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Abstract. We consider the six-vertex model with the rational weights on an s×N square
lattice, s ⩽ N , with partial domain wall boundary conditions. We study the one-point func-
tion at the boundary where the free boundary conditions are imposed. For a finite lattice,
it can be computed by the quantum inverse scattering method in terms of determinants. In
the large N limit, the result boils down to an explicit terminating series in the parameter
of the weights. Using the saddle-point method for an equivalent integral representation,
we show that as s next tends to infinity, the one-point function demonstrates a step-wise
behavior; at the vicinity of the step it scales as the error function. We also show that
the asymptotic expansion of the one-point function can be computed from a second-order
ordinary differential equation.
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1 Introduction

Integrability of 1D quantum systems is closely related to the notion of the Bethe anzats and,
even more significantly, to its algebraic version, introduced by Takhtajan and Faddeev [40]. In
a more general sense, the proposed method consists in quantization of the monodromy matrix of
a classical integrable system in the settings of an inverse scattering problem, – hence the name
quantum inverse scattering method (QISM) [30].

The central role in the QISM is played by commutation relations between operators being
matrix elements of the quantum monodromy matrix. These commutation relations are described
by the so-called R-matrix, which also has the meaning of a matrix of Boltzmann weights of
some lattice model of 2D statistical mechanics. The crucial property of the R-matrix is that
it obeys the Yang–Baxter relation, which leads to integrability of the underlying lattice model.
This means that its transfer matrix in the case of periodic boundary conditions appears to be
a generating function of an infinite number of commuting operators.

A famous and important example is provided by the six-vertex model, also known as the
ice-type model [2]. It is related to the so-called trigonometric R-matrix, and, as a special case,
the rational R-matrix. These two R-matrices describe commutation relations for the elements
of the monodromy matrices of the Heisenberg XXZ and XXX spin chains, respectively.

This paper is a contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quan-
tum in honor of Leon Takhtajan.

The full collection is available at https://www.emis.de/journals/SIGMA/Takhtajan.html
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In [29], Korepin, in addressing the proof within the QISM of the Gaudin hypothesis on the
norm of Bethe states, showed that the scalar products in the N -particle sector are expressed
in terms of a special object, which has a meaning as the partition function of the six-vertex
model on a finite-size domain constructed by intersection of N vertical and N horizontal lines,
the so-called N×N lattice, with special fixed boundary conditions called domain wall boundary
conditions (DWBC). In the spin language for local states, typical for the QISM, they mean that
the states on each of the four boundaries are all the same, and have the opposite values, spin up
versus spin down, at the opposite boundaries of the N ×N lattice, so as a result, the boundary
spins around the N ×N lattice form a domain wall.

A milestone result was later obtained by Izergin [21], who wrote down an explicit deter-
minant formula satisfying all the properties listed by Korepin in [29], which fix completely
the partition function [22]. Besides applications to study of correlation functions of the re-
lated 1D quantum systems [27, 28, 30], this result has turned out to be of importance, e.g., in
combinatorics, for proving long-standing conjectures on enumerations of alternating-sign matri-
ces [35, 42]. Further study of the six-vertex model with DWBC has showed that it provides
an example of a statistical mechanics model where the boundary conditions significantly af-
fect bulk thermodynamic quantities [4, 31]. That is closely related to presence of nontrivial
limit shapes in the scaling limit, as has been established both numerically and analytically
[1, 3, 8, 9, 25, 36, 39].

The six-vertex model is also very interesting in the case where DWBC are relaxed at one
of their four boundaries. These are the so-called partial domain wall boundary conditions
(pDWBC). Specifically, the six-vertex model is considered on an s × N lattice, s ⩽ N , and
pDWBC mean that DWBC are kept at the two boundaries of length s and one boundary of
length N , while the remaining boundary of length N is left free, that is, the summation over all
possible states is performed. This model arises, in particular, in the context of calculations of
correlation function in N = 4 supersymmetric Yang–Mills theory [13, 14, 19, 24].

Unlike the case of DWBC, in the case of pDWBC determinant representations are only
known for the rational weights and non-symmetric trigonometric weights satisfying the Gwa–
Spohn stochasticity condition [20]. Determinant representations have been obtained by Foda
and Wheeler [16, 17, 41] and Kostov [32, 33]; thermodynamics has been studied by Bleher and
Liechty [5]. For arbitrary symmetric weights, apart from the free-fermion case, it seems no
general determinant formula for the partition function exists, although in the limit N →∞ the
partition function can be given in terms of a Pfaffian [38].

In the present paper, limiting ourselves by the case of rational weights, we study the simplest
one-point correlation function describing polarization at the boundary where the free conditions
are imposed. Our central result is an explicit formula for this function in the limit N → ∞
(see Proposition 3.2 in Section 3.1). In this limit the lattice turn into the semi-infinite lattice
strip; for simplicity, we call it semi-infinite lattice. We obtain this formula by two methods. We
first show that it can be conjectured using a formulation of the model in terms off-shell Bethe
states in the coordinate form, and next we give a proof using the QISM formalism. In the latter,
a contour integral formula for the one-point function appears, which turns out to be convenient
for proving various other representations.

We also study the scaling properties of the boundary one-point function as s tends to infinity
and the mesh size of the lattice vanishes, so that lattice is scaled to a semi-infinite strip of a unit
width. We find that the one-point function demonstrates a step-wise behavior; at the vicinity
of the step it scales as a (complementary) error function. Again, we use two methods to obtain
the result. One is the saddle-point method applied to the contour integral formula. Since it
appears rather subtle in its topological part, we show that the same result can also be obtained
from an ordinary differential equation (ODE) for the one-point function by means of the method
proposed in [26]. This method allows for construction of the asymptotic expansion recursively
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Figure 1. Admissible vertex configurations in terms of arrows (first row), solid lines (second row), and

their Boltzmann weights wi (third row).

starting from the leading term, which is simply determined in our case as a proper root of an
algebraic cubic equation.

The present paper can be seen as a complementary to [37] where we have derived a formula in
terms of a sum over the Jacobi polynomials. The main difference is that in our QISM calculations
here we put forward the determinant formula by Kostov. This makes it possible to take the
N →∞ limit before the homogeneous limit, that significantly simplifies subsequent calculations.

The paper is organized as follows. In Section 2 we give the definition of the model and recall
the determinant formulas for the partition function. Section 3 is devoted to the boundary one-
point function and the QISM calculations. Section 4 contains derivation of the step-function
behavior of the one-point function in the scaling limit; we also prove that it obeys a second-order
ODE and explain how this equation can be used to build the asymptotic expansion. In Section 5
we briefly discuss our results, also in application to the phase separation phenomena.

2 Six-vertex model with partial domain wall boundary
conditions

In the section we define the model and give some basic results, such as determinant formulas
for the partition function in the case of rational Boltzmann weights. We also explain how it
simplifies in the limit of a semi-infinite lattice.

2.1 Definition of the model

We consider the six-vertex model on an s×N square lattice, s ⩽ N , i.e., a lattice obtained by
intersection of s horizontal and N vertical lines. The configurations of the six-vertex model are
usually defined in terms of arrows placed on edges, or, equivalently, in terms of solid lines. The
correspondence between arrows and lines is the following: if the edge has left or down arrow,
then it carries a solid line, otherwise, if it has right or up arrow, it is empty. The allowed arrow
configurations around a vertex are only those which contain an equal number of incoming and
outgoing arrows, or, in terms of lines, only those which conserve the number of lines passing
along the NE-SW direction, see Figure 1, where the six allowed vertex configurations are given
in the standard order [2]. The partition function of the six-vertex model is defined as

Z =
∑
C∈Ω

∏
i=1,...,6

w
ni(C)
i , (2.1)

where Ω is the set of allowed arrow configurations, ni(C) is the number of vertices of type i
(i = 1, . . . , 6) in the configuration C, and wi is the corresponding Boltzmann weight of the
vertex.

The set Ω of allowed configurations (i.e., over those the summation in (2.1) is performed)
depends on the boundary conditions imposed. For our s × N lattice (recall that s ⩽ N) we
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N

s

Figure 2. Partial domain wall boundary conditions: the arrow states on external edges on the left,

bottom and right boundaries are fixed, while on the top boundary the summation over all possible states

is performed (left); one of the possible configurations in terms of the solid lines (right).

take the so-called partial domain wall boundary conditions (pDWBC) which are defined as
follows. All arrows on the left and right boundaries are outgoing, those on the bottom boundary
are incoming, but on the top boundary the summation over all possible arrow configurations
is performed, see Figure 2. In the special case s = N , the only possible configuration on
the top boundary is with all incoming arrows, that corresponds to the domain wall boundary
conditions [17, 29].

