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Abstract. The main goal of this paper is to derive a number of identities for the generalized
hypergeometric function evaluated at unity and for certain terminating multivariate hyper-
geometric functions from the symmetries and other properties of Meijer’s G function. For
instance, we recover two- and three-term Thomae relations for 3F2, give two- and three-term
transformations for 4F3 with one unit shift and 5F4 with two unit shifts in the parameters,
establish multi-term identities for general pFp−1 and several transformations for terminat-
ing Kampé de Fériet and Srivastava F (3) functions. We further present a presumably new
formula for analytic continuation of pFp−1(1) in parameters and reveal somewhat unex-
pected connections between the generalized hypergeometric functions and the generalized
and ordinary Bernoulli polynomials. Finally, we exploit some recent duality relations for the
generalized hypergeometric and q-hypergeometric functions to derive multi-term relations
for terminating series.
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1 Introduction and preliminaries

Here and throughout the paper we will use the standard symbol pFq(a;b; z) for the generalized
hypergeometric function with parameter vectors a ∈ Cp, b ∈ Cq\{0,−1, . . . }, see [2, Section 2.1],
[24, Section 5.1], [32, Sections 16.2–16.12] for precise definitions and details. We will omit the
argument z = 1 from the above notation throughout the paper. The guiding idea of this work is
to employ the properties of Meijer’sG functionGm,n

p,q to discover new identities for the generalized
hypergeometric function r+1Fr. This idea proved very fruitful and appears as a recurrent theme
in a series of papers published by the second and the third named authors over past decade,
including [15, 16, 17, 18, 19, 23].

Let us introduce some notation and definitions. For any vectors a ∈ Cn, b ∈ Cm and
a scalar β define

Γ(a) =

n∏
i=1

Γ(ai), a+ β = (a1 + β, . . . , an + β),

a[k] = (a1, . . . , ak−1, ak+1, . . . , an), ν(a;b) =

m∑
j=1

bj −
n∑

i=1

ai, (1.1)
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where Γ(·) is Euler’s gamma function. Given integers 0 ≤ n ≤ p, 0 ≤ m ≤ q and complex
vectors a ∈ Cn, b ∈ Cm, c ∈ Cp−n, d ∈ Cq−m, such that ai − bj /∈ N for all i, j, Meijer’s G
function is defined by the Mellin–Barnes integral of the form

Gm,n
p,q

(
z
a, c
b,d

)
:=

1

2πi

∫
L

Γ(1− a− s)Γ(b+ s)

Γ(c+ s)Γ(1− d− s)
z−sds, (1.2)

where the contour L is a simple loop that starts and ends at infinity and separates the poles
of s → Γ(b+s) leaving them on the left from those of s → Γ(1 − a−s) leaving them on the
right. Details regarding the choice of the contour L and the convergence of the above integral
can be found, for instance, in [22, Section 1.1], [33, Section 8.2], [32, Section 16.17] and [16,
Appendix]. If some of the vectors a, b, c, d are empty, they will be omitted from the above
notation. The integral in (1.2) can be evaluated by the residue theorem which, in the case
when all poles of the integrand are simple, leads to a finite sum of hypergeometric functions.
This expansion was derived by Meijer himself, see details in [37, Section 4.6.2]. Combining [33,
formula (8.2.2.3)] with [33, formula (8.2.2.4)] for 0 < x < 1 we can write:

Gp,0
p,p

(
x

∣∣∣∣cb
)

=

p∑
k=1

Γ
(
b[k] − bk

)
Γ(c− bk)

xbk pFp−1

(
1− c+ bk

1− b[k] + bk
x

)
. (1.3)

The above special Gp,0
p,p case of Meijer’s G functions plays an important role in the solution of the

generalized hypergeometric differential equation, see [16, 29]. It was studied in great detail by
Nørlund in [29] under different notation and without mentioning the G function. As Gp,0

p,p(t) = 0
for t > 1 according to [15, Property 3], the Mellin transform of Gp,0

p,p(t) reduces to the integral:

Γ(a+ s)

Γ(b+ s)
=

∫ 1

0
ts−1Gp,0

p,p

(
t

∣∣∣∣ba
)
dt, Re[ν(a;b)] > 0, Re(s+ a) > 0. (1.4)

Taking s = k ∈ N0 in this formula, multiplying both sides by zk(σ)k/k! and summing over
nonnegative integer k we get the generalized Stieltjes transform representation of the function

p+1Fp [15, representation (2)]:

Γ(a)

Γ(b)
p+1Fp

(
σ,a
b

∣∣∣∣ z) =

∫ 1

0
Gp,0

p,p

(
t

∣∣∣∣ba
)

dt

t(1− tz)σ
, Re[ν(a;b)] > 0, Re(a) > 0. (1.5)

This representation turned out to be very useful in studying the properties of the function p+1Fp

[15, 16, 17, 19]. In this paper we will combine it with the expansion [15, equation (11)], [23,
equation (1.10)]

Gp,0
p,p

(
t
b
a

)
= taω(1− t)ν(a;b)−1

∞∑
n=0

gpn
(
a[ω];b

)
Γ(ν(a;b) + n)

(1− t)n, (1.6)

where ν(a;b) is defined in (1.1), found by Nørlund, see [29, equations (1.33), (1.35) and (2.7)].
It converges in the disk |1− t| < 1 for all complex values of parameters and each ω = 1, 2, . . . , p.
Note that if −ν(a;b) = m ∈ N0, then the first m + 1 terms in (1.6) vanish. The coefficients
gpn(x;y) are polynomials symmetric with respect to separate permutations of the components of
x = (x1, . . . , xp−1) and y = (y1, . . . , yp). These coefficients serve as the key to many properties
of the generalized hypergeometric function and play an important role in this paper. Their
known and new properties will be discussed in detail in the following Section 2. In particular,
we will present expressions for these coefficients in terms of multiple hypergeometric series and in
terms of generalized Bernoulli polynomials. The obvious symmetries of these coefficients lead to
various identities for the terminating univariate and multivariate hypergeometric series. These
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facts will be summarized in Theorem 2.1 (transformations of the multiple hypergeometric series)
and Theorem 2.13 (relation to the generalized Bernoulli and the complete Bell polynomials) in
Section 2 and further exemplified in Examples 2.2 through 2.17 in the same section.

The rest of the paper is organized as follows. In Section 3 we give an elementary derivation
of the known expansion (3.1) of the function z 7→ p+1Fp(a;b; z) near z = 1 and derive a pre-
sumably new formula for the analytic continuation of (a,b) 7→ p+1Fp(a;b; 1) as a function of
parameters presented in Theorem 3.1. We further explore some consequences of these formulas
including two- and three-term Thomae’s relations, two- and three-term transformations for 4F3

with one unit shift. We further pursue this topic in Section 4, where we focus on transformations
for 5F4(1) with two unit shifts in parameters. The main result of this section is Theorem 4.1
containing a two-term transformation for such type of 5F4(1) series. In Section 5 we demonstrate
that the known multi-term transformations for p+1Fp(1) (5.1) and (5.2) (which can be viewed
as far-reaching generalizations of the three-term Thomae’s relations) are straightforward conse-
quences of the properties of the G function. We further present another multi-term identity in
Theorem 5.1 which completes a calculation contained in the classical monograph by Slater [37].
The final Section 6 is devoted to transformations of the terminating series. Here, we give two
identities for the terminating generalized hypergeometric series derived from the so-called du-
ality relations found recently in [14]. These results are presented in Theorems 6.2 and 6.3.
Furthermore, we employ some recent q-series identities from [12] to deduce three-term relations
for rather general terminating hypergeometric series given in Theorems 6.6 and 6.7.

