)

(−1)σρ(Q(uσ(n+1), uσ(n+2), . . . , uσ(m+n)))ρ(P (uσ(1), . . . , uσ(n)))um+n+1.

On the other hand, we have

(Φ(P ) ◦ Φ(Q))(u1, u2, . . . , um+n+1)

=
∑

S(m,1,n−1)

(−1)σρ(P (ρ(Q(uσ(1), . . . , uσ(m)))uσ(m+1), uσ(m+2), . . . , uσ(m+n)))um+n+1

+ (−1)mn
∑

S(n,m)

(−1)σρ(P (uσ(1), . . . , uσ(n)))ρ(Q(uσ(n+1), uσ(n+2), . . . , uσ(m+n)))um+n+1,

and

−(−1)mn(Φ(Q) ◦ Φ(P ))(u1, u2, . . . , um+n+1)

=
∑

S(n,1,m−1)

(−1)σρ(Q(ρ(P (uσ(1), . . . , uσ(n)))uσ(n+1), uσ(n+2), . . . , uσ(m+n)))um+n+1

− (−1)mn
∑

S(n,m)

(−1)σρ(Q(uσ(n+1), uσ(n+2), . . . , uσ(m+n)))ρ(P (uσ(1), . . . , uσ(n)))um+n+1.

Thus, we have

Φ([[P,Q]]) = Φ(P ) ◦ Φ(Q)− (−1)mnΦ(Q) ◦ Φ(P ) = [Φ(P ),Φ(Q)]MN,

that is, Φ is a homomorphism from (C∗(E,A), [[·, ·]]) to (Der∗(E), [·, ·]MN). ■

The following conclusion has been proved in [28] by a direct calculation. We give an intrinsic
proof.

Corollary 5.13. Let T : E −→ A be a relative Rota–Baxter operator on a LieRep pair
(A, [·, ·]A, aA; ρ). Then (E, ∗T , aT = aA ◦ T ) is a left-symmetric algebroid, where ∗T is given by

u ∗T v = ρ(Tu)(v), ∀u, v ∈ Γ(E).
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Proof. Since T is a relative Rota–Baxter operator on a LieRep pair (A, [·, ·]A, aA; ρ), by Theo-
rem 2.5, we have

[[T, T ]] = 0.

By Theorem 5.12, we have

[Φ(T ),Φ(T )]MN = 0.

By Theorem 5.6, Φ(T ) provides a left-symmetric algebroid structure on E. Note that

u ∗T v = Φ(T )(u, v) = ρ(Tu)(v).

Thus (E, ∗T , aT = aA ◦ T ) is a left-symmetric algebroid. ■

Theorem 5.14. Let T be a relative Rota–Baxter operator on a LieRep pair (A; ρ). Then Φ given
by (5.3) is a homomorphism from the cochain complex (C∗(E,A),dT ) to (Der∗(E),ddef), that is,
ddef ◦Φ = Φ◦dT . Consequently, Φ induces a homomorphism Φ∗ : Hk(E,A) → Hk

def(E) from the
cohomology groups of the relative Rota–Baxter operator T to the deformation cohomology groups
of the induced left-symmetric algebroid (E, ∗T , aT ).

Proof. By Theorem 5.12, we have

Φ([[P,Q]]) = [Φ(P ),Φ(Q)]MN.

Note that the left-symmetric algebroid structure on E is given by Φ(T ). For P ∈ Ck(E,A), we
have

ddefΦ(P ) = (−1)k[Φ(T ),Φ(P )]MN = Φ
(
(−1)k [[T, P ]]

)
= Φ(dTP ),

which implies that ddef ◦ Φ = Φ ◦ dT . The rest is direct. ■

At the end of this section, we show that a formal deformation of a relative Rota–Baxter
operator induces a formal deformation of the associated left-symmetric algebroid.