Throughout this paper we take the Boltzmann weights invariant under reversal of all arrows,

w1 = w2 =: a, w3 = w4 =: b, w5 = w6 =: c, (2.2)

and, furthermore, of the form

a = 1, b = t, c = 1− t, 0 ⩽ t < 1. (2.3)

The model with weights given by (2.2) and (2.3) is known as the rational six-vertex model, since
it is related to the rational R-matrix in the Yang–Baxter relation. In terms of the parameter

∆ =
a2 + b2 − c2

2ab
,

relevant for the description of the phase diagram of the symmetric six-vertex model (see, e.g., [2]),
it corresponds to the case ∆ = 1, where among the two possible branches, a < b and a > b, the
latter has been chosen. This means that the weights (2.3) have the following important property

b+ c = a = 1. (2.4)

Here, the second equality is simply the choice of normalization, which is crucial for considering
the semi-infinite lattice limit in what follows. The first equality in (2.4) implies stochasticity of
the model [20]. Namely, interpreting the Boltzmann weight as a probability of passing a solid
line through the vertex (see Figure 1), one finds that the total probability is conserved (and
equals to 1); the parameter t in (2.3) gives the probability of passing through the vertex without
change of the direction.

2.2 Determinant formulas for the partition function

To apply the quantum inverse scattering method (QISM) we consider the inhomogeneous version
of the model where the Boltzmann weights a, b, and c are site-dependent. Namely, we introduce
two sets of parameters, each parameter associated with a line of the lattice. Let parameters
λ1, . . . , λs correspond to the horizontal lines enumerated from top to bottom and ν1, . . . , νN
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correspond to the vertical lines enumerated from left to right.1 The weights of the vertex being
at the intersection of j-th horizontal and k-th vertical lines are

ajk = 1, bjk = b(λj , νk), cjk = c(λj , νk), (2.5)

where

b(λ, ν) =
λ− ν

λ− ν + 1
, c(λ, ν) =

1

λ− ν + 1
. (2.6)

The case of all the parameters equal to each other within each set, λ1 = · · · = λs = λ and
ν1 = · · · = νN = ν, where, without loss of generality, we can set ν = 0, corresponds to the
homogeneous model. In what follows, we call this case the homogeneous limit. The case where
ν1, . . . , νN = 0, but all λ1, . . . , λs remain distinct, will be referred to as the partial homogeneous
limit.

Basically, two determinant formulas are known for the partition function of the inhomoge-
neous model. One is in terms of N × N determinant and it has been obtained by Foda and
Wheeler [17].

Proposition 2.1 (Foda and Wheeler). The partition function of the six-vertex model with
pDWBC can be written in the form

Z =

∏s
j=1

∏N
k=1(λj − νk)∏

1⩽j<k⩽s(λk − λj)
∏

1⩽j<k⩽N (νj − νk)
det

[{
φ(λi, νj), i ⩽ s

νN−i
j , i > s

]
i,j=1,...,N

, (2.7)

where

φ(λ, ν) =
1

(λ− ν + 1) (λ− ν)
. (2.8)

Apparently, (2.7) provides a generalization of the well-known formula [21, 22, 29] for the
partition function of the six-vertex model in the case of s × s lattice with DWBC to the case
of s×N lattice with pDWBC, valid for the rational weights.2 On the other hand, (2.7) can be
obtained from the DWBC case but for the N ×N lattice, in the limit where (N − s) parameters
associated with the rows are sent to infinity, λN−s+1, . . . , λN →∞ [17].

Another formula for the partition function is in terms of s × s determinant and it is due to
Kostov [32, 33].

Proposition 2.2 (Kostov). The partition function of the rational six-vertex model with pDWBC
admits the representation

Z =
∏

1⩽j<k⩽s

1

λk − λj
det

[
λj−1
i − (λi + 1)j−1

N∏
k=1

b(λi, νk)

]
i,j=1,...,s

, (2.9)

where the function b(λ, ν) is defined in (2.6).

1In [37], we have used the reverse order for the vertical lines; the reason to change the convention is motivated
by calculations in Section 3.2.

2For the rational case, exactly which we discuss here, this formula can also be found in the monograph by
Gaudin [18, Proposition J2], where it appears as a representation for the off-shell Bethe state with the consecutive
values of the particles’ coordinates. However, to identify this quantity as the partition function of the six-vertex
model with DWBC, some additional tools are needed; this becomes apparent within the QISM formalism (see
discussion in Section 3.1).
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The equivalence of (2.7) and (2.9) was proved in [17].
Let us now discuss these representations in the homogeneous limit. We will focus mostly

on (2.7), since these two representations at some stage coincide explicitly, see the discussion
below after (2.15).

We first consider the partition function in the partial homogeneous limit, where ν1, . . . , νN
→ 0, but λ1, . . . , λs are still arbitrary. In this limit (2.9) is non-singular, and can be triv-
ially computed, while treatment of (2.7) requires some work. The key relation here is that if
f1(ν), . . . , fN (ν) are at least N−1 times differentiable functions with respect to their arguments,
then

lim
ν1,...,νN→ν

∏
1⩽j<k⩽N

1

νk − νj
det [fi(νj)]i,j=1,...,N =

1∏N−1
k=1 k!

det
[
f
(j−1)
i (ν)

]
i,j=1,...,N

.

Using the property ∂νφ(λ, ν) = −∂λφ(λ, ν), see (2.8), and denoting φ(λ) ≡ φ(λ, 0), we get

lim
ν1,...,νN→0

∏
1⩽j<k⩽N

1

νj − νk
det

[{
φ(λi, νj), i ⩽ s

νN−i
j , i > s

]
i,j=1,...,N

=
(−1)

N(N−1)
2∏N−1

k=1 k!
det

[{
(−1)j−1φ(j−1)(λi), i ⩽ s

(j − 1)! δN−i,j−1, i > s

]
i,j=1,...,N

=
(−1)s(N−s)∏s
k=1(N − k)!

det
[
φ(N−s+j−1)(λi)

]
i,j=1,...,s

.

Note that here the last determinant is of size s× s. As a result, for the partition function of the
partially inhomogeneous model we have

Z =
(−1)s(N−s)∏s
k=1(N − k)!

∏s
j=1 λ

N
j∏

1⩽j<k⩽s(λk − λj)
det
[
φ(N−s+i−1)(λj)

]
i,j=1,...,s

. (2.10)

Let us now consider the homogeneous limit of (2.7) in the full set of parameters, namely,
we also take the limit λ1, . . . , λs → λ in addition to ν1, . . . , νN → 0. Along the same lines, the
following relation holds

lim
ν1,...,νN→0
λ1,...,λs→λ

∏
1⩽j<k⩽s

1

λk − λj

∏
1⩽j<k⩽N

1

νj − νk
det

[{
φ(λi, νj), i ⩽ s

νN−i
j , i > s

]
i,j=1,...,N

=
(−1)s(N−s)∏s

k=1(N − k)!
∏s−1

k=1 k!
det
[
φ(N−s+i+j−2)(λ)

]
i,j=1,...,s

.

Hence, for the homogeneous model the following formula is valid:

Z =
(−1)s(N−s)λsN∏s

k=1(N − k)!
∏s−1

k=1 k!
det
[
φ(N−s+i+j−2)(λ)

]
i,j=1,...,s

. (2.11)

Note that the result is given in terms of the determinant of a Hankel matrix, similarly to the
DWBC case [5, 22].

Now we consider how these representations can be made more explicit, by computing deriva-
tives of the function φ(λ). Indeed, let us switch from the variable λ to the variable t appearing
in (2.3),

t = b(λ, 0) =
λ

λ+ 1
, λ =

t

1− t
. (2.12)
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Writing the function φ(λ) in the form

φ(λ) =
1

λ
− 1

λ+ 1
=

1− t
t
− (1− t),

the n-th derivative with respect to λ in terms of t can be readily computed to be

φ(n)(λ) = (−1)nn!
(
1− t
t

)n+1 (
1− tn+1

)
. (2.13)

Consider the partially inhomogeneous model with the weights parameterized in terms of the
parameters tj = b(λj , 0), j = 1, . . . , s. Substituting (2.13) into (2.10), and taking into account
that ∏

1⩽j<k⩽s

(λk − λj) =
∏

1⩽j<k⩽s

tk − tj
(1− tk)(1− tj)

=
1∏s

j=1(1− tj)s−1

∏
1⩽j<k⩽s

(tk − tj), (2.14)

we obtain

Z =
(−1)s(N−s)∏s
k=1(N − k)!

s∏
j=1

tNj
(1− tj)N−s+1

∏
1⩽j<k⩽s

1

tk − tj

× det

[
(−1)N−s+j−1(N − s+ j − 1)!

(
1− ti
ti

)N−s+j (
1− tN−s+j

i

)]
i,j=1,...,s

.

Simplifying factors coming from the determinant, we end up with

Z =
(−1)

s(s−1)
2∏

1⩽j<k⩽s(tk − tj)
det
[
(1− ti)j−1

(
ts−j
i − tNi

)]
i,j=1,...,s

. (2.15)

Note that this formula is in fact identical to (2.9) in the partial homogeneous limit, modulo
factor (1− ti)s−1 for the entries of the matrix, see also (2.14).

In the fully homogeneous case, the similar calculation in the case of (2.11) yields

Z =
1∏s

k=1(N − k)!
∏s−1

k=1 k!
det
[
(N − s+ i+ j − 2)!

(
1− tN−s+i+j−1

)]
i,j=1,...,s

. (2.16)

Note that, taking the limit t1, . . . , ts → t in (2.15) one obtains the determinant of a different
matrix; it can be easily shown, however, that it can be reduced to that in (2.16) by a successive
subtraction of its rows.