2 Nørlund’s coefficients

Nørlund’s coefficients gpn(x;y) are multivariate polynomials defined by the power series genera-
ting function (1.6). Another way to generate them is the inverse gamma series [29, formula (2.21)]

Γ(z + x)

Γ(z + y)
=

∞∑
n=0

gpn(x;y)

Γ(z + ν(x;y) + n)

obtained by substituting (1.6) into (1.4) and integrating term-wise. This formula implies the
symmetry with respect to separate permutations of the components of x and y and the shift
invariance gpn(x+ α;y + α) = gpn(x;y) for any α [23, p. 5]. The latter means that gpn is defined
on the 2p− 2 (complex-) dimensional factor space C2p−1/C (the factor is taken with respect to
addition). In other words, we can view it as a function of 2p−2 variables x2−x1, . . . , xp−1−x1,
y1 − x1, . . . , yp − x1. The polynomials gpn(x;y) satisfy the following recurrence relation with
respect to p [29, formula (2.7)]:

gpn(x;y) =
n∑

m=0

(yp − xp−1)n−m

(n−m)!
(νp−1 +m)n−mg

p−1
m

(
x[p−1];y[p]

)
, p = 2, 3, . . . , (2.1)

where νp−1 = ν
(
x;y[p]

)
(see (1.1)) and the initial values are g10(−; y1) = 1, g1n(−; y1) = 0, n ≥ 1.

For p = 2 immediately from this recurrence we get

g2n(x;y) =
(y2 − x)n(y1 − x)n

n!
. (2.2)

Recurrence (2.1) can also be solved in general to yield [29, formula (2.11)]:

gpn(x;y) =
∑

0≤j1≤j2≤···≤jp−2≤n

p−1∏
m=1

(νm + jm−1)jm−jm−1

(jm − jm−1)!
(ym+1 − xm)jm−jm−1 , (2.3)
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where j0 = 0, jp−1 = n and

νm =

m∑
k=1

(yk − xk). (2.4)

Note that formula (2.3) implies that gpn(x;y) ≥ 0 if νm ≥ 0 and ym+1 ≥ xm for m = 1, . . . , p− 1
or, equivalently, if νm ≥ 0 and νm − ym + ym+1 ≥ 0 for m = 1, . . . , p− 1.

Introduce the new summation indices according to

j1 → l1, j2 − j1 → l2, . . . , jp−2 − jp−3 → lp−2.

Then, applying the relations

(α)n−s =
(−1)s(α)n
(1− α− n)s

, (n− s)! =
(−1)sn!

(−n)s
, (α+ s)n−s =

(α)n
(α)s

, (2.5)

formula (2.3) can be written as (p− 2)–fold terminating hypergeometric series

gpn(x;y) =
(νp−1)n(yp − xp−1)n

n!

×
∑

lp−2∈Np−2
0

(−n)|lp−2|

(1− yp + xp−1 − n)|lp−2|

p−2∏
s=1

(νs)|ls|(ys+1 − xs)ls
(νs+1)|ls|ls!

, (2.6)

where ls = (l1, . . . , ls), |ls| = l1 + · · · + ls, valid for p ≥ 3. We were unable to find any
name attached to this particular type of series in the generality given above. Nevertheless, an
anonymous referee drew our attention to an identity for q-hypergeometric series due to George
Andrews contained in [1, Theorem 4]. By taking the limit q → 1 and appropriately changing
notation, his result leads to the following relation:

∑
lp−2∈Np−2

0

(−n)|lp−2|

(1− yp + xp−1 − n)|lp−2|

p−2∏
s=1

(xs+1)|ls|(ys+1)|ls|(µp − xs − ys)ls
(µp − xs)|ls|(µp − ys)|ls|ls!

=
(µp − xp−1)n(yp)n
(µp)n(yp − xp−1)n

2p+1F2p

(
−n,x,y[p], (µp + 1)/2, µp − 1

n+ µp, µp − x, µp − y[p], (µp − 1)/2

)
, (2.7)

where as before x ∈ Cp−1, y ∈ Cp, ls = (l1, . . . , ls), |ls| = l1 + · · · + ls and µp = yp + yp−1 for
brevity. This surprising formula expresses a multiple series somewhat similar to (2.6) in terms
of very-well poised 2p+1F2p(1). Nevertheless, to the best of our understanding the left hand side
of Andrew’s identity is essentially different from the right-hand side of (2.6). To justify this
claim let us compare them for p = 3. Then, the left-hand side of (2.7) takes the form (recall
that omitted argument equals 1):

4F3

(
−n, x2, y2, y2 + y3 − y1 − x1

1− y3 + x2 − n, y2 + y3 − x1, y2 + y3 − y1

)
,

while formula (2.6) reads

g3n(x;y) =
(ν2)n(y3 − x2)n

n!
3F2

(
−n, y1 − x1, y2 − x1
1− y3 + x2 − n, ν2

)
, (2.8)

where ν2 is defined in (2.4). The first expression represents the general Saalschützian 4F3, while
the second is the general terminating 3F2. As there is no (known) transformation mapping one
into the other, these two expressions are likely to be essentially different.
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For p = 4, i.e., x = (x1, x2, x3), y = (y1, y2, y3, y4), we have by (2.1) and in view of (2.5),

g4n(x;y) =
(y4 − x3)n(ν3)n

n!

n∑
l=0

(−n)l(y3 − x2)l(ν2)l
(1− y4 + x3 − n)l(ν3)ll!

3F2

(
−l, y1 − x1, y2 − x1
1− y3 + x2 − l, ν2

)
.

Alternatively, (2.6) yields

g4n(x;y) =
(y4 − x3)n(ν3)n

n!
F 2:2:1
2:1:0

(
−n, ν2 : ν1, y2 − x1 : y3 − x2
1− y4 + x3 − n, ν3 : ν2 : −

∣∣∣∣ 1, 1), (2.9)

where F p:q:r
s:t:u denotes the Kampé de Fériet function defined by [39, Section 1.3, formula (28)]:

F p:q:r
s:t:u

(
a : c : e
b : d : f

∣∣∣∣ z, w) =
∑
k,l≥0

(a)k+l(c)k(e)l
(b)k+l(d)k(f)l

zkwl

k!l!
,

where a ∈ Cp, b ∈ Cs, c ∈ Cq, d ∈ Ct, e ∈ Cr, f ∈ Cu and z, w can take arbitrary values as
long as the above series terminates. In the general case, convergence conditions are given in [13,
Chapter 14], while the analytic continuation can be constructed following the ideas from [4].

For p = 5, i.e., x ∈ Cp−1, y ∈ Cp, by (2.1) we obtain

g5n(x;y) =
(ν4)n(y5 − x4)n

n!

n∑
m=0

(−n)m(y4 − x3)m(ν3)m
(1− y5 + x4 − n)m(ν4)mm!

×
m∑
l=0

(−m)l(y3 − x2)l(ν2)l
(1− y4 + x3 − n)l(ν3)ll!

3F2

(
−l, y1 − x1, y2 − x1
1− y3 + x2 − l, ν2

)
,

which, according to (2.6), is equal to

g5n(x;y) =
(ν4)n(y5 − x4)n

n!

× F (3)

[
−n, ν3 :: ν2;−;− : ν1, y2 − x1; y3 − x2; y4 − x3

1− y5 + x4 − n, ν4 :: ν3;−;− : ν2;−;−

∣∣∣∣ 1, 1, 1]. (2.10)

Here F (3) is Srivastava’s hypergeometric function of three variables defined by [39, Section 1.5,
formula (14)]:

F (3)

[
a :: c; c′; c′′ : e; e′; e′′

b :: d;d′;d′′ : f ; f ′; f ′′

∣∣∣∣ z, w, u]
=

∑
n,k,l≥0

(a)n+k+l(c)n+k(c
′)k+l(c

′′)n+l(e)n(e
′)k(e

′′)l
(b)n+k+l(d)n+k(d′)k+l(d′′)n+l(f)n(f ′)k(f ′′)l

znwkul

n!k!l!

with parameter vectors of arbitrary finite sizes and arbitrary values of variables as long as the
above series terminates.