Recall that a formal deformation of a left-symmetric algebroid (A, ∗A, aA) is a left-symmetric
algebroid (A⊗ R[[t]], ∗t, at) with power series

∗t =
+∞∑
i=0

µit
i ∈ Der1(A)[[t]], at =

+∞∑
i=0

ait
i ∈ Hom(A, TM)[[t]],

such that (A⊗ R[[t]], ∗t, at)t=0 = (A, ∗A, aA).

Proposition 5.15. Let Tt be a formal deformation of the relative Rota–Baxter operator T : E
−→ A on a LieRep pair (A, [·, ·]A, aA; ρ). Then (E⊗R[[t]], ∗t, at = aA◦Tt) is a formal deformation
of the left-symmetric algebroid (E, ∗T , aT ) associated to the relative Rota–Baxter operator T ,
where

u ∗t v = ρ(Tt(u))v, ∀u, v ∈ Γ(E).

Proof. Since Tt is a formal deformation of the relative Rota–Baxter operator T , by Corol-
lary 5.13, (E⊗R[[t]], ∗t, at = aA◦Tt) is a left-symmetric algebroid. Note that (E⊗R[[t]], ∗t, at)t=0

= (E, ∗T , aT ). Thus (E ⊗ R[[t]], ∗t, at) is a formal deformation of the left-symmetric algebroid
(E, ∗T , aT ). ■
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6 Maurer–Cartan characterizations and cohomology
of Koszul–Vinberg structures on left-symmetric algebroids

In this section, we apply the controlling graded Lie algebra associated to relative Rota–Baxter
operators to construct a graded Lie algebra whose Maurer–Cartan elements are precisely Koszul–
Vinberg structures. Then we use this graded Lie algebra to study deformations of Koszul–
Vinberg structures.

6.1 Maurer–Cartan characterizations of Koszul–Vinberg structures

Let us first recall the cochain complex of a left-symmetric algebroid with coefficients in the trivial
representation. See [28] for the general theory of cohomology of left-symmetric algebroids. Let
(A, ∗A, aA) be a left-symmetric algebroid. The set of n-cochains is given by

Cn(A) = Γ
(
∧n−1A∗ ⊗A∗), n ≥ 1.

For all φ ∈ Cn(A) and xi ∈ Γ(A), i = 1, . . . , n+ 1, the coboundary operator δA is given by

δAφ(x1, . . . , xn+1) =
n∑

i=1

(−1)i+1aA(xi)φ(x1, . . . , x̂i, . . . , xn+1)

−
n∑

i=1

(−1)i+1φ(x1, . . . , x̂i, . . . , xn, xi ∗A xn+1)

+
∑

1≤i<j≤n

(−1)i+jφ([xi, xj ]A, x1, . . . , x̂i, . . . , x̂j , . . . , xn+1). (6.1)

Let (A, ∗A, aA) be a left-symmetric algebroid. Define

Sym2(A) = {H ∈ A⊗A|H(α, β) = H(β, α), ∀α, β ∈ Γ(A∗)}.

For any H ∈ Sym2(A), the bundle map H♯ : A∗ −→ A is given by H♯(α)(β) = H(α, β). In [26],
the authors introduced [H,H] ∈ Γ

(
∧2A⊗A

)
as follows

[H,H](α1, α2, α3) = aA(H
♯(α1))⟨H♯(α2), α3⟩ − aA(H

♯(α2))⟨H♯(α1), α3⟩
+ ⟨α1, H

♯(α2) ∗A H♯(α3)⟩ − ⟨α2, H
♯(α1) ∗A H♯(α3)⟩

− ⟨α3, [H
♯(α1), H

♯(α2)]A⟩, (6.2)

for all α1, α2, α3 ∈ Γ(A∗). Suppose that H♯ : A∗ −→ A is nondegenerate. Then (H♯)−1 : A −→
A∗ is also a symmetric bundle map, which gives rise to an element, denoted byH−1, in Sym2(A∗).