Thus, we have shown that the representations due to Foda–Wheeler (2.7) and due to Kos-
tov (2.9) lead to essentially the same formula already in the partial homogeneous limit. For the
homogeneous model it is given by a Hankel determinant, see (2.16).

2.3 The limit of semi-infinite lattice

The model with pDWBC is interesting in that it admits the limit N → ∞ under a certain
restriction on the weights [38]. Namely, for the model with symmetric weights (2.2) one have
to set a = 1 and b < 1, that is apparently fulfilled in (2.3). The limit N → ∞ means that
the right boundary goes to infinity, so that the lattice becomes a semi-infinite lattice strip, with
s rows. The boundary conditions on the right boundary become effectively vanishing, that is
guaranteed by fact that the a-weight is normalized to one and that the b-weight, which is now
the parameter t, satisfies 0 ⩽ t < 1.
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For rather general settings but limiting to the rational weights, the following important
property holds. For the six-vertex model on s × N lattice with pDWBC and with the weights
satisfying condition (2.4) at each lattice vertex, the partition function in the limit N → ∞ is
equal to one,

lim
N→∞

Z = 1. (2.17)

The property (2.17) can be seen as a consequence of stochasticity expressed by the relation (2.4),
see, e.g., [20]. Indeed, the s paths all entering at the left boundary must all exit at the top
boundary, with the total probability equal to 1, as far as the total probability is conserved at
each lattice vertex.

It is interesting to see how (2.17) can approached from the determinant representations
considered above. As far as representation (2.7) involves the determinant of N ×N matrix, it
can hardly be used for this purpose directly. On the other hand, representation (2.9) almost
immediately leads to the result, since

N∏
k=1

b(λi, νk) −→
N→∞

0, i = 1, . . . , s.

Hence, the second term in the determinant in (2.9) vanishes, and the determinant boils down to
the Vandermonde determinant exactly cancelling the pre-factor in (2.9), that yields (2.17).

It is useful to mention how this result can be obtained from the formula for the partition
function of the homogeneous model, given by (2.16). It is convenient to consider the determinant
of a slightly more general matrix, with the entries

Aij = (α+ i+ j − 2)!
(
1− tα+i+j−1

)
.

When α is large, they behave as

Aij = (α+ i+ j − 2)!
(
1 +O

(
e−α| log t|)).

For s kept finite as α→∞, we have

det[Aij ]i,j=1,...,s = det[(α+ i+ j − 2)!]i,j=1,...,s

(
1 +O

(
e−α| log t|)),

and so the determinant can be evaluated using the fact that the leading term of Aij is nothing

but the moment of the orthogonality measure of the Laguerre polynomials
{
L
(α)
n (x)

}∞
n=0

,

(α+ i+ j − 2)! =

� ∞

0
xi+j−2e−xxαdx.

The standard technique of evaluation of the determinant of a Hankel matrix yields

det[(α+ i+ j − 2)!]i,j=1,...,s =

s−1∏
j=0

(α+ j)!j!.

Setting here α = N − s, and substituting the result in (2.16), we obtain (2.17).

3 Boundary one-point function

In this section we introduce and compute the boundary one-point function. We start with
exposing a connection of the model with off-shell Bethe states, give a multiple integral formula
for the one-point function, and present a conjectural explicit expression. In the remaining part
of this section we give a proof of this result.
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m

Figure 3. Definition of the boundary one-point function G↓(m): probability of observing configurations

with the arrow on the top boundary at the mth vertical line to be pointing down.

3.1 Relation to off-shell Bethe states

We define the boundary one-point function as describing the probability of observing a down
arrow, at the mth, from the left, vertical line at the top boundary,

G↓(m) =
1

Z

∑
C∈Ω↓m

∏
i=1,...,6

w
ni(C)
i . (3.1)

Here the summation is restricted to the subset of configurations Ω↓m ⊂ Ω such that the arrow
at the mth edge of the top boundary is fixed to be pointed down, see Figure 3. In terms of lines,
we thus require that this edge contains a solid line. Since all configurations C contain exactly s
solid lines, the one-point function G↓(m) = G↓(m; s,N) satisfies the normalization condition
(a sum rule):

N∑
m=1

G↓(m) = s.

Thus, the boundary one-point function (3.1) describes distribution of paths at the top
boundary where the free boundary conditions are imposed. Note that in the special case
s = N , where pDWBC become DWBC, all edges on the top boundary contain solid lines,
hence G↓(m;N,N) = 1. Our aim in this subsection is to show that in the limit of the semi-
infinite lattice, N → ∞, a nice explicit expression can be conjectured for G↓(m) as a function
of the parameter t of the homogeneous model Boltzmann weights (2.3).

The key ingredient of our consideration here will be a connection of the six-vertex model with
pDWBC with off-shell Bethe states. To outline this connection, and for a latter use, we need to
give an operator formulation of the model in the framework of the QISM [30].

We start with introducing correspondence between arrow states and the spin-up and spin-
down vectors forming a basis of the space C2 as follows:

↑,→ ⇐⇒ |↑⟩ or ⟨↑|,
↓,← ⇐⇒ |↓⟩ or ⟨↓|.

(3.2)

The ket vectors are column vectors

|↑⟩ =
(
1
0

)
, |↓⟩ =

(
0
1

)
,

and the bra vectors are the corresponding row vectors,

⟨↑| =
(
1 0

)
, ⟨↓| =

(
0 1

)
.

Next, to the vertex being at the intersection of kth column and jth row we associate an
operator Ljk(λj , νk). Recall that λj , j = 1, . . . , s, and νk, k = 1, . . . , N , are the parameters
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of the inhomogeneous version of the model, introduced in Section 2.2. The L-operator acts
non-trivially in the direct product of two vector spaces C2: the “horizontal” space Hj = C2

(associated with the j-th row) and the “vertical” space Vk = C2 (associated with the kth
column). Graphically, the L-operator acts from top to bottom and from right to left. In other
words, we define the L-operator as a matrix of the Boltzmann weights of the vertex, with the
arrow states on the top and right edges as “in” indices, and those on the left and bottom edges,
as “out” ones.

For the arbitrary weights ajk, bjk, and cjk, the L-operator reads

Ljk(λj , νk) = ajk
1 + τ zj σ

z
k

2
+ bjk

1− τ zj σzk
2

+ cjk
(
τ+j σ

−
k + τ−j σ

+
k

)
,

where τ±,z
j (σ±,z

k ) are the Pauli spin-1/2 operators associated with the spaceHj (Vk). Specifically,
for the weights (2.5), one has

Ljk(λj , νk) = b(λj , νk) + c(λj , νk)Pjk,

where Pjk is the permutation operator, and the functions b(λ, ν) and c(λ, ν) are defined in (2.6).
Now consider a horizontal line, say jth, of our s × N square lattice, but at the moment we

let the states on the external horizontal edges take arbitrary values. The “Boltzmann weight”
of the whole line can be given as an ordered product of the L-operators, usually called in the
QISM the monodromy matrix:

TV
j (λj) = Lj1(λj , ν1)Lj2(λj , ν2) · · ·LjN (λj , νN ) =

(
AV(λj) BV(λj)
CV(λj) DV(λj)

)
[Hj ]

.

Here, the 2× 2 matrix is written in the space Hj , as indicated in the subscript. The operators
AV(λj), . . . , D

V(λj) depend on the parameters ν1, . . . , νN ; we skip this dependence in the nota-
tion for a simplicity. These operators act in the space V = ⊗N

k=1Vk and describe transition from
a row to row in the vertical direction, as indicated by the superscript. Note that they contain
information about which horizontal line they correspond, namely the jth one, only via their
argument, λj .

Fixing the states on the external horizontal edges specifies which operator out the four
AV(λj), . . . , D

V(λj) corresponds to the horizontal line. In the case of pDWBC, our convention
between arrow states and basis vectors (3.2) selects the CV-operators for each line. Denoting
the basis vectors of the space Vk by |↑k⟩ and |↓k⟩, one can encode the open boundary conditions
on the top boundary by the state

|⇕V⟩ ≡ ⊗N
k=1(|↑k⟩+ |↓k⟩).

The boundary conditions on the bottom boundary correspond to the state

⟨⇑V| ≡ ⊗N
k=1⟨↑k|.

Thus, the partition function of the six-vertex model with pDWBC can be written as the following
matrix element:

Z = ⟨⇑V|CV(λs) · · ·CV(λ1)|⇕V⟩. (3.3)

The boundary one-point function (3.1) can be defined as

G↓(m) =
1

Z
⟨⇑V|CV(λs) · · ·CV(λ1)π

↓
m|⇕V⟩,
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r1 r2 r3 r4

Figure 4. Definition of the partition function Zr1,...,rs : the down arrows at the top boundary are fixed

at the positions 1 ⩽ r1 < · · · < rs ⩽ N . Here, N = 9, s = 4, and {r1, r2, r3, r4} = {2, 3, 5, 9}.

where π↓m denotes the projector to the spin-down state in the space Vm, namely, π↓m = 1
2(1−σ

z
m).