Another recurrence relation found by certain renaming in Nørlund’s formula [29, formu-
la (1.41)] is given by

gpn(x;y) =
(ν(x;y)− yp−1)n(ν(x;y)− yp)n

n!

n∑
s=0

(−n)sgp−1
s

(
1− y[p−1,p]; 1− x

)
(ν(x;y)− yp−1)s(ν(x;y)− yp)s

(2.11)

with p ≥ 3 and initial values (2.2). Using this recurrence for p = 3 we get (see also [15,
Property 6]):

g3n(x;y) =
(ν(x;y)− y2)n(ν(x;y)− y3)n

n!
3F2

(
−n, y1 − x1, y1 − x2

ν(x;y)− y2, ν(x;y)− y3

)
. (2.12)
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For p = 4, denoting ψm =
∑m

j=1 yj −
∑m−1

j=1 xj = νm + xm we have (see also [15, Property 6]):

g4n(x;y) =
(ψ4 − y3)n(ψ4 − y4)n

n!

×
n∑

k=0

(−n)k(ψ2 − x2)k(ψ2 − x3)k
k!(ψ4 − y3)k(ψ4 − y4)k

3F2

(
−k, y1 − x1, y2 − x1
ψ2 − x2, ψ2 − x3

)
. (2.13)

The recurrence (2.11) can also be solved in general. For odd p ≥ 3 we obtain

gpn(x;y) =
∑

0≤j1≤j2≤···≤jp−2≤jp−1

(−jp−1)jp−2(−jp−2)jp−3 · · · (−j2)j1
jp−1!jp−2! · · · j1!

×
p−1∏
m=2

m is even

(ψm−1 − xm−1)jm−1(ψm−1 − xm)jm−1(ψm+1 − ym)jm(ψm+1 − ym+1)jm
(ψm−1− xm−1)jm−2(ψm−1− xm)jm−2(ψm+1 − ym)jm−1(ψm+1 − ym+1)jm−1

,

where j0 = 0, jp−1 = n. Similarly, for even p ≥ 4, we get

gpn(x;y) =
∑

0≤j1≤j2≤···≤jp−2≤jp−1

(−jp−1)jp−2(−jp−2)jp−3 · · · (−j2)j1
jp−1!jp−2! · · · j1!

(ψ2 − y2)j1(ψ2 − y1)j1

×
p−2∏
m=2

m is even

(ψm− xm)jm(ψm− xm+1)jm(ψm+2− ym+1)jm+1(ψm+2− ym+2)jm+1

(ψm − xm)jm−1(ψm − xm+1)jm−1(ψm+2 − ym+1)jm(ψm+2 − ym+2)jm
.

Introduce the new summation indices according to

j1 → l1, j2 − j1 → l2, . . . , jp−2 − jp−3 → lp−2.

Then, applying the relations (2.5) for odd p ≥ 3 we get the multiple hypergeometric represen-
tations (ψm = νm + xm):

gpn(x;y) =
∑

lp−2∈Np−2
0

(−n)|lp−2|(−1)l2(−1)l4 · · · (−1)lp−3

l1!l2! · · · lp−2!n!
(2.14a)

×
p−1∏
m=2

m is even

(ψm−1 − xm−1)|lm−1|(ψm−1 − xm)|lm−1|(ψm+1 − ym)|lm|(ψm+1 − ym+1)|lm|

(ψm−1− xm−1)|lm−2|(ψm−1 − xm)|lm−2|(ψm+1− ym)|lm−1|(ψm+1− ym+1)|lm−1|
,

where l0 = 0, lp−1 = n− l1− l2−· · ·− lp−2, lm = (l1, . . . , lm) and |lm| = l1+ · · ·+ lm. In a similar
fashion, for even p ≥ 4 we get

gpn(x;y) =
∑

lp−2∈Np−2
0

(−n)|lp−2|(−1)l1(−1)l3 · · · (−1)lp−3

l1!l2! · · · lp−2!n!
(ψ2 − y2)l1(ψ2 − y1)l1 (2.14b)

×
p−2∏
m=2

m is even

(ψm − xm)|lm|(ψm − xm+1)|lm|(ψm+2 − ym+1)lm+1(ψm+2 − ym+2)|lm+1|

(ψm − xm)|lm−1|(ψm − xm+1)|lm−1|(ψm+2− ym+1)|lm|(ψm+2− ym+2)|lm|
.

For p = 4 this yields (returning to νm = ψm − xm):

g4n(x;y) =
(ν3)n(ν3 − y3 + y4)n

n!

× F 3:2:0
2:2:0

(
−n, ν2, ν2 + x2 − x3 : ν1, y2 − x1 : −
ν3, ν3 + y4 − y3 : ν2, ν2 + x2 − x3 : −

∣∣∣∣− 1, 1

)
. (2.15)
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For p = 5 we get the following expression in terms of Srivastava’s F (3) [39, Section 1.5,
formula (14)]:

g5n(x;y) =
(ν4)n(ν4 + y5 − y4)n

n!
(2.16)

× F (3)

[
−n, ν3, ν3 + x3 − x4 :: ν2, ν2 + y3 − y2;−;− : ν1, y1 − x2;−;−
ν4, ν4 + y5 − y4 :: ν3, ν3 + x3 − x4;−;− : ν2, ν2 + y3 − y2;−;−

∣∣∣∣ 1,−1, 1

]
.

Another symmetry of the Nørlund’s coefficients comes from the observation mentioned above:
setting ν(a;b) = −m, m ∈ N0, in (1.6) we obtain

Gp,0
p,p

(
t
b
a

)
= taω

∞∑
n=0

gpn+m+1

(
a[ω];b

)
n!

(1− t)n, (2.17)

where ω ∈ {1, . . . , p}. In particular, putting t = 1 we get gpm+1

(
a[ω];b

)
on the right-hand side

which implies that

gpm+1

(
a[ω1];b

)
= gpm+1

(
a[ω2];b

)
, ∀ω1, ω2 ∈ {1, . . . , p},

as long as
∑p

k=1(bk − ak) = −m. Equivalently,

gpm+1(x;y) = gpm+1

((
x[ω], ν(x;y) +m

)
;y
)

(2.18)

for arbitrary ω ∈ {1, . . . , p− 1}. The main findings of this section so far can be summarized as
follows.

Theorem 2.1. The terminating multiple hypergeometric series defined in (2.6) and (2.14) are
equal, symmetric with respect to permutations of the components of x, symmetric with respect
to permutations of the components of y, satisfy the transformation formula (2.18) and are non-
negative if νm ≥ 0 and ym+1 ≥ xm for m = 1, . . . , p − 1 or, equivalently, if νm ≥ 0 and
νm − ym + ym+1 ≥ 0 for m = 1, . . . , p− 1.

Example 2.2. Equating (2.8) to (2.12) and setting y1 − x1 = α1, y1 − x2 = α2, y1 + y2 − x1
−x2 = β1, y1+ y3−x1−x2 = β2 we recover Sheppard’s transformation [2, Corollary 3.3.4], [38,
Appendix, formula (I)]

3F2

(
−n, α1, α2

β1, β2

)
=

(β2 − α1)n
(β2)n

3F2

(
−n, α1, β1 − α2

β1, 1− β2 + α1 − n

)
(2.19)

also rediscovered by Bühring [7, formula (4.1)]. Note that α1, α2, β1, β2 ≥ 0 implies nonnegativity
of both sides of (2.19).