Proposition 6.1 ([26]). Let (A, ∗A, aA) be a left-symmetric algebroid and H ∈ Sym2(A). If H
is nondegenerate, then [H,H] = 0 if and only if δA(H

−1) = 0, i.e. H−1 is a 2-cocycle on the
left-symmetric algebroid A.

Recall that a pseudo-Hessian metric g is a pseudo-Riemannian metric g on a flat manifold

(M,∇) such that g can be locally expressed by gij =
∂2φ

∂xi∂xj , where φ ∈ C∞(M) and
{
x1, . . . , xn

}
is an affine coordinate system with respect to ∇. Then the pair (∇, g) is called a pseudo-Hessian
structure on M . A manifold M with a pseudo-Hessian structure (∇, g) is called a pseudo-
Hessian manifold. See [43] for more details about pseudo-Hessian manifolds. Let (M,∇) be
a flat manifold and g a pseudo-Riemannian metric on M . Then (M,∇, g) is a pseudo-Hessian
manifold if and only if δT∇Mg = 0, where δT∇M is the coboundary operator given by (6.1)
associated to the left-symmetric algebroid T∇M given in Example 5.3.

Now we give the main structure studied in this section.
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Definition 6.2. Let (A, ∗A, aA) be a left-symmetric algebroid.

(i) If H ∈ Sym2(A) satisfies [H,H] = 0, then H is called a Koszul–Vinberg structure on the
left-symmetric algebroid A;

(ii) If B ∈ Sym2(A∗) is nondegenerate and satisfies δAB = 0, then B is called a pseudo-
Hessian structure on the left-symmetric algebroid A.

Let (A, ∗A, aA) be a left-symmetric algebroid, and H ∈ Sym2(A). Define

α ∗H♯ β = LH♯(α)β −RH♯(β)α− dA(H(α, β)), ∀α, β ∈ Γ(A∗), (6.3)

where L is the Lie derivation of the sub-adjacent Lie algebroid Ac, R and dA are given by

⟨Rxα, y⟩ = −⟨α, y ∗A x⟩, dAf(x) = aA(x)f, ∀x, y ∈ Γ(A), f ∈ C∞(M).

Theorem 6.3 ([26]). If H is a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA), then (A∗, ∗H♯ , aH♯ = aA ◦ H♯) is a left-symmetric algebroid, and H♯ is a left-
symmetric algebroid homomorphism from (A∗, ∗H♯ , aH♯) to (A, ∗A, aA).

The sub-adjacent Lie algebroid of the left-symmetric algebroid (A∗, ∗H♯ , aH♯) is
(A∗, [·, ·]H♯ , aH♯), where [·, ·]H♯ is given by

[α, β]H♯ = LH♯(α)β − LH♯(β)α, ∀α, β ∈ Γ(A∗), (6.4)

where L is given by (5.1).

Proposition 6.4 ([26]). With the above notations, for all α, β ∈ Γ(A∗), we have

H♯([α, β]H♯)− [H♯(α), H♯(β)]A = [H,H](α, β, ·).

Note that L : A −→ D(A∗) is a representation of the sub-adjacent Lie algebroid Ac on the
dual bundle A∗. Thus, by Proposition 6.4, we have

Proposition 6.5. H is a Koszul–Vinberg structure on a left-symmetric algebroid (A, ∗A, aA) if
and only if H♯ : A∗ −→ A is a relative Rota–Baxter operator on the LieRep pair (Ac;L).

By Theorem 2.5 and Proposition 6.5, we have

Lemma 6.6. Let (A, ∗A, aA) be a left-symmetric algebroid and H ∈ Sym2(A).

(i)
(
C∗(A∗,A) := ⊕k≥0Γ

(
Hom

(
∧kA∗,A

))
, [[·, ·]]

)
is a graded Lie algebra, where the bracket

[[·, ·]] is given by (2.1), in which ρ = L is given by (5.1).