Now we are ready to establish the connection with the off-shell Bethe states. For this end,
we introduce one more object, namely the partition function of the model on the s×N lattice
with the down arrows located at the positions r1, . . . , rs on the top boundary, see Figure 4. Let
us denote this partition function as Zr1,...,rs . Similarly to (3.3), we can write

Zr1,...,rs = ⟨⇑V|CV(λs) · · ·CV(λ1)σ
−
r1 · · ·σ

−
rs |⇑

V⟩. (3.4)

To establish of a connection of the partition function Z with Zr1,...,rs , let us consider the vec-
tor |⇕V⟩ in (3.3). Apparently, only the states with s down spins contribute in (3.3), and therefore
one can replace the vector |⇕V⟩ by the sum over such states:

|⇕V⟩ =⇒
∑

1⩽r1<···<rs⩽N

σ−r1 · · ·σ
−
rs |⇑

V⟩.

In other words, we have

Z =
∑

1⩽r1<···<rs⩽N

Zr1,...,rs .

The connection of Zr1,...,rs with the boundary one-point function is slightly more subtle [7],

G↓(m) = Z−1
s∑

l=1

∑
1⩽r1<···<rl−1<m<rl+1<···<rs⩽N

Zr1,...,rl−1,m,rl+1,...,rs , (3.5)

where the inner summation, over the values of r’s, is performed with m kept fixed.
Coming back to formula (3.4), the main observation one can make about it is that by its

form it hints at the fact that Zr1,...,rs is nothing but a component of the off-shell Bethe state
in the sector with s particles. For a sake of simplicity, and also because we are interested in
the homogeneous model, we illustrate this fact for the partially homogeneous model, which we
define as in Section 2.2, by setting ν1, . . . , νs = 0. Then introduce variables

tj = b(λj , 0), j = 1, . . . , s.

The correspondence between the algebraic and coordinate versions of Bethe ansatz [23] (see also
[30, Chapter VII, Appendix 2],), implies that Zr1,...,rs in the coordinate form reads:

Zr1,...,rs =

s∏
j=1

cj
∏

1⩽j<k⩽s

1

tk − tj

∑
σ

(−1)[σ]
s∏

j=1

t
rj−1
σj

∏
1⩽j<k⩽s

(1− 2tσj + tσj tσk
). (3.6)

Here cj ≡ (1 − tj), see (2.3). The sum is performed over the permutations σ : 1, . . . , s 7→
σ1, . . . , σs, and [σ] denotes parity of σ.
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Now, our task is to perform the homogeneous limit in the remaining set of parameters,
t1, . . . , ts = t, where t defines the weights of the homogeneous model, see (2.3). This not a quite
straightforward calculation, since there are singularities coming from the first factor in (3.6) in
the limit. The result can be formulated as follows.

Proposition 3.1. The partition function Zr1,...,rs for the homogeneous model can be represented
as the s-fold contour integral

Zr1,...,rs =

�
Ct

. . .

�
Ct

s∏
j=1

z
rj−1
j

(zj − t)s
∏

1⩽j<k⩽s

p(zj , zk)
dz1 · · · dzs
(2πi)s

,

where Ct denotes a small simple counter-clockwise oriented contour around the point z = t, and

p(x, y) = (x− y)(1− 2x+ xy).

The proof can be found in [10], see also [7, Appendix A].

The main practical usefulness of the representation in terms of multiple contour integral
is related to the fact that the residues can be efficiently computed with the help of symbolic
manipulation software. The same also applicable to the sum in (3.5), especially when N = ∞.
Recalling that Z|N=∞ = 1, see the discussion in Section 2.3, we have therefore been tempted to
compute the boundary one-point function for the case of semi-infinite lattice strip using (3.5) at
N = ∞ for some small values of s = 1, 2, . . . , in the hope that the results will appear suitable
for guessing of a general expression.

Indeed, performing this calculation, and denoting g(m; s) ≡ G↓(m; s,∞) with n ≡ m − 1 =
0, 1, . . . , we find for s = 1, . . . , 5, respectively:

g(m, 1) = (1− t)tn,
g(m, 2) = (1− t)tn−1

{
n(1− t)2 + (1 + t)t

}
,

g(m, 3) = (1− t)tn−2

{
n(n− 1)

2
(1− t)4 + n(1− t)2t(1 + 2t) + t2

(
1 + t+ t2

)}
,

g(m, 4) = (1− t)tn−3

{
n(n− 1)(n− 2)

6
(1− t)6 + (n− 1)n

2
(1− t)4t(1 + 3t)

+ n(1− t)2t2
(
1 + 2t+ 3t2

)
+ t3

(
1 + t+ t2 + t3

)}
,

g(m, 5) = (1− t)tn−4

{
n(n− 1)(n− 2)(n− 3)

24
(t− 1)8

+
n(n− 1)(n− 2)

6
(1− t)6t(1 + 4t) +

n(n− 1)

2
(1− t)4t2

(
1 + 3t+ 6t2

)
+ n(1− t)2t3

(
1 + 2t+ 3t2 + 4t3

)
+ t4

(
1 + t+ t2 + t3 + t4

)}
.

Inspecting these expressions, it is not difficult to guess a general formula

g(m, s) = (1− t)tn−s+1
s−1∑
j=0

(
n

j

)
(1− t)2jts−j−1 1

j!
∂jt

1− ts

1− t
.

In this conjectured expression, however, we silently assume that s is small enough in comparison
with n. This restriction in fact can be relaxed, giving a formula, valid for generic values of s.
Restoring the original notation in terms of m, we thus have the following.
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Proposition 3.2. The boundary one-point function of the homogeneous model on the semi-
infinite lattice, g(m, s) = G↓(m; s,∞), can be given in the form

g(m, s) =
∑
j⩾0

(
m− 1

j

)
(1− t)2j+1tm−1−j 1

j!
∂jt

1− ts

1− t
. (3.7)

Note that the upper limit in the sum in (3.7) is in fact equal to min(m, s) − 1, since either
the binomial coefficient or the last factor terminates the sum.

Our aim in the remaining part of this section is to prove the assertion of Proposition 3.2.

3.2 The QISM calculations

To compute the boundary one-point function, we will use an operator formulation of the model in
terms of “horizontal” monodromy matrix rather than the “vertical” one, used above. Namely,
we construct the monodromy matrix by considering a product of the L-operators along the
vertical line,

TH
k (νk) = Lsk(λs, νk) · · ·L2k(λ2, νk)L1k(λ1, νk) =

(
AH(νk) BH(νk)
CH(νk) DH(νk)

)
[Vk]

,

where the subscript recalls that this is a matrix in the space Vk. The operators AH(νk), . . ., D
H(νk)

act in the space H = ⊗s
j=1Hj and describe the transition from a column to column in the

horizontal direction, as indicated by the superscript. Note that they contain information about
which vertical line they correspond, namely, the kth one, only via their argument, νk.

According to our conventions, see (3.2), the states

|⇑H⟩ = ⊗s
j=1|↑j⟩, ⟨⇓H| = ⊗s

j=1⟨↓j |,

where |↑j⟩ and ⟨↓j | are the basis vectors in Hj , encode the boundary conditions on the right
and left boundaries, respectively. The partition function of the six-vertex model on the s × N
square lattice with pDWBC can be defined as the matrix element:

Z = ⟨⇓H|
N∏
k=1

(
AH(νk) +BH(νk)

)
|⇑H⟩.

Here, the factors are ordered from the left to the right as k increases, according to our convention
on how the parameters ν1, . . . , νN are assigned to the vertical lines of the lattice (see Section 2.2),
though this is not essential as we show below that all these operators commute with each other.

As for the one-point function G↓(m), we will use the fact that equivalently we can consider
the probability of having an up arrow at the given edge,

G↑(m) = 1−G↓(m). (3.8)

Then,

G↑(m) = Z−1⟨⇓H|
m−1∏
k=1

(
AH(νk) +BH(νk)

)
AH(νm)

N∏
k=m+1

(
AH(νk) +BH(νk)

)
|⇑H⟩. (3.9)

As we shall see, G↑(m) can be computed in a rather straightforward manner; we will commute
operator AH(νm) to the left and act with it on the all-spins-down eigenstate,

⟨⇓H|AH(ν) = ⟨⇓H|
s∏

j=1

b(λj , ν). (3.10)

At the final stage we will turn back to G↓(m).
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To compute the matrix element in (3.9), we need the commutation relations between the A-
and B-operators. They originate from the intertwining relation for the L-operators

Rkk′(ν, µ)
(
Ljk(λ, ν)⊗ Ljk′(λ, µ)

)
=
(
Ljk′(λ, µ)⊗ Ljk(λ, ν)

)
Rkk′(ν, µ). (3.11)

This relation is written as an operator equation in the direct product of spaces Vk ⊗ Vk′ ⊗Hj .
The matrix Rkk′(ν, µ) acts nontrivially in Vk ⊗ Vk′ and has the form

Rkk′(ν, µ) =


f(µ, ν) 0 0 0

0 1 g(µ, ν) 0
0 g(µ, ν) 1 0
0 0 0 f(µ, ν)


[Vk⊗Vk′ ]

, (3.12)

where the functions f(µ, ν) and g(µ, ν) are (we follow the notation of [30])

f(µ, ν) = 1 +
1

µ− ν
, g(µ, ν) =

1

µ− ν
. (3.13)

Relation (3.11) implies a similar relation for the monodromy matrix,

Rkk′(ν, µ)
(
TH
k (ν)⊗ TH

k′ (µ)
)
=
(
TH
k′ (µ)⊗ TH

k (ν)
)
Rkk′(ν, µ). (3.14)

Relation (3.14) has an important property, known as gl2-invariance [34], which can be seen
as a consequence of the particular form of the R-matrix (3.12) and the identity

f(ν, µ)− g(ν, µ) = 1.