Example 2.3. The symmetry g3n((x1, x2);y) = g3n((x2, x1);y) applied to (2.8) after the appro-
priate change of notation yields

3F2

(
−n, α1, α2

β1, β2

)
= (−1)n

(1− s)n
(β1)n

3F2

(
−n, β2 − α1, β2 − α2

s− n, β2

)
,

s = β1 + β2 − α1 − α2 + n,

which is precisely the transformation [38, Appendix, formula (II)]. The symmetry

g3n(x; (y1, y2, y3)) = g3n(x; (y3, y2, y1))

leads to

3F2

(
−n, α1, α2

β1, β2

)
=

(β1 − α1)n(β2 − α1)n
(β1)n(β2)n

3F2

(
−n, α1, 1− s

1 + α1 − β1 − n, 1 + α1 − β2 − n

)
which coincides with [38, Appendix, formula (III)].
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Example 2.4. The symmetry

g4n((x1, x2, x3);y) = g4n((x3, x2, x1);y)

applied to (2.9) leads, after change of notation, to

(µ)n
(α+ β + γ + µ− η)n

F 2:2:1
2:1:0

(
−n, δ : α, β : γ

1− µ− n, η : δ : −

∣∣∣∣ 1, 1)
= F 2:2:1

2:1:0

(
−n, δ + η − α− β − γ : η − β − γ, η − α− γ : γ

1 + η − α− β − γ − µ− n, η : δ + η − α− β − γ : −

∣∣∣∣ 1, 1).
Note that α, β, γ, µ, η, δ ≥ 0 implies that both sides of the above formula have the same sign as
(α+ β + γ + µ− η)n.

Example 2.5. The symmetry from the previous example applied to (2.15) yields

F 3:2:0
2:2:0

(
−n, α, β : γ, δ : −
µ, η : α, β : −

∣∣∣∣− 1, 1

)
= F 3:2:0

2:2:0

(
−n, α+ β − δ − γ, β : β − δ, β − γ : −

µ, η : α+ β − δ − γ, β : −

∣∣∣∣− 1, 1

)
.

Both sides of this formula are non-negative if γ, δ, µ ≥ 0, η ≥ α ≥ 0 and β ≤ µ.

Example 2.6. The symmetry

g4n(x; (y1, y2, y3, y4)) = g4n(x; (y4, y2, y3, y1))

applied to (2.9) yields, after change of notation,

(µ)n(η)n
(η − β − γ)n(β + γ + µ)n

F 2:2:1
2:1:0

(
−n, δ : α, β : γ

1− µ− n, η : δ : −

∣∣∣∣ 1, 1)
= F 2:2:1

2:1:0

(
−n, δ + β + γ + µ− η : α+ β + γ + µ− η, β : γ

1 + β + γ − η − n, β + γ + µ : δ + β + γ + µ− η : −

∣∣∣∣ 1, 1).
Note that for α, β, γ, µ, η, δ ≥ 0 both sides of the above formula have the same sign as (η−β−γ)n.

Example 2.7. The symmetry from the previous example applied to (2.15) yields

(µ)n
(δ + µ+ η − α− β)n

F 3:2:0
2:2:0

(
−n, α, β : γ, δ : −
µ, η : α, β : −

∣∣∣∣− 1, 1

)
= F 3:2:0

2:2:0

(
−n, δ + η − β, δ + η − α : δ + γ + η − α− β, δ : −
δ + µ+ η − α− β, η : δ + η − β, δ + η − α : −

∣∣∣∣− 1, 1

)
.

Note that for γ, δ, µ ≥ 0, η ≥ α ≥ 0 and β ≤ µ both sides of the above formula have the same
sign as (δ + µ+ η − α− β)n.

Example 2.8. If we take p = 3 in (2.18) and use (2.12) for g3n we again arrive at the second
relation in Example 2 equivalent to [38, Appendix, formula (III)].

Example 2.9. For p = 4 application of (2.18) with x3 → ν3+y4+m to (2.15) gives the following
two-term transformation:

F 3:2:0
2:2:0

(
−m− 1, α, β −m : γ, δ : −

−µ−m,−η −m : α, β −m : −

∣∣∣∣− 1, 1

)
=

(α+ µ)m+1(α+ η)m+1

(µ)m+1(η)m+1
F 3:2:0
2:2:0

(
−m− 1, α, α+ β + η + µ : γ, δ : −
α+ η, α+ µ : α, α+ β + η + µ : −

∣∣∣∣− 1, 1

)
.

Both sides of the above identity have the sign of (η)m+1 if α, δ, γ, µ, α+ η ≥ 0 and β + µ ≤ 0.
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Example 2.10. For p = 5 application of (2.18) with x4 → ν4 + y4 +m to (2.16) yields

F (3)

[
−m− 1, α, β −m :: γ, δ;−;− : µ, η;−;−

−σ −m,−ζ −m :: α, β −m;−;− : γ, δ;−;−

∣∣∣∣ 1,−1, 1

]
=

(α+ σ)m+1(α+ ζ)m+1

(σ)m+1(ζ)m+1

× F (3)

[
−m− 1, α, α+ β + σ + ζ :: γ, δ;−;− : µ, η;−;−
α+ ζ, α+ σ :: α, α+ β + σ + ζ;−;− : γ, δ;−;−

∣∣∣∣ 1,−1, 1

]
.

If α, γ, µ, σ, α + ζ ≥ 0, δ ≥ µ, η ≤ γ and β + σ ≤ 0, then both sides of the above identity have
the same sign as (ζ)m+1.

Example 2.11. The equality right-hand side of (2.9) = right-hand side of (2.15) represents a
presumably new transformation for the terminating Kampé de Fériet function:

F 2:2:1
2:1:0

(
−n, α : β, γ : δ

1− µ− n, η : α : −

∣∣∣∣ 1, 1) =
(α+ µ)n
(µ)n

F 3:2:0
2:2:0

(
−n, α, η − δ : β, γ : −
η, α+ µ : α, η − δ : −

∣∣∣∣− 1, 1

)
.

The condition α, β, γ, µ, η, δ ≥ 0 ensures that both sides of the above formula are non-negative.

Example 2.12. Similarly, equating the right-hand side of (2.10) to the right-hand side of (2.16)
we obtain a presumably new transformation for the terminating Srivastava’s F (3) function:

(σ)n
(α+ σ)n

F (3)

[
−n, α :: β;−;− : γ, δ;µ; η

1− σ − n, ζ :: α;−;− : β;−;−

∣∣∣∣ 1, 1, 1]
= F (3)

[
−n, α, ζ − η :: β, γ + µ;−;− : γ, β − δ;−;−
ζ, α+ σ :: α, ζ − η;−;− : β, γ + µ;−;−

∣∣∣∣ 1,−1, 1

]
.

The condition α, β, γ, µ, η, δ, σ, ζ ≥ 0 ensures that both sides of the above formula are non-
negative.

Let us remark in passing that a number of transformations for the terminating hypergeometric
and Kampé de Fériet functions were motivated by the study of the symmetries of the 3−j, 6−j
and 9 − j coefficient appearing in the quantum mechanical treatment of angular momentum,
see [38, 40] and references therein for details.