(ii) H is a Koszul–Vinberg structure on the left-symmetric algebroid if and only if H♯ is
a Maurer–Cartan element of the graded Lie algebra (C∗(A∗,A), [[·, ·]]).

For k ≥ 0, define Ψ: Γ
(
∧kA⊗A

)
−→ Ck(A∗,A) by

⟨Ψ(φ)(α1, . . . , αk), αk+1⟩ = ⟨φ, α1 ∧ · · · ∧ αk ⊗ αk+1⟩, ∀α1, . . . , αk+1 ∈ Γ(A∗), (6.5)

and Υ: Ck(A∗,A) −→ Γ
(
∧kA⊗A

)
by

⟨Υ(P ), α1 ∧ · · · ∧ αk ⊗ αk+1⟩ = ⟨P (α1, . . . , αk), αk+1⟩, ∀α1, . . . , αk+1 ∈ Γ(A∗).

Obviously we have Ψ ◦Υ = Id, Υ ◦Ψ = Id.
By Lemma 6.6, we have
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Theorem 6.7. Let (A, ∗A, aA) be a left-symmetric algebroid. Then, there is a graded Lie bracket
[[·, ·]]KV : Γ

(
∧kA⊗A

)
× Γ

(
∧lA⊗A

)
−→ Γ

(
∧k+lA⊗A

)
on the graded vector space C∗

KV(A∗) :=
⊕k≥1C

k
KV(A∗) with Ck

KV(A∗) := Γ
(
∧k−1A⊗A

)
given by

[[φ, ϕ]]KV := Υ [[Ψ(φ),Ψ(ϕ)]] , ∀φ ∈ Γ
(
∧kA⊗A

)
, ϕ ∈ Γ

(
∧lA⊗A

)
.

Furthermore, H ∈ Sym2(A) is a Koszul–Vinberg structure on the left-symmetric algebroid A
if and only if H is a Maurer–Cartan element of the graded Lie algebra (C∗

KV(A∗), [[·, ·]]KV). More
precisely, we have

[[H,H]]KV (α1, α2, α3) = 2[H,H](α1, α2, α3), ∀α1, α2, α3 ∈ Γ(A∗),

where [H,H] is given by (6.2).

Remark 6.8. We characterize a Koszul–Vinberg structure on a left-symmetric algebroid A as
a Maurer–Cartan element of the graded Lie algebra (C∗

KV(A∗), [[·, ·]]KV). This is parallel to the
fact that a Poisson structure is a Maurer–Cartan element of the graded Lie algebra given by the
Schouten–Nijenhuis bracket of multi-vector fields.

6.2 Cohomologies and deformations of Koszul–Vinberg structures

Let H ∈ Sym2(A) be a Koszul–Vinberg structure on a left-symmetric algebroid (A, ∗A, aA).
Define δA∗ : Ck

KV(A∗) −→ Ck+1
KV (A∗) by

δA∗φ = (−1)k−1 [[H,φ]]KV , ∀φ ∈ Ck
KV(A∗).

By the graded Jacobi identity, we have δA∗ ◦ δA∗ = 0. Thus (C∗
KV(A∗), δA∗) is a cochain comp-

lex. Denote by Hk
KV(A∗) the k-th cohomology group, called the k-th cohomology group of the

Koszul–Vinberg structure H.
Furthermore, we have

Proposition 6.9. For φ ∈ Ck
KV(A∗), we have

δA∗φ(α1, . . . , αk+1) =

k∑
i=1

(−1)i+1aH♯(αi)φ(α1, . . . , α̂i, . . . , αk+1)

−
k∑

i=1

(−1)i+1φ(α1, . . . , α̂i, . . . , αk, αi ∗H♯ αk+1)

+
∑

1≤i<j≤k

(−1)i+jφ([αi, αj ]H♯ , α1, . . . , α̂i, . . . , α̂j , . . . , αk+1),

where α1, . . . , αk+1 ∈ Γ(A∗), ∗H♯ is given by (6.3) and [·, ·]H♯ is given by (6.4).