It means that if one considers, instead of the monodromy matrix TH
k (νk), the matrix

T̃H
k (νk) = KLT

H
k (νk)KR,

where KL and KR are arbitrary 2× 2 matrices with c-valued (non-operator) entries, then rela-
tion (3.14) remains intact.

From this place, we drop the superscript of operators and vectors, and will write simply A(ν)
for AH(ν), etc. The sub-algebra spanned by the A- and B-operators contains the commutativity
properties

[A(ν), A(µ)] = 0, [B(ν), B(µ)] = 0, (3.15)

and the relations

A(ν)B(µ) = f(ν, µ)B(µ)A(ν) + g(µ, ν)B(ν)A(µ),

B(ν)A(µ) = f(ν, µ)A(µ)B(ν) + g(µ, ν)A(ν)B(µ).
(3.16)

As it can be easily seen, the relations in (3.15) and (3.16) remain the same if we considers instead
of the A- and B-operators any linear combinations of them. In particular, one can choose

Ã(ν) = A(ν), B̃(ν) = A(ν) +B(ν). (3.17)

This means, that (3.9) can be computed using the standard methods of the QISM.
We will use the second relation in (3.16) and move the A-operator to left through a product

of the B-operators. In a completely standard manner for QISM (see, e.g., [30, Chapter VII]),
we have

m−1∏
k=1

B(νk)A(νm) =

m−1∏
k=1

f(νk, νm)A(νm)

m−1∏
k=1

B(νk)
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+

m−1∑
j=1

g(νm, νj)

m−1∏
k=1
k ̸=j

f(νk, νj)A(νj)

m∏
k=1
k ̸=j

B(νk)

=

m∑
j=1

g(νm, νj)

f(νm, νj)

m∏
k=1
k ̸=j

f(νk, νj)A(νj)
m∏
k=1
k ̸=j

B(νk), (3.18)

where at the second step we have collected together the “wanted” and “unwanted” terms into
a single sum, using that g(ν, ν)/f(ν, ν) = 1 [6].

For the matrix element defining the boundary one-point function, see (3.9), with (3.10), (3.17)
and (3.18) taken into account, one gets

⟨⇓|
m−1∏
k=1

B̃(νk) Ã(νm)

N∏
k=m+1

B̃(νk)|⇑⟩

=

m∑
j=1

s∏
l=1

b(λl, νj)
g(νm, νj)

f(νm, νj)

m∏
k=1
k ̸=j

f(νk, νj) ⟨⇓|
N∏
k=1
k ̸=j

B̃(νk)|⇑⟩.

Hence,

G↑(m) = Z−1
m∑
j=1

s∏
l=1

b(λl, νj)
g(νm, νj)

f(νm, νj)

m∏
k=1
k ̸=j

f(νk, νj)Z(\νj), (3.19)

where Z(\νj) denotes the partition function on an s×(N−1) lattice, with the sets of parameters
λ1, . . . , λs and ν1, . . . , νj−1, νj+1, . . . , νN .

Expression (3.19) is suitable for using an explicit expression for the partition function in terms
of a determinant to obtain a similar expression for the boundary one-point function. For example,
due to the Foda–Wheeler formula (2.7), the sum in (3.19) can be seen as result of developing
along a row (which has only the firstm entries not equal to zero) of some determinant of anN×N
matrix. As a result, this leads to the representation in terms of a ratio of two determinants. We
have discussed this procedure and the subsequent homogeneous limit in details in [37].

We will consider here instead application of the formula by Kostov (2.9). This yields

G↑(m) = Z−1
m∑
j=1

s∏
l=1

b(λl, νj)
g(νm, νj)

f(νm, νj)

m∏
k=1
k ̸=j

f(νk, νj)

×
∏

1⩽j<k⩽s

1

λk − λj
det

λl−1
i − (λi + 1)l−1

N∏
k=1
k ̸=j

b(λi, νk)


i,l=1,...,s

.

Let us investigate this expression in some detail. Using (3.13), we have

g(νm, νj)

f(νm, νj)

m∏
k=1
k ̸=j

f(νk, νj) =
1

νm − νj + 1

m∏
k=1
k ̸=j

νk − νj + 1

νk − νj

=

∏m−1
k=1 (νj − νk − 1)∏m

k=1
k ̸=j

(νj − νk)
, j = 1, . . . ,m,
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and so for a trial function F (ν), regular at the points ν = ν1, . . . , νm, we can write

m∑
j=1

∏m−1
k=1 (νj − νk − 1)∏m

k=1
k ̸=j

(νj − νk)
F (νj) =

�
Cν1,...,νm

∏m−1
j=1 (ν − νj − 1)∏m

j=1(ν − νj)
F (ν)

dν

2πi
,

where Cν1,...,νmdenotes a simple counter-clockwise oriented contour enclosing the points ν1, . . ., νm
and no other singularity of the integrand. Hence,

G↑(m) = Z−1
∏

1⩽j<k⩽s

1

λk − λj

�
Cν1,...,νm

∏m−1
j=1 (ν − νj − 1)∏m

j=1(ν − νj)

s∏
j=1

b(λj , ν)

× det

[
λj−1
i − (λi + 1)j−1

∏N
k=1

b(λi, νk)

b(λi, ν)

]
i,j=1,...,s

dν

2πi
.

A nice property of the last expression is that the partial homogeneous limit, namely, where
ν1, . . . , νN → 0, can be readily taken, with the result

G↑(m) = Z−1
∏

1⩽j<k⩽s

1

λk − λj

�
C0

(ν − 1)m−1

νm

s∏
j=1

b(λj , ν)

× det

[
λl−1
i − (λi + 1)l−1 [b(λi, 0)]

N

b(λi, ν)

]
i,l=1,...,s

dν

2πi
, (3.20)

where C0 is a contour around the origin. We transform (3.20), first, by changing the integration
variable ν 7→ w, by

w =
ν − 1

ν
.

The contour in the complex w-plane, is a contour surrounding the point w =∞ in the counter-
clockwise direction, that is, it has clockwise orientation around the origin. Second, we switch
from the parameters λj to the parameters tj = b(λj , 0), j = 1, . . . , s. In particular, we have

b(λj , ν) =
1− 2tj + tjw

w − tj
≡ τ(tj , w). (3.21)

As a result, (3.20) becomes

G↑(m) = −Z−1
∏

1⩽j<k⩽s

1

tk − tj

�
C∞

wm−1

1− w

s∏
j=1

τ(tj , w)

× det

[
(1− ti)s−j

(
tj−1
i − tNi

τ(ti, w)

)]
i,j=1,...,s

dw

2πi
,

where C∞ denotes a large contour, counter-clockwise oriented around the origin, and the overall
minus sign is due to the change of the orientation. We now shrink the contour, and pick up the
contribution coming from the simple pole at w = 1. Noting that, since τ(tj , 1) = 1, the residue
at this point exactly coincides with the value of Z, we thus arrive back at G↓(m), see (3.8), with
the result

G↓(m) = Z−1
∏

1⩽j<k⩽s

1

tk − tj

�
Ct1,...,ts

wm−1

1− w

s∏
j=1

τ(tj , w)

× det

[
(1− ti)s−j

(
tj−1
i − tNi

τ(ti, w)

)]
i,j=1,...,s

dw

2πi
. (3.22)

Here, Ct1,...,ts is a contour enclosing the points w = t1, . . . , ts.
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3.3 The limit of semi-infinite lattice

In the limit N →∞ the boundary one-point function simplifies significantly, as it can be already
seen at the stage of the expression (3.19) where Z → 1. In the partially inhomogeneous case,
from (3.22) it follows that the one-point function g(m, s) ≡ G↓(m; s,∞) is given by

g(m, s) =

�
Ct1,...,ts

wm−1

1− w

s∏
j=1

τ(tj , w)
dw

2πi
,

where τ(t, w) is defined in (3.21).

In the fully homogeneous case, we have simply

g(m, s) =

�
Ct

wm−1

(1− w)

(
1− 2t+ tw

w − t

)s dw

2πi
. (3.23)

We are now ready to finalize the proof of Proposition 3.2, namely, we will show that (3.7)
and (3.23) are equivalent.

We start with writing (3.7) in the form

g(m, s) = h(m, 0)− h(m, s), (3.24)

where

h(m, s) ≡
∑
j⩾0

(
m− 1

j

)
(1− t)2j+1tm−1−j 1

j!
∂jt

ts

1− t
.