Next, recall that the Bernoulli–Nørlund (or the generalized Bernoulli) polynomial B(σ)
k (x) is

defined by the generating function [30, formula (1)]:

tσezt

(et − 1)σ
=

∞∑
k=0

B(σ)
k (z)

tk

k!
. (2.20)

In particular, B(1)
k (z) = Bk(z) is the classical Bernoulli polynomial. In [16, Theorem 3] we found

the following alternative representation for Nørlund’s coefficients:

gpn(x;y) =

n∑
r=0

(1 + α− ν(x;y)− n)n−r

(n− r)!
lr(x;y;α)B(n+ν(x;y)−α)

n−r (1− α), (2.21)

where ν(x;y) is defined in (1.1), while the parameter α can be chosen arbitrarily. The coefficients
lr(x;y;α) are found from the recurrence relation

lr(x;y;α) =
1

r

r∑
m=1

qm(x;y;α)lr−m(x;y;α) (2.22)
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with l0 = 1 and

qm(x;y;α) =
(−1)m+1

m+ 1

(
Bm+1(α) +

p−1∑
j=1

Bm+1(xj)−
p∑

j=1

Bm+1(yj)

)
. (2.23)

The recurrence (2.22) can be solved giving the following explicit expression for lr(x;y;α) [34,
formula (4.1)] (we use the abbreviated notation qm := qm(x;y;α)):

lr(x;y;α) =
∑

k1+2k2+···+rkr=r,
ki≥0

qk11 (q2/2)
k2 · · · (qr/r)kr

k1!k2! · · · kr!
=

r∑
n=1

1

n!

∑
k1+k2+···+kn=r

n∏
i=1

qki
ki
.

Another way to write this formula is to invoke the complete exponential Bell polynomials Yr
generated by [8, formula (11.9)]

exp

( ∞∑
m=1

zm
tm

m!

)
= 1 +

∞∑
r=1

Yr(z1, . . . , zr)
tr

r!

and written explicitly as [8, formula (11.1)]

Yr(z1, . . . , zr) =
∑

k1+2k2+···+rkr=r,
ki≥0

r!

k1!k2! · · · kr!
(z1/1!)

k1(z2/2!)
k2 · · · (zr/r!)kr .

These polynomials can also be found using a determinantal expression, see [9, p. 203]. Comparing
the above explicit formulas for lr(a;b;α) and Yr we conclude that

lr(x;y;α) =
1

r!
Yr(q̂1, q̂2, . . . , q̂r),

where q̂m = (m− 1)!qm with qm from (2.23). Substituting this into (2.21) we obtain the second
main result of this section.

Theorem 2.13. For arbitrary α the following identity is true:

gpn(x;y) =
n∑

r=0

(1 + α− ν(x;y)− n)n−r

r!(n− r)!
Yr(q̂1, q̂2, . . . , q̂r)B(n+ν(x;y)−α)

n−r (1− α), (2.24)

where q̂m = (m − 1)!qm with qm defined in (2.23). In particular, the multiple hypergeometric
series (2.6) and (2.14) are equal to the right-hand side of (2.24).

Remark 2.14. Formula (2.24) gives single sum expression for the coefficients gpn(x;y) manifestly
symmetric in the components of x and y. The computational complexity of this formula does
not increase with growing p unlike (2.6) and (2.14). Particular cases obtained by expressing gpn
using (2.8), (2.12), (2.9), (2.15), (2.10) or (2.16) lead to rather exotic identities connecting
terminating 3F2, Kampé de Fériet and Srivastava F (3) functions with the complete exponential
Bell and the Bernoulli–Nørlund polynomials.

Example 2.15. Application of Theorem 2.13 to (2.12) by renaming variables and taking α = 0
yields

3F2

(
−n, σ, β
δ, η

)
=

n∑
r=0

(
n

r

)
(1 + β − δ − η − n)n−r

(δ)n(η)n
Yr(q̂1, q̂2, . . . , q̂r)B(n+δ+η−β)

n−r (1),

where

q̂m =
(−1)m+1(m− 1)!

m+ 1

×
{
2Bm+1(0) + Bm+1(σ − β)− Bm+1(σ)− Bm+1(δ − β)− Bm+1(η − β)

}
.



Hypergeometric Functions at Unit Argument 11

Example 2.16. By application of Theorem 2.13 with α = 0 to (2.9) and renaming variables we
have

F 2:2:1
2:1:0

(
−n, δ : σ, β : γ

1− µ− n, η : δ : −

∣∣∣∣ 1, 1)
=

1

(µ)n(η)n

n∑
r=0

(−1)n−r

(
n

r

)
(σ + β + µ+ γ − r)n−rYr(q̂1, q̂2, . . . , q̂r)B(n+σ+β+µ+γ)

n−r (1)

with

q̂m =
(−1)m+1(m− 1)!

m+ 1

{
Bm+1(0) +

3∑
j=1

Bm+1(xj)−
4∑

j=1

Bm+1(yj)

}
,

where

x1 = 0, x2 = σ + β − δ, x3 = σ + β − η + γ,

y1 = σ, y2 = β, y3 = σ + β − δ + γ, y4 = σ + β − η + γ + µ.

If we use (2.15) instead of (2.9) we get a similar expression for F 3:2:0
2:2:0 .

Example 2.17. By application of Theorem 2.13 with α = 0 to (2.10) and renaming variables
we have

F (3)

[
−n, η :: δ;−;− : σ, β; γ;µ

1− ζ − n, ξ :: η;−;− : δ;−;−

∣∣∣∣ 1, 1, 1]
=

n∑
r=0

(
n

r

)
(1− σ − β − γ − µ− ζ − n)n−r

(ξ)n(ζ)n
Yr(q̂1, q̂2, . . . , q̂r)B(n+σ+β+γ+µ+ζ)

n−r (1)

with

q̂m =
(−1)m+1(m− 1)!

m+ 1

{
Bm+1(0) +

4∑
j=1

Bm+1(xj)−
5∑

j=1

Bm+1(yj)

}
,

where

x1 = 0, x2 = σ + β − δ, x3 = σ + β − η + γ, x4 = β + γ + µ+ σ − ξ, y1 = σ,

y2 = β, y3 = σ + β − δ + γ, y4 = σ + β − η + γ + µ, y5 = β + γ + µ+ σ − ξ + ζ.

Combining with Example 2.12 we can write a similar expression for another version of F (3).

We conclude this section with the remark that explicit expressions for gp1 and gp2 for any p
can be found in [16, Theorem 3.1], while p-th order recurrence relation with respect to n was
found by Nørlund [29, formula (1.28)], see also [16, equation (2.7)].

3 Function p+1Fp at and near the singular unity revisited

The following expansion for p+1Fp(z) around the singular point z = 1 was first obtained by
Nørlund [29] with further contributions by Olsson [31], Bühring [6], Saigo and Srivastava [35]:

Γ(a)

Γ(b)
p+1Fp

(
a
b

∣∣∣∣ z) = (1− z)ν
∞∑
k=0

fp(k;a;b)(1− z)k +
∞∑
k=0

hp(k;a;b)(1− z)k, (3.1)
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where ν = ν(a;b) is assumed to be non-integer. Various expressions are known for the coef-
ficients fp(k;a;b) and hp(k;a;b), see [16, formula (2.20)] for details. We first note that this
expansion can be derived in a rather straightforward manner from representation (1.5). Indeed,
substituting expansion (1.6) into (1.5) and integrating term by term, in view of Euler’s integral
representation [2, Theorem 2.2.4] for 2F1, we obtain (after renaming (σ,a) → a)

Γ
(
a[1,2]

)
Γ(b)

p+1Fp

(
a
b

∣∣∣∣ z) =
∞∑
n=0

gpn
(
a[1,2];b

)
Γ
(
ν[1,2] + n

) 2F1

(
a1, a2

ν[1,2] + n

∣∣∣∣ z),
where ν[1,2] = b1 + · · ·+ bp − a3 − · · · − ap, and g

p
n(·) are Nørlund’s coefficients defined in (1.6).

Next, applying formula [2, formula (2.3.13)] connecting 2F1(z) and 2F1(1 − z) in the case of
non-integer parametric excess (equal to ν + n here) and rearranging slightly we arrive at

sin(πν)Γ(a)

πΓ(b)
p+1Fp

(
a
b

∣∣∣∣ z)=

∞∑
k=0

Γ(a1 + k)Γ(a2 + k)

Γ(1− ν + k)k!
(1− z)k

∞∑
n=0

gpn
(
a[1,2];b

)
(ν − k)n

Γ
(
ν+ a1+ n

)
Γ
(
ν + a2 + n

)
− (1− z)ν

∞∑
k=0

(ν + a1)k(ν + a2)k
Γ(1 + ν + k)

(1− z)k
k∑

n=0

(−1)ngpn
(
a[1,2];b

)
(ν + a1)n(ν + a2)n(k − n)!