Proof. It follows by a direct calculation. ■

Remark 6.10. Note that this coboundary operator δA∗ is just the coboundary operator given
by (6.1) associated to the left-symmetric algebroid (A∗, ∗H♯ , aH♯) in Theorem 6.3.

By Corollary 5.13 and Proposition 6.5, we have

Proposition 6.11. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA). Then (A∗, ·H♯ , aH♯ = aA ◦H♯) is a left-symmetric algebroid, where ·H♯ is given by

α ·H♯ β = LH♯(α)β, ∀α, β ∈ Γ(A∗).
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Remark 6.12. The left-symmetric algebroids (A∗, ·H♯ , aH♯) and (A∗, ∗H♯ , aH♯) have the same
sub-adjacent Lie algebroid (A∗, [·, ·]H♯ , aH♯).

By Lemma 2.10, we have

Proposition 6.13. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA). Then

ϱ : A∗ −→ D(A), ϱ(α)(x) = [H♯(α), x]A +H♯(Lxα), ∀x ∈ Γ(A), α ∈ Γ(A∗) (6.6)

is a representation of the sub-adjacent Lie algebroid (A∗, [·, ·]H♯ , aH♯) on the vector bundle A.

Remark 6.14. The representation ϱ given by (6.6) is exactly the dual representation of the
left multiplication operation of the left-symmetric algebroid (A∗, ∗H♯ , aH♯). More precisely, let
us denote by L : A∗ −→ D(A∗) the left multiplication operation of the left-symmetric algebroid
(A∗, ∗H♯ , aH♯), then we have

⟨Lαx, β⟩ = aH♯(α)⟨x, β⟩ − ⟨x, α ∗H♯ β⟩
= aH♯(α)⟨x, β⟩ − ⟨x,LH♯(α)β −RH♯(β)α− dA(H(α, β))⟩

= aH♯(α)⟨x, β⟩−aA(H
♯(α))⟨x, β⟩+[H♯(α), x]A−⟨α, x ∗A H♯(β)⟩+aA(x)H(α, β)

= ⟨[H♯(α), x]A +H♯(Lxα), β⟩
= ⟨ϱ(α)(x), β⟩.

Thus we have Lαx = ϱ(α)(x).

Let H be a Koszul–Vinberg structure on a left-symmetric algebroid (A, ∗A, aA). By Theo-
rem 2.12, for P ∈ Ck(A∗,A) and α1, . . . , αk+1 ∈ Γ(A∗), the coboundary operator dH♯ : Ck(A∗,A)
−→ Ck+1(A∗,A) of the relative Rota–Baxter operator H♯ is given by

dH♯P (α1, . . . , αk+1) =
k+1∑
i=1

(−1)i+1[H♯(αi), P (α1, α2, . . . , α̂i, . . . , αk+1)]A

+
k+1∑
i=1

(−1)i+1H♯
(
LP (α1,α2,...,α̂i,...,αk+1)αi

)
+

∑
1≤i<j≤k+1

(−1)i+jP ([αi, αj ]H♯ , α1, . . . , α̂i, . . . , α̂j , . . . , αk+1).

Denote byHk(A∗,A) the k-th cohomology group, called the k-th cohomology group of the relative
Rota–Baxter operator H♯.

Proposition 6.15. With the above notations, the map Ψ defined by (6.5) is a cochain iso-
morphism between cochain complexes (C∗

KV(A∗), δA∗) and (C∗(A∗,A), dH♯), i.e., we have the
following commutative diagram:

· · · −→ Ck+1
KV (A∗)

Ψ
��

δA∗ // Ck+2
KV (A∗)

Ψ
��

// · · ·

· · · −→ Ck(A∗,A)
d
H♯ // Ck+1(A∗,A) // · · · .