For h(m, 0), we have

h(m, 0) =
∑
j⩾0

(
m− 1

j

)
(1− t)jtm−1−j = 1. (3.25)

For h(m, s), using the Cauchy formula, we obtain

h(m, s) = (1− t)tm−1
∑
j⩾0

(
m− 1

j

)[
(1− t)2

t

]j �
Ct

zs

(1− z)(z − t)j+1

dz

2πi

= (1− t)
�
Ct

zs (1− 2t+ tz)m−1

(1− z)(z − t)m
dz

2πi
.

Making the change of the integration variable z 7→ w, by

w =
1− 2t+ tz

z − t
,

so that z = (1− 2t+ tw)/(w− t), and noting that the integration contour in w-plane is around
the point w =∞, we shrink the contour, and obtain

h(m, s) =

�
C∞

(
1− 2t+ tw

w − t

)s wm−1

w − 1

dw

2πi

= 1−
�
Ct

(
1− 2t+ tw

w − t

)s wm−1

1− w
dw

2πi
.

The last expression, in virtue of (3.24) and (3.25), yields (3.23).
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As a last comment, we mention here that (3.23) is also equivalent to the following represen-
tation for the one-point function in terms of the Jacobi polynomials, obtained in [37]:

g(m, s) = tm−s
s∑

j=0

(
s

j

)
(−t)jP (m−s,j−s)

s−1 (1− 2t). (3.26)

Indeed, let us employ the Rodrigues formula for the Jacobi polynomials, which implies

P (α,β)
n (1− 2t) =

1

n!
t−α(1− t)−β dn

dtn
tn+α(1− t)n+β.

Using the Cauchy formula, one can write

P (α,β)
n (1− 2t) = t−α(1− t)−β

�
Ct

zn+α(1− z)n+β

(z − t)n+1

dz

2πi
. (3.27)

From (3.27), for (3.26) we obtain

g(m, s) = (1− t)s
s∑

j=0

(
s

j

)(
− t

1− t

)j �
Ct

zm−1(1− z)j−1

(z − t)s
dz

2πi

= (1− t)s
�
Ct

zm−1

(1− z)(z − t)s

(
1− t

1− t
(1− z)

)s dz

2πi
,

and so (3.23) follows.

4 Scaling in the semi-infinite lattice case

In this section we study boundary one-point function on the semi-infinity lattice in the limit,
where both the number of horizontal lines and the position of the down arrow tends to infinity,
with their ratio kept fixed,

s,m→∞, m

s
=: µ, µ ∈ [0,∞). (4.1)

It can be regarded as a scaling limit where the mesh size of the lattice tends to zero, so that the
lattice is scaled to the semi-infinite strip of unit width, with µ being the coordinate along the
x-axis.

We study the one-point function in the limit (4.1) by two methods: the standard saddle-
point method applied to the integral representation and using a method based on an ordinary
differential equation (ODE).

4.1 The saddle-point analysis

To simply a bit the saddle-point analysis of the integral formula for the one-point function, we
rewrite (3.23) making the change of the integration variable w 7→ z, by

w = t+ (1− t)z,

so that the new representation contains integration around the origin, with singularities of the
integrand at the points z = 0, 1,∞,

g(m, s) =

�
C0

(t+ (1− t)z)m−1(1− t+ tz)s

(1− z)zs
dz

2πi
. (4.2)
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We rewrite further this representation as follows

g(m, s) = (1 + λ)

�
C0

exp{sF (z)}
(1− z)(λ+ z)

dz

2πi
,

with

F (z) = µ log(λ+ z) + log(1 + λz)− log z − (µ+ 1) log(1 + λ),

where µ = m/s and we have used the notation λ = t/(1 − t), see (2.12). The saddle-point
equation F ′(z) = 0 is

µ(1 + λz)z = λ+ z. (4.3)

It has two solutions

z± =
1− µ±

√
(1− µ)2 + 4µλ2

2µλ
. (4.4)

Recalling that λ, µ ∈ [0,∞), one can see from (4.4) that z∓ ≶ 0 for all (positive) values of µ
and λ. Using (4.3), it can be shown that

F ′′(z) =
λµ
(
µz2 + 1

)
z(λ+ z)2

, z = z±,

and, since z∓ ≶ 0, we also have F ′′(z∓) ≶ 0. From this it follows that the steepest descent
contour for the point z− (respectively, z+) goes along (perpendicular to) the real axis. Re-
calling that the original contour of integration is around the origin, we conclude that only the
point z+ contributes into the saddle-point method approximation; there is no contour satisfying
the minimax principle in the case of the point z− (see, e.g., [11, 15]).3

Focusing at the point z+ we note that z+ < 1, for µ > 1, and z+ > 1, for µ < 1, so that the
pole at the point z = 1 contributes in the latter case. This has a crucial consequence on the form
of the leading term of the asymptotics, namely it means that it has a Heaviside step-function
behavior with the jump occurring at the value µ = 1. As a result, in the limit s→∞, m = µs,
the saddle-point method yields

g(m, s) = θ(1− µ) + sgn(µ− 1)
e−sΦ1(µ)−Φ0(µ)

√
s

(
1 +O

(
s−1
))
, (4.5)

where θ(1− µ) is the Heaviside step function, and the functions Φ1,0(µ) = Φ1,0(µ; t), defined as

Φ1(µ) ≡ −F (z+), Φ0(µ) ≡ − log
(1 + λ)

|1− z+|(λ+ z+)
√

2πF ′′(z+)
,

are given explicitly by

Φ1(µ) = −µ logµ− (1 + µ) log

(
1 + µ+

√
(µ− 1)2 + 4µλ2

2µ(1 + λ)

)

+ (1− µ) log

(
1− µ+

√
(µ− 1)2 + 4µλ2

2µλ

)
(4.6)

3This agrees also with the rather general statement (see, e.g., [15, Chapter IV, Section 5]) that asymptotic
behavior of the integrals of the form

�
C0

z−sf(z) dz, where f(z) =
∑

n⩾0 anz
n with all an > 0 and satisfying

f(1) = 1, is governed by just one and only one saddle point located at the positive half of the real axis, with the
steepest descent contour perpendicular to the real axis.
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and

Φ0(µ) = log

∣∣∣∣∣1− 1− µ+
√
(1− µ)2 + 4µλ2

2µλ

∣∣∣∣∣− log(1 + λ)

+
1

2
log
(
2πµ

√
(1− µ)2 + 4µλ2

)
, (4.7)

respectively, and we recall that here λ ≡ t/(1− t).
Note that (4.5) describes asymptotics of the one-point function in the limit (4.1) for µ less or

larger than one; it does not provide any information about how it scales when µ is close to one.
To study the behavior of the one-point function in the vicinity of the value µ = 1, we introduce

new parameter

v =
m− s√

s
, v ∈ R,

or, in other words, we set µ = 1 + v/
√
s. Correspondingly, we set z = 1 + w/

√
s, w ∈ iR, so

that, for large s,

F
(
1 + w/

√
s
)
=

λw2

(1 + λ)2s
+

vw

(1 + λ)s
+O

(
s−3/2

)
.

The one-point function in the leading order
(
with the corrections of O

(
s−1/2

))
evaluates as

g(m, s) ≈ −
� −ϵ+i∞

−ϵ−i∞

exp
{

λw2

(1+λ)2
+ vw

(1+λ)

}
w

dw

2πi

=
1

2
− 1

2πi

 ∞

−∞

exp
{
−λw2 + ivw

}
w

dw

=
1

2
− 1

π

� ∞

0

sin vw

w
e−λw2

dw,

where the last integral can be expressed in terms of the error function,

2

π

� ∞

0

sin 2xw

w
e−w2

dw = erf(x).

Recall that

erf(x) ≡ 2√
π

� x

0
e−w2

dw, erf(x) ∈ [−1, 1], x ∈ R.

Thus, the one-point function near the step scales as follows:

lim
s→∞

g
(
s+ [v

√
s], s

)
=

1

2
− 1

2
erf

(
v

2
√
λ

)
=

1

2
erfc

(
v

2
√
λ

)
. (4.8)

The corrections to (4.8) are of O
(
s−1/2

)
.

Summarizing, we have just obtained that in the leading order the one-point function behaves
as a Heaviside step function; near the jump it is described by the complementary error function.
It is important to note that such a singular behavior is governed by a location of the steepest
descent contour within the saddle-point method in the case of the integral representation (4.2).

Recall, that we have found two solutions of the saddle-point equation but the position of the
original contour suggests that one of these two points must be ignored and the method must be
applied only to the remaining point, which should determine the leading term of asymptotics.
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However, there exists also a simple pole in the integrand which may contribute as soon as the
original contour is deformed to the steepest descent one. The residue at this pole taken with the
proper sign dictated by the orientation of the original contour is exactly 1, and so the leading
Heaviside step-function behavior follows; the sub-leading contribution is exponentially small and
comes from the saddle point.

Hence, the whole result concerning the asymptotic behavior of the one-point function relies
on a very subtle consideration in the complex plane, which constitutes the topological part of
the saddle-point method. It is therefore very desirable to have an independent verification of the
obtained result. It turns out that this is indeed possible thanks to a remarkable property of the
one-point function to obey some finite-difference and differential equations. One of them is an
ODE whose particular form admits construction of the required asymtoptics in a rather robust
manner. In the remaining part of this section we derive these equations and give an alternative
derivation of the asymptotics from the ODE.