.

Using the recurrence relation (2.11) we obtain the formulas for the coefficients fp(k;a;b) and
hp(k;a;b) from (3.1) in terms of Nørlund’s coefficients:

fp(k;a;b) =
Γ(−ν)
(1 + ν)k

gp+1
k (1− b; 1− a)

(
in particular fp(0;a;b) = Γ(−ν)

)
(3.2a)

and

hp(k;a;b) =
Γ(ν)Γ(a1 + k)Γ(a2 + k)

(1− ν)kk!

∞∑
n=0

gpn
(
a[1,2];b

)
(ν − k)n

Γ
(
ν + a1 + n

)
Γ
(
ν + a2 + n

) . (3.2b)

Taking p = 2 and substituting formulas (2.2) and (2.8) into the above expressions, expan-
sion (3.1) recovers [5, Theorem 1] or a slightly different version of it if we use (2.12) instead
of (2.8). If, on the other hand, we take p = 3 and employ (2.8) or (2.12) in the series for hp(k;a;b)
and (2.9) or (2.15) in the formula for fp(k;a;b) we arrive at several expansions for 4F3(z) which
may be new. Similarly, for p = 4 we arrive at expansions for 5F4(z) in terms of Srivastava’s F (3)

once we employ (2.10) or (2.16). Generalizations of these ideas to the Fox–Wright function were
explored in [20].

Let us also remark that a similar substitution of expansion (1.6) into the Laplace transform
representation

e−z
pFp

(
a
b

∣∣∣∣ z) =
Γ(b)

Γ(a)

∫ 1

0
e−zuGp,0

p,p

(
1− u

∣∣∣∣b− 1
a− 1

)
du

obtained from [15, equation (4)] or [17, formula (1.2)] via multiplication by e−z and change of
variable u = 1 − t, leads immediately to asymptotic expansion of pFp(z) as z → ∞ recovering
the main result of [41]. Further development of these ideas can be found in [23].

Next, we note that for Re(ν(a;b)) > 0 by setting z = 1 in expansion (3.1), we get

hp(0;a;b) =
Γ(a)

Γ(b)
p+1Fp

(
a
b

∣∣∣∣ 1). (3.3)

Hence, omitting the unit argument from the notation of p+1Fp, we arrive at

p+1Fp

(
a
b

)
=

Γ(b)

Γ
(
a[1,2]

) ∞∑
n=0

Γ(ν + n)gn
(
a[1,2];b

)
Γ(ν + a1 + n)Γ(ν + a2 + n)

. (3.4)
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It follows from the estimate in [23, Lemma 1.1] that the series on the right-hand side converges
if Re

(
a[1,2]

)
> 0, while the series on the left hand side converges if Re(ν(a;b)) > 0, so that

the expression on the right gives the analytic continuation in parameters for p+1Fp(a;b; 1).
Formula (3.4) in a slightly different form was obtained by Nørlund [29, formula (4.6)]. It is also
equivalent to [6, Theorem 1], modulo simple transformation of coefficients in Bühring’s formula.
We further remark that although for Re(ν(a;b))) < 0 the hypergeometric series on the left hand
side of (3.4) diverges, in view of representation (1.3) and expansion (2.17) for−ν(a;b) = m ∈ N0,
we obtain the limit formula

lim
x→1−

p∑
k=1

Γ
(
b[k] − bk

)
Γ(c− bk)

xbk pFp−1

(
1− c+ bk

1− b[k] + bk
x

)
= gm+1

(
b[ω]; c

)
,

where ω ∈ {1, . . . , p} is arbitrary as we mentioned below (2.17).
In [16, Theorem 3.10] by reinterpreting some Nørlund’s results, we gave the following expres-

sion for the coefficients hp(m;a;b) (after some change of notation):

hp(m;a;b) =
1

π sin(πν)

p∑
k=1

sin(π(bk − a))

sin
(
π
(
bk − b[k]

))D[k]
m , (3.5)

where, according to [16, formulas (2.17), (2.18)],

D[k]
m =

Γ(1 + a− bk)Γ(a1 +m)Γ(a2 +m)

Γ
(
1 + b[k] − bk

)
Γ(1 + a1 + a2 − bk +m)m!

×
∞∑
j=0

(1 + a1 − bk)j(1 + a2 − bk)j
j!(1 + a1 + a2 − bk +m)j

pFp−1

(
−j, 1 + a[1,2] − bk

1 + b[k] − bk

)
(3.6)

=
Γ(1 + a− bk)Γ(bk +m)

Γ
(
1 + b[k] − bk

)
m!

∞∑
j=0

(1 + a1 − bk)j
(a1 +m)j+1

p+1Fp

(
−j, 1 + a[1] − bk
1, 1 + b[k] − bk

)
. (3.7)

Combining (3.3) with (3.5) and (3.6), we arrive at

Theorem 3.1. The following representation holds true

Γ
(
a[1,2]

)
Γ(b)

p+1Fp

(
a
b

)
=

π

sin(πν)

p∑
k=1

Γ
(
bk − b[k]

)
Γ(bk − a)

×
∞∑
n=0

(1− bk + a1)n(1− bk + a2)n
Γ(1− bk + a1 + a2 + n)n!

pFp−1

(
−n, 1− bk + a[1,2]

1− bk + b[k]

)
,

(3.8)

where ν = ν(a;b) is defined in (1.1) and the series on the right-hand side converges for
Re
(
a[1,2]

)
> 0.

Remark 3.2. If we use (3.7) instead of (3.6) we obtain

Γ(a)

Γ(b)
p+1Fp

(
a
b

)
=

π

sin(πν)

p∑
k=1

Γ(bk)Γ
(
bk − b[k]

)
Γ(bk − a)

×
∞∑
n=0

(1− bk + a1)n
(a1)n+1

p+1Fp

(
−n, 1− bk + a[1]
1, 1− bk + b[k]

)
.

This series also converges for Re
(
a[1,2]

)
> 0. However, this expansion seems to be less useful

than (3.8) as the higher order hypergeometric function appears on the right-hand side.
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Remark 3.3. Note that formula (3.8) is fundamentally different from both (3.4) and [6, Theo-
rem 1], since for any value of p we have the triple summation on the right-hand side (viewing the
hypergeometric polynomial as a single sum), while (3.4) and [6, Theorem 1] represent (p−1)-fold
summations. If condition Re

(
a[1,2]

)
> 0 is violated, then we can use the following straightfor-

ward decomposition [15, inequality (31)]

p+1Fp

(
a
b

)
=

M−1∑
k=0

(a)k
(b)kk!

+
(a)Mz

M

(b)MM !
p+2Fp+1

(
a+M, 1

b+M,M + 1

)
∀M ∈ N0.

Choosing M sufficiently large we can always ensure the condition Re(a[1,2] +M) > 0 in the
second term, while the first term is a rational function. Note, that the parametric excess in the
second term on the right-hand side

ν((a+M, 1); (b+M,M + 1)) = ν(a;b),

which is the parametric excess of the function on the left hand side irrespective of M . Hence,
for Re(ν(a;b)) < 0 the above decomposition alone does not help to construct the analytic
continuation. However, when combined with Theorem 3.1 or with formula (3.4) this decom-
position furnishes the analytic continuation to all finite values of parameters save for poles at
−ν(a;b) ∈ N0 and −bj ∈ N0.