Consequently, Ψ induces an isomorphism map Ψ∗ between the corresponding cohomology groups.
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Proof. It is straightforward to see that Ψ is a graded Lie algebra isomorphism between the
graded Lie algebra (C∗(A∗,A), [[·, ·]]) and (C∗

KV(A∗), [[·, ·]]KV). Thus for any P ∈ Ck+1
KV (A∗),

we have

Ψ(δA∗P ) = Ψ((−1)k [[H,P ]]KV) = (−1)k [[Ψ(H),Ψ(P )]] = dH♯Ψ(P ),

which implies that dH♯◦Ψ = Ψ◦δA∗ , i.e., the map Ψ is a cochain map between cochain complexes
(C∗

KV(A∗), δA∗) and (C∗(A∗,A),dH♯). Consequently, for any k ≥ 0, Ψ induces an isomorphism
between the corresponding cohomology groups. ■

Now we introduce a new cochain complex, whose cohomology groups control deformations of
Koszul–Vinberg structures. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA). For all α1, α2, α3 ∈ Γ(A∗), define

C̃1
KV(A∗) =

{
x ∈ C1

KV(A∗) | H(Rxα1, α2) = H(α1, Rxα2)
}
,

C̃2
KV(A∗) =

{
φ ∈ C2

KV(A∗) | φ(α1, α2) = φ(α2, α1)
}
,

C̃3
KV(A∗) =

{
φ ∈ C3

KV(A∗) | φ(α1, α2, α3) + c.p. = 0
}
,

C̃k
KV(A∗) = Ck

KV(A∗), k ≥ 4.

It is straightforward to verify that the cochain complex
(
C̃∗
KV(A∗), δA∗

)
is a subcomplex of the

cochain complex (C∗
KV(A∗), δA∗). Denote by H̃k

KV(A∗) the k-th cohomology group.

Definition 6.16. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA). A formal deformation of the Koszul–Vinberg structure H is a formal power se-
ries

Ht =
+∞∑
i=0

Hit
i ∈ Sym2(A)[[t]]

such that Ht is a Koszul–Vinberg structure on the left-symmetric algebroid (A⊗ R[[t]], ∗A, aA)
and H0 = H.

Note that Ht is a formal deformation of the Koszul–Vinberg structure H if and only if H♯
t is

a formal deformation of the relative Rota–Baxter operator H♯ on the LieRep pair (Ac;L).

Definition 6.17. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA). If H(n) =

∑n
i=0Hit

i with H0 = H, Hi ∈ Sym2(A), i = 1, . . . , n is a Koszul–
Vinberg structure on the left-symmetric algebroid

(
A⊗R[[t]]/

(
tn+1

)
, ∗A, aA

)
, we say that H(n)

is an order n deformation of the Koszul–Vinberg structure H. Furthermore, if there exists an
element Hn+1 ∈ Sym2(A) such that H(n+1) = H(n)+ tn+1Hn+1 is an order n deformation of the
Koszul–Vinberg structure H, we say that H(n) is extendable.

We call an order 1 deformation of the Koszul–Vinberg structure H on a left-symmetric algebroid
(A, ∗A, aA) an infinitesimal deformation of the Koszul–Vinberg structure H.

It is not hard to check that H(n) is an order n deformation of the Koszul–Vinberg structure H

if and only if H♯
(n) is an order n deformation of the relative Rota–Baxter operator H♯ on the

LieRep pair (Ac;L).

Definition 6.18. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA). Two order n deformations Ht and H ′

t of H are said to be equivalent if there
exists a formal series Xt =

∑+∞
i=1 xit

i, xi ∈ Γ(A) such that

exp(adXt)Ht = H ′
t modulo tn+1,
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where exp denotes the exponential series and

adkXt
Ht =

[[
Xt,
[[
Xt, . . . , [[Xt, Ht]]KV, k. . .

]]
KV

]]
KV

.