4.2 Finite-difference and differential equations

Here our aim is to prove that the one-point function satisfies simple finite-difference relations
with respect to the discrete parameters, and, most importantly, it also satisfies certain second-
order ODE in the variable t.

Proposition 4.1. The one-point function g(m, s) ≡ G↓(m; s,∞) satisfies the finite-difference
relations

∆sg = (1− t)tm+s−2
2F1

(
−s+ 1, −m+ 1

1

∣∣∣∣ (1− t
t

)2)
(4.9)

and

∆mg = −s(1− t)2tm+s−3
2F1

(
−s+ 1, −m+ 2

2

∣∣∣∣ (1− t
t

)2)
, (4.10)

where, e.g., ∆sg := g(m, s)− g(m, s− 1). Furthermore, as a function of t it obeys the following
second-order ordinary differential equation[

1 + 2(s−m)(1− t)
]
(1− t)(1− 2t)t2y′′

+ 2
[
1− 6t+ 6t2 − 2m(1− t)2(1− 5t) + 2s(1− t)

(
1− 5t+ 5t2

)
+ 2
(
s2 −m2

)
(1− t)2t

]
ty′

−
{
6(1− 2t)t−m

(
1 + 13t− 34t2 + 16t3

)
+ s
(
1 + 7t− 22t2 + 16t3

)
+
[
3(s−m)2 − 4

(
2s2 − sm−m2

)
t+ 8

(
s2 −m2

)
t2
]
(1− t)

+ 2(s−m)3(1− t)2
}
y = 0, (4.11)

where y = y(t) := ∂tg(m, s).

Proof. We will prove these equations by order. The first relation, (4.9), in fact can easily be
seen already from (3.7). Indeed, since the dependence on s is contained only in the last factor
in (3.7), one readily gets

∆sg =
∑
j⩾0

(
m− 1

j

)
(1− t)2j+1tm−1−j 1

j!
∂jt t

s−1

=
∑
j⩾0

(
m− 1

j

)(
s− 1

j

)
(1− t)2j+1tm−2−2j
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= (1− t)tm−2
2F1

(
−s+ 1, −m+ 1

1

∣∣∣∣ (1− t
t

)2)
.

To prove (4.10) it is more convenient to resort to the integral representation (3.23), from
which we get

∆mg = −
�
Ct

wm−2

(
1− 2t+ tw

w − t

)s dw

2πi

= −tm+s−1

�
C1

wm−2

(
1 +

(1− t)2

t2
1

w − 1

)s
dw

2πi

= −tm+s−1
s∑

j=1

(
s

j

)(
1− t
t

)2j 1

(j − 1)!
∂j−1
w wm−2

∣∣
w=1

= −s(1− t)2tm+s−3
2F1

(
−s+ 1, −m+ 2

2

∣∣∣∣ (1− t
t

)2)
.

To obtain the ODE (4.11), we differentiate with respect to t, say, the integral representa-
tion (3.23), and also compute similarly the finite differences of this representation in s and m.
Comparison of the expressions shows that the quantity y ≡ ∂tg(m, s) can be written down in
terms of ∆sg and ∆mg as follows:

y = − s

1− t
∆sg −

m− 1

1− t
∆mg.

Using (4.9) and (4.10) we can obtain an expression for y in terms of 2F1-functions. Recalling that
our aim is to derive a differential equation for y, we conclude that it certainly will be an outcome
of the known equation for the hypergeometric function. Therefore, the two 2F1-functions in (4.9)
and (4.10) need to be expressed in terms of some 2F1-function and its derivative. Using the
known relations (see, e.g., [12, Section 2.8]) we can write

2F1

(
−s+ 1, −m+ 2

2

∣∣∣∣z)
=

1

s
2F1

(
−s+ 1, −m+ 1

1

∣∣∣∣z)+
1− z

s(m− 1)
2F1

′
(
−s+ 1, −m+ 1

1

∣∣∣∣z).
Hence,

y = {m− 1− (m+ s− 1)t}tm+s−3
2F1

(
−s+ 1, −m+ 1

1

∣∣∣∣ (1− t
t

)2)
− (1− 2t)(1− t)tm+s−5

2F1
′
(
−s+ 1, −m+ 1

1

∣∣∣∣ (1− t
t

)2)
. (4.12)

From this expression one can readily compute y′. Furthermore, using the fact that the function

F = 2F1

(
−s+ 1, −m+ 1

1

∣∣∣∣z)
satisfies the equation

z(1− z)F ′′ + [1 + (m+ s− 3)z]F ′ − (m− 1)(s− 1)F = 0,

one can eliminate F ′′ in the expression for y′, thus obtaining y′ as some linear combination of F
and F ′, similarly to (4.12) for y. Solving this system of two relations between y, y′ and F , F ′ for
the latter pair, and requiring that the resulting expressions are indeed related by differentiation,
one can obtain some linear equation connecting y, y′, and y′′. In this way, we arrive at (4.11). ■
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4.3 Construction of asymptotics from the ODE

The asymptotics of the one-point function can also be obtained from the equation (4.11) as
a solution identified by its t → 0 expansion. We follow here the method originally proposed
in [26].

We start with t→ 0 expansions, which can be easily obtained from our main explicit formula
for the one-point function g = g(m, s), see (3.7). Assuming that s < m, we obtain

g =

(
m− 1

s− 1

)
tm−s

{
1−

(
2s− m

m− s+ 1

)
t+O

(
t2
)}

, (4.13)

and when s > m, we get

g = 1−
(

s

m− 1

)
ts−m+1

{
1−

(
2m− 2− m− 1

s−m+ 2

)
t+O

(
t2
)}

. (4.14)

Let us study how expressions (4.13) and (4.14) behave in the limit (4.1). Using the z → ∞
asymptotics of the logarithm of the Gamma-function (see, e.g., [12]),

log Γ(z + a) =

(
z + a− 1

2

)
log z − z + 1

2
log 2π

+
ℓ∑

n=1

(−1)n+1Bn+1(a)

n(n+ 1)zn
+O

(
z−ℓ−1

)
, | arg z| < π,

where Bn(a) are the Bernoulli polynomials, Bn(a) =
∑n

k=0

(
n
k

)
Bka

n−k and Bk are the Bernoulli
numbers, the asymptotics of the binomial coefficients in (4.13) and (4.14) can be readily com-
puted up to any given order. Here, we limit ourselves by the usual approximation of the Stirling
formula, though a more detailed analysis is possible along the lines explained below.

We first write the logarithm of (4.13),

log g = (m− s) log t+ log

(
m− 1

s− 1

)
−
(
2s− m

m− s+ 1

)
t+O

(
t2
)
.

In the limit (4.1) it can be written in the form

log g = ψ1s−
1

2
log s+ ψ0 +O

(
s−1
)
, µ > 1, (4.15)

where

ψ1 = (µ− 1) log t+ µ logµ− (µ− 1) log(µ− 1)− 2t+O
(
t2
)
,

ψ0 = −
1

2
log
(
2πµ(µ− 1)

)
+

µ

µ− 1
t+O

(
t2
)
.

(4.16)

Essentially similarly, from (4.14) we have

log(1− g) = (s−m+ 1) log t+ log

(
s

m− 1

)
−
(
2m− 2− m− 1

s−m+ 2

)
t+O

(
t2
)
,

and so in the limit (4.1),

log(1− g) = ψ̃1s−
1

2
log s+ ψ̃0 +O

(
s−1
)
, µ < 1, (4.17)
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where

ψ̃1 = (1− µ) log t− µ logµ− (1− µ) log(1− µ)− 2µt+O
(
t2
)
,

ψ̃0 = log t− 1

2
log

(
2π

(1− µ)3

µ

)
+

2− µ
1− µ

t+O
(
t2
)
.

(4.18)

Our aim below is to construct functions ψ1, ψ0 and ψ̃1, ψ̃0 which possess t → 0 asymptotics
given by (4.16) and (4.18), respectively. In (4.15) and (4.17) we have anticipated the fact that
the term −1

2 log s is exact, as it will be clearly seen below.

To study µ > 1 case, let us introduce an auxiliary function

σ ≡ ∂t log g.