Next, we explore some consequences of (3.8). Taking p = 2 and applying the Chu–Vander-
monde identity to the 2F1 polynomial on the right, after some simplifications we arrive at

sin(πν)Γ(a3)

πΓ(b)
3F2

(
a
b

)
=

Γ(b1 − b2)

Γ(b1 − a)Γ(1− b1 + a1 + a2)
3F2

(
1− b1 + a[3], b2 − a3

1− b1 + b2, 1− b1 + a1 + a2

)
+ idem(b1; b2),

where the symbol idem(b1; b2) after an expression means that the preceding expression is re-
peated with b1, b2 interchanged. This formula is yet another instance of the three-term Thomae
relations. It can be obtained by eliminating Fn(0) from the pair of equations [3, formulas 3.7(4)
and 3.7(6)].

Before we move forward we need the following lemma.

Lemma 3.4. Suppose n ∈ N0, m ∈ N. Then

pFq

(
−n,−m,a
b, 1− α− n

)
=

(α−m)n
(α)n

(1− λ1)n · · · (1− λm)n
(−λ1)n · · · (−λm)n

, (3.9)

where λ1, . . . , λm are the zeros of the polynomial

Pm(x) =

m∑
k=0

(−m)k(a)k(−x)k(x+ α−m)m−k

(−1)k(b)kk!
. (3.10)

In particular, for m = 1, λ1 = (1− α)(b)1/[(b)1 − (a)1].

Proof. In order to establish (3.9) first note that for integer 0 ≤ k ≤ m:

(α)n
(1− α− n)k

= (−1)k(α)n−m(α+ n−m)m−k.
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This formula is also true if m > n with the standard convention (a)r = (−1)r/(1 − a)−r for
integer r < 0. Applying this relation we get

(α)n · pFq

(
−n,−m,a
b, 1− α− n

)
= (α)n−mPm(n),

where Pm(x) is defined by (3.10). Factoring Pm(x) we get:

Pm(n) = A(n− λ1)(n− λ2) · · · (n− λm) = A(−λ1) · · · (−λm)
(1− λ1)n · · · (1− λm)n
(−λ1)n · · · (−λm)n

,

where A denotes the coefficient at xm in Pm(x). It remains to note that

A(−λ1)(−λ2) · · · (−λm) = Pm(0) = (α−m)m

and

(α−m)m(α)n−m = (α−m)n. ■

We now take p = 3 and a3 = b3 + m, m ∈ N, in (3.8). The term corresponding to k = 3
vanishes and we are left with two infinite series with terms involving

3F2

(
−n, 1− b1 + a[1,2]

1− b1 + b[1]

)
and 3F2

(
−n, 1− b2 + a[1,2]

1− b2 + b[2]

)
.

If we apply Sheppard’s transformation (2.19) to each of these two functions we obtain (keeping
in mind that a3 = b3 +m, ν = ν(a;b)):

Γ
(
a[1,2]

)
sin(πν)

Γ(b)π
4F3

(
a
b

)
=

Γ
(
b1 − b[1]

)
Γ(b1 − a)

∞∑
n=0

(1− b1 + a1)n(1− b1 + a2)n(b2 − a4)n
Γ(1− b1 + a1 + a2 + n)(1− b1 + b2)nn!

× 3F2

(
−n,−m, 1− b1 + a4

1− b1 + b3, 1− b2 + a4 − n

)
+ idem(b1; b2) =

Γ
(
b1 − b[1]

)
Γ(b1 − a)

×
∞∑
n=0

(1− b1+ a1)n(1− b1+ a2)n(b2− a4−m)n(1− λ1)n · · · (1− λm)n
Γ(1− b1 + a1 + a2 + n)(1− b1 + b2)n(−λ1)n · · · (−λm)nn!

+ idem(b1; b2)

=
Γ
(
b1 − b[1]

)
Γ(b1− a)Γ(1− b1+ a1+ a2)

m+3Fm+2

(
1− b1+ a1, 1− b1+ a2, b2− a4−m, 1− λ

1− b1 + a1 + a2, 1− b1 + b2,−λ

)
+ idem(b1; b2),

where the vector λ = (λ1, . . . , λm) comprises the zeros of the polynomial

Pm(a4; b1, b2, b3;x) =

m∑
k=0

(−m)k(−x)k(x+ b2 − a4 −m)m−k(1− b1 + a4)k
(−1)k(1− b1 + b3)kk!

and idem(b1; b2) contains the zeros of the polynomial Pm(a4; b2, b1, b3;x). The simplest and the
most interesting particular case is m = 1. In this case we get the following three-term relation
for 4F3(1) with one unit shift in the parameters:

b3Γ(a4) sin(πν)

Γ(b1)Γ(b2)π
4F3

(
a
b

)
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=
Γ
(
b1 − b[1]

)
Γ(b1 − a)Γ(1− b1 + a1 + a2)

4F3

(
1− b1 + a1, 1− b1 + a2, b2 − a4 − 1, 1− λ1

1− b1 + a1 + a2, 1− b1 + b2,−λ1

)
+

Γ
(
b2 − b[2]

)
Γ(b2 − a)Γ(1− b2 + a1 + a2)

4F3

(
1− b2 + a1, 1− b2 + a2, b1 − a4 − 1, 1− λ2

1− b2 + a1 + a2, 1− b2 + b1,−λ2

)
,

where a3 = b3 + 1, ν = b1 + b2 − a1 − a2 − a4 − 1 and

λ1 =
(1− b2 + a4)(1− b1 + b3)

b3 − a4
, λ2 =

(1− b1 + a4)(1− b2 + b3)

b3 − a4
.

We now turn our attention to the consequences of (3.4). For p = 2 substitution gn(a;b) =
(b1 − a)n(b2 − a)n/n! (see (2.2)) gives yet another proof of the two-term Thomae relation [2,
Corollary 3.3.6]. For p = 3 substituting (2.12) into (3.4) yields:

4F3

(
a
b

)
=

Γ(b)Γ(ν)

Γ(a[1,2] + ν)Γ(a1)Γ(a2)

×
∞∑
n=0

(ν)n(ν − b[1] + a3 + a4)n

(a[1,2] + ν)nn!
3F2

(
−n, b1 − a1, b1 − a2
ν − b[1] + a3 + a4

)
. (3.11)

This formula differs from [6, formulas (2.14) and (2.10)], but can be reduced to it by an appli-
cation of Whipple’s transformation for terminating 3F2(1) [2, p. 142, top]. If we put a1 = b1+1
in (3.11) we arrive at a two-term transformation for 4F3 with one unit shift studied by two of us
recently in [21, identity (7)]. Further consequences of (3.4) are explored in the following section.

4 Transformations of 5F4 with two unit shifts

In our recent paper [21] we have studied a group of transformations of 4F3(1) with one unit
shift in the parameters. We have shown that this group is generated by two-term Thomae
transformations and contiguous relations for 3F2(1). In this section we will demonstrate that
a similar group can be generated for 5F4 with two unit shifts. Let us note that the study of
the summation and transformation formulas for the generalized hypergeometric function with
integral parameter differences was initially motivated by problems from mathematical physics,
see, for instance, [26, 28, 36]. The most general linear transformations for this class of hyperge-
ometric series at arbitrary argument were discovered by Miller and Paris [27] (see an alternative
derivation in [19]), while quadratic and cubic transformations were found recently by Maier [25].