An order n deformation Ht of H is called trivial if Ht is equivalent to H.

Proposition 6.19. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA) and Ht, H

′
t ∈ Sym2(A)[[t]]. Two order n deformations Ht and H ′

t of the Koszul–

Vinberg structure H are equivalent if and only if the two order n deformations H♯
t and (H ′)♯t of

the relative Rota–Baxter operator H♯ on the LieRep pair (Ac;L) are equivalent.

Proof. It follows from that Ψ defined by (6.5) is a graded Lie algebra isomorphism between
the graded Lie algebra (C∗(A∗,A), [[·, ·]]) and (C∗

KV(A∗), [[·, ·]]KV). ■

Proposition 6.20. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA). Then there is a one-to-one correspondence between equivalence classes of infinitesi-
mal deformations of the Koszul–Vinberg structure H and the second cohomology group H̃2

KV(A∗).

Proof. Assume that Ht and H ′
t are equivalent infinitesimal deformations of the Koszul–Vinberg

structure H. By Theorem 4.4 and Proposition 6.19, there exists an element x ∈ Γ(A) such that

H′
1 −H1 = δA∗x.

Since H′
1 and H1 are symmetric, for all α1, α2 ∈ Γ(A∗), we have

δA∗x(α1, α2) = δA∗x(α2, α1),

which implies that H(Rxα1, α2) = H(α1, Rxα2), i.e., x ∈ C̃1
KV(A∗). Thus H′

1 and H1 are in the
same cohomology class of H̃2

KV(A∗).
The converse can be proved similarly. We omit the details. ■

Similarly to Proposition 4.5, we have

Proposition 6.21. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid
(A, ∗A, aA) such that H̃2

KV(A∗) = 0. Then all infinitesimal deformations of the Koszul–Vinberg
structure H are trivial.

Theorem 6.22. Let H be a Koszul–Vinberg structure on a left-symmetric algebroid (A, ∗A, aA).
Let H(n) =

∑n
i=0Hit

i be an order n deformation of H. Define

Θ =
1

2

∑
i+j=n+1

i,j≥1

[[Hi,Hj ]]KV . (6.7)

Then the 3-cochain Θ is closed, i.e., δA∗Θ = 0. Furthermore, H(n) is extendable if and only if

the cohomology class [Θ] in H̃3
KV(A∗) is trivial.

Proof. For any α1, α2, α3 ∈ Γ(A∗) and i, j ≥ 1, we have

[[Hi,Hj ]]KV (α1, α2, α3) = aA(H♯
i(α1))⟨H♯

j(α2), α3⟩+ aA(H♯
j(α1))⟨H♯

i(α2), α3⟩

− aA(H♯
i(α2))⟨H♯

j(α1), α3⟩ − aA(H♯
j(α2))⟨H♯

i(α1), α3⟩

+ ⟨α1,H♯
i(α2) ∗A H♯

j(α3)⟩+ ⟨α1,H♯
j(α2) ∗A H♯

i(α3)⟩

− ⟨α2,H♯
i(α1) ∗A H♯

j(α3)⟩ − ⟨α2,H♯
j(α1) ∗A H♯

i(α3)⟩

− ⟨α3, [H♯
i(α1),H♯

j(α2)]A⟩ − ⟨α3, [H♯
j(α1),H♯

i(α2)]A⟩.
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It is straightforward to check that

[[Hi,Hj ]]KV (α1, α2, α3) + [[Hi,Hj ]]KV (α3, α1, α2) + [[Hi,Hj ]]KV (α2, α3, α1) = 0,

which implies that Θ defined by (6.7) is in C̃3
KV(A∗). By Theorem 4.6 and Proposition 6.15,

the 3-cochain Θ is closed. The rest follows directly from the fact that this deformation problem
is controlled by the differential graded Lie algebra (C∗

KV(A∗), [[·, ·]]KV , [[H, ·]]KV). We omit the
details. ■
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