From (4.15), the function σ is of O(s) in the limit (4.1) at µ > 1. Moreover, since

y = σg, y′ =
(
σ2 + σ′

)
g, y′′ =

(
σ3 + 3σσ′ + σ′′

)
g, (4.19)

from (4.11) it follows that the function σ, up to exponentially small corrections, possesses an
expansion in inverse powers of s, starting from the first order term,

σ = σ1s+ σ0 + σ−1s
−1 + · · · . (4.20)

In particular, from (4.16) we see that, as t→ 0,

σ1 = ψ′
1 =

µ− 1

t
− 2 +O(t). (4.21)

Substituting (4.19) and (4.20) into the differential equation (4.11), and picking up the highest
term in s, we find that σ1 must satisfy the following equation:

t2(1− 2t)σ31 + 2t2(1 + µ)σ21 − (µ− 1)2σ1 = 0. (4.22)

The root, matching (4.21), is

σ1 =
−t(1 + µ) +

√
(µ− 1)2(1− t)2 + 4µt2

t(1− 2t)
, µ > 1. (4.23)

Integrating this expression with respect to t and fixing the integration constant to satisfy (4.16),
we find

ψ1 =

�
σ1dt = −Φ1(µ)

where the quantity Φ1(µ) = Φ1(µ; t) is given by (4.6). As far as the leading term of the
expansion (4.20) is established, other terms can be constructed recursively up to any given
order. For example, for the term σ0 from (4.11) we obtain

σ0 =
1

(1− µ)2 − 4(µ+ 1)t2σ1 − 3(1− 2t)t2σ21

{
2 (1 + µ) t2σ′1

+ 3(1− 2t)t2σ1σ
′
1 −

3(1− µ)− 4(µ+ 2)t+ 8(µ+ 1)t2

2(1− t)
σ1

+ 2
(1− µ)

(
1 + 5t2

)
− (5− 6µ)t

(1− µ)(1− t)
tσ21 +

(1− 2t)

2(1− µ)(1− t)
t2σ31

}
. (4.24)
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Substituting here (4.23), integrating, and fixing integration constant to match the t→ 0 behavior
in according to (4.16), we recover that ψ0 =

�
σ0dt = −Φ0(µ), where the function Φ0(µ) =

Φ0(µ; t) is given by (4.7).
Coming back to the equation describing the leading term of the expansion (4.20), name-

ly (4.22), one can notice that the trivial root σ1 = 0 in fact describes this function for the
values µ < 1. (Recall that we assume µ to be positive, and the third root, with the opposite
sign of the square root expression in (4.23), corresponds to the unphysical region where µ is
negative.) Correspondingly, from (4.24) one can see that then σ0 = 0; moreover, all terms in the
expansion (4.20) vanish identically, so that the function σ is given only by exponentially small
terms. This is in agreement with the fact that instead at µ < 1 we have the expansion (4.17).

To construct this expansion, we proceed essentially similarly as we did above for µ > 1,
namely, we introduce an auxiliary function

σ̃ ≡ ∂t log(1− g),

so that

y = −σ̃(1− g), y′ = −
(
σ̃2 + σ̃′

)
(1− g), y′′ = −

(
σ̃3 + 3σ̃σ̃′ + σ̃′′

)
(1− g). (4.25)

From (4.11) it follows that σ̃, up to exponentially small corrections, possesses an expansion of
the form

σ̃ = σ̃1s+ σ̃0 + σ̃−1s
−1 + · · · . (4.26)

Substitution of (4.25) and (4.26) into (4.11) shows that the function σ̃1 satisfies the same equation
as σ1 does, namely, (4.22), and moreover, since from (4.18) is follows that, as t→ 0,

σ̃1 = ψ̃′
1 =

1− µ
t
− 2µt+O

(
t2
)
,

we conclude that σ̃1 is given by (4.23), where instead we have to assume that µ < 1. Similarly, the
function σ̃0 is given in terms of σ̃1 by the expression (4.24) in which the replacement σ1,0 7→ σ̃1,0
is to be made. After substitution of the expression for σ̃1, integrating, and fixing the integration
constant to match the t → 0 behavior, see (4.18), one can find that ψ̃0 =

�
σ̃0dt = −Φ0(µ),

where the function Φ0(µ) = Φ0(µ; t) is given by (4.7).
As a result of this calculation, we thus obtain that in the limit s→∞, m = µs, the one-point

function is given by (4.5), in agreement with the saddle-point analysis.
Let us now consider the scaling properties of the one-point function near the value µ = 1.

We set m = s+ v
√
s and consider the large s limit in ODE (4.11). From this equation it follows

that there exists a solution of the form

y = y0 +
1√
s
y−1 + · · · ,

where the leading term (corresponding to the coefficient of s3/2 in (4.11)) must solve the equation

y′0 −
1

2

{
1

1− t
− 3

t
+
v2

2t2

}
y0 = 0.

Therefore for the one-point function, g′ ≡ y, in the leading order we obtain

g = C1

� 1

t
e−

v2

4w
1

w3/2
√
1− w

dw + C2 = C1
2
√
π

v
e−

v2

4 erf

(
v

2

√
1− t
t

)
+ C2, (4.27)
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where the integration constants may depends on v, C1,2 = C1,2(v). They can be fixed by
requiring that

lim
t→0

g =

{
0, v > 0,

1, v < 0

to match the leading t → 0 asymptotic behavior of the one-point function described by (4.13)
and (4.14). This gives C2 = 1/2 and C1 = −vev

2/4/4, and, as a result, (4.27) reproduces (4.8).

5 Conclusion

In this paper, we have computed the boundary one-point function of the six-vertex model with
partial domain wall boundary conditions in the case of the rational Boltzmann weights. For
the s×N lattice the result is expressed in a determinantal form, see (3.22). In the limit of the
semi-infinite lattice, N → ∞, it boils down to a simple explicit expression, which can be given
as the terminating series (3.7) or as the contour integral (3.23). Furthermore, it turns out that
the one-point function can be determined as a polynomial solution of certain second-order ODE,
see (4.11).

Even though all these various representations for the one-point function can be regarded as
main results of the present paper, we would like to draw an attention to the QISM calculations
presented in Section 3.2. There, we have shown that the one-point function can be directly
obtained in terms of a contour integral, provided that for the partition function of the inho-
mogeneous model the Kostov determinant formula (2.9) is used. This formula has a simple
homogeneous limit in one of the two sets of the parameters and it also has a simple large N
limit, which can also be done before the homogeneous one. As a result, the derivation of the
one-point function for the model on the semi-infinite lattice presented here turns out to be
considerably simpler in comparison with that given in [37].

Another point to which we would like to draw attention, is the existence of the ODE which
drives the one-point function. Even though this equation is given by rather cumbersome expres-
sion (4.11), it must be stressed that it has appeared here in the context of a non-free-fermionic
model. Typically, examples of models where differential equations, usually non-linear ones,
describe correlation function are limited by those related to dynamics of free fermions (see,
e.g., [30]).

The ODE which we have obtained for the one-point function is with respect to the rapidity
variable of the weights, with the coefficients depending on the geometric parameters of the one-
point function in the semi-infinite lattice case, m and s. Such an equation is very interesting
because it can be used to construct an asymptotics in the limit of large m and s with the ratio
m/s = µ fixed. We have showed how this can be done in Section 4.3 using the method developed
in [26] on the example of the σ-form of the sixth Painlevé equation.

An advantage of this method is that it allows for constructing an asymptotic expansion
recursively, starting from the leading term. Calculations are performed in an almost purely
algebraic manner. Indeed, in the case of the contour integral (4.2), the saddle-point method
turns out to be very subtle in its topological part (see Section 4.1): among the two saddle
points one of them appears to be completely irrelevant and the leading term is determined by
a relative position of the second saddle point and the simple pole of the integrand. In the case
of the method based on the ODE (4.11), the leading term immediately follows as a proper root
of the algebraic cubic equation (4.22).

One more point which definitely need to be discussed concerns the obtained asymptotic behav-
ior of the boundary one-point function on the semi-infinite lattice in the scaling limit, m, s→∞
with µ = m/s kept fixed, in which the mesh size of the lattice tends to zero. In the leading order
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Figure 5. The configuration without the b-weight vertices.

it is given by the Heaviside step function, see (4.5). In relation to this result one may wonder
about it interpretation in the context of limit shape phenomena and what to expect if instead
of the semi-infinite lattice the original s×N lattice will be taken with the ratio s/N kept fixed.

Using the description of the states in terms of the solid lines (see Section 2.1), it is clear
that the step-function behavior of the boundary one-point function implies the dominance of
the configurations such that the first s boundary edges on the vertical lines are all occupied
by the solid lines. Furthermore, there exists single configuration characterized by absence of
the b-weight vertices, see Figure 5, which, for large s, together with very similar configurations
(containing small enough amount of b-weight vertices) dominates over all other configurations. In
the s→∞ limit, this configuration describes the limit shape. Thus, the step-function behavior
of the boundary one-point function can be regarded as a manifestation, even if rather trivial,
but the limit shape phenomenon occurring in the scaling limit.

It is also clear from the picture of Figure 5 that the location of the right boundary has no
effect on the limit shape. In other words, it means that for the boundary one-point function the
step-function behavior should also be expected for the s×N lattice; however, the corrections to
this leading scaling behavior may depend on the given value of s/N . This is also in agreement
with the result of paper [5] (see Theorem 1.3 and the discussion in Section 1.3 therein) that the
free energy of the model on the s×N lattice comes only from the ‘ground state’ configuration,
which is exactly that shown in Figure 5.

The irrelevance of the position of the right boundary for the limit shape can be explained by
peculiarity of the six-vertex model with the rational weights. They belong to the ferroelectric
regime on the phase diagram, and therefore they are compatible with the ferroelectric order
induced by the boundary conditions in the case of pDWBC coming from the left, bottom, and
right boundaries.

To obtain nontrivial limit shape phenomena, one should take the model with weights corre-
sponding to the disordered or anti-ferroelectric regimes, similarly to the DWBC case. However,
these weights are trigonometric, for which even finding a closed expression for the partition
function in the case of pDWBC is still an open problem in general. Definitely, this deserves
further study and we believe that many interesting results will be obtained in this direction.
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