Theorem 4.1. The following two-term transformation holds:

5F4

(
a, b, c, f + 1, h+ 1

d, e, f, h

)
=

Γ(d)Γ(e)Γ(s)

fhΓ(c)Γ(s+ a)Γ(s+ b)
5F4

(
s, e− c− 2, d− c− 2, 1− γ1, 1− γ2

s+ a, s+ b,−γ1,−γ2

)
, (4.1)

where s = d+ e− a− b− c− 2 and γ1, γ2 are the roots of the second degree polynomial

P2(x) = 4F3

(
−2,−x, h− c− 1, η + 1
e− c− 2, d− c− 2, η

)
with η = −2(h− c− 1)/(h− f − 1).
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Proof. Formula (3.4) applied to the left hand side of (4.1) has the form

5F4

(
a, b, f + 1, h+ 1, c

f, h, d, e

)
=

Γ(d)Γ(e)

Γ(c)fh

∞∑
n=0

Γ(s+ n)g4n({f + 1, h+ 1, c}; {f, h, d, e})
Γ(s+ a+ n)Γ(s+ b+ n)

, (4.2)

where s = d+ e− a− b− c− 2. According to (2.13) we have

g4n({f + 1, h+ 1, c}; {f, h, d, e})

=
(e− c− 2)n(d− c− 2)n

n!

n∑
k=0

(−n)k(−2)k(h− c− 1)k
k!(e− c− 2)k(d− c− 2)k

(
1 +

k(h− f − 1)

(−2)(h− c− 1)

)

=
(e− c− 2)n(d− c− 2)n

n!

n∑
k=0

(−n)k(−2)k(h− c− 1)k
k!(e− c− 2)k(d− c− 2)k

(η + 1)k
(η)k

,

where η = −2(h− c− 1)/(h− f − 1). Hence,

g4n({f+ 1, h+ 1, c}; {f, h, d, e}) = (e− c− 2)n(d− c− 2)n
n!

4F3

(
−n,−2, h− c− 1, η + 1
e− c− 2, d− c− 2, η

)
.

Noting that the quadratic polynomial

P2(x) = 4F3

(
−2,−x, h− c− 1, η + 1
e− c− 2, d− c− 2, η

)
satisfies P2(0) = 1, we conclude that P2(x) = (x− γ1)(x− γ2)/(γ1γ2), where γ1, γ2 are the roots
of P2(x). Hence, P2(n) = (1− γ1)n(1− γ2)n/((−γ1)n(−γ2)n) and

g4n({f + 1, h+ 1, c}; {f, h, d, e}) = (e− c− 2)n(d− c− 2)n(1− γ1)n(1− γ2)n
(−γ1)n(−γ2)nn!

.

Substituting the above formula into (4.2), we arrive at (4.1). ■

Another transformation of a similar flavour as (4.1) has been recently found by us in [18,
formula (59)], namely,

5F4

(
a, b, c, f + 1, h+ 1

d, e, f, h

)
=

((e− c− 1)h+ (d− a− b− 1)(h− c))Γ(e)Γ(s)

hΓ(s+ c+ 1)Γ(e− c)

× 5F4

(
d− a− 1, d− b− 1, c, ξ + 1, ζ + 1

d, e+ d− a− b− 1, ξ, ζ

)
, (4.3)

where s = d+ e− a− b− c− 2, d− a− 1 ̸= 0, d− b− 1 ̸= 0 and

ξ = h+
(d− a− b− 1)(h− c)

e− c− 1
, ζ =

(d− a− 1)(d− b− 1)f

(d− a− b− 1)f + ab
.

Transformations (4.1) and (4.3) can be iterated and composed with each other. Together with
the obvious invariance with respect to permutations of the upper and the lower parameters they
generate a group, which can be shown to be isomorphic to the direct product of two-term Thomae
transformations for 3F2 with contiguous relations for 3F2. This claim can be verified using the
approach from [21]. We further believe that similar transformations hold for higher order p+1Fp

with appropriate number of unit shifts in parameters. We envision further investigation of this
topic in a future publication.
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5 Multi-term transformations of the non-terminating series

Nørlund proved the following identity [29, relation (5.8)]:

Γ
(
a[1]
)

Γ(1− a1)Γ(b)
p+1Fp

(
a
b

)
=

p+1∑
k=2

Γ(ak)Γ
(
a[1,k] − ak

)
Γ(1− a1 + ak)Γ(b− ak)

p+1Fp

(
ak, 1− b+ ak
1− a[k] + ak

)
, (5.1)

where all series involved converge if Re(ν(a;b)) > 0. This identity was later rediscovered by
Wimp in [42, Lemma 2]. We note that it also follows immediately on substituting (1.3) into (1.5)
and integrating term-wise using the beta integral:

p+1Fp

(
a1,a
b

)
=

Γ(b)

Γ
(
a[1]
) p+1∑

k=2

Γ
(
a[1,k] − ak

)
Γ(b− ak)

∞∑
n=0

(1− b+ ak)n(
1− a[1,k] + ak

)
n
n!

∫ 1

0

tn+ak−1

(1− t)a1
dt

=
Γ(b)Γ(1− a1)

Γ
(
a[1]
) p+1∑

k=2

Γ(ak)Γ
(
a[1,k] − ak

)
Γ(1− a1 + ak)Γ(b− ak)

p+1Fp

(
ak, 1− b+ ak
1− a[k] + ak

)
.

On the other hand, formulas (1.3) and (1.6) imply immediately that for
∑p+1

j=1(cj − bj) > 1 we
have

p+1∑
k=1

Γ
(
b[k] − bk

)
Γ(c− bk)

p+1Fp

(
1− c+ bk

1− b[k] + bk

)
= 0. (5.2)

We note that particular cases of identities (5.1) and (5.2) appeared many times in the liter-
ature proved by various methods. For instance, the three-term Thomae relation for 3F2 [3,
formula 3.2(2)] is a particular case of (5.1), while its variation [11, formula (10)] and 4F3 gener-
alization [11, formula (19)] reduce to (5.2) after appropriate change of notation.

We note also that (5.2) is not a straightforward rewriting of (5.1). Indeed, setting b1 = 0
brings (5.2) to the form:

Γ
(
b[1]

)
Γ(c)

p+1Fp

(
1− c
1− b[1]

)
=

p+1∑
k=2

Γ(1− bk)Γ
(
b[1,k] − bk

)
bkΓ(c− bk)

p+1Fp

(
1− c+ bk

1 + bk, 1− b[1,k] + bk

)
.

Changing notation according to 1− c → a, 1− b[1] → b we get

Γ(1− b)

Γ(1− a)
p+1Fp

(
a
b

)
= −

p∑
k=1

Γ(bk − 1)Γ
(
bk − b[k]

)
Γ(bk − a)

p+1Fp

(
a+ 1− bk

2− bk, 1 + b[k] − bk

)
, (5.3)

where all series involved converge if Re(ν(a;b)) > 0. This is manifestly different from (5.1).
It remains unclear for us, however, if (5.1) and (5.3) can be obtained from each other by the
appropriate compositions.

Our next theorem gives another multi-term identity for p+1Fp containing p or more terms
and not immediately found in the literature (other than for p = 2, see remark below).

Theorem 5.1. Suppose 0 ≤ n ≤ p, 0 ≤ m ≤ p are integers that satisfy m+ n ≥ p and a ∈ Cn,
b ∈ Cm, c ∈ Cp−n, d ∈ Cp−m are complex vectors that satisfy

Re

(
n∑

j=1

aj +

p−n∑
j=1

cj −
m∑
j=1

bj −
p−m∑
j=1

dj

)
> 0.
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Then

m∑
k=1

Ak

bk
p+1Fp

(
1− a+ bk, 1− c+ bk, bk

1− b[k] + bk, 1− d+ bk, bk + 1

∣∣∣∣ (−1)p−m−n

)

+
n∑

k=1

Bk

(1− ak)
p+1Fp

(
1 + b− ak, 1 + d− ak, 1− ak
1 + a[k] − ak, 1 + c− ak, 2− ak

∣∣∣∣ (−1)p−m−n

)
=

Γ(1− a)Γ(b)

Γ(c)Γ(1− d)
, (5.4a)

where

Ak =
Γ
(
b[k] − bk

)
Γ(1− a+ bk)

Γ(c− bk)Γ(1− d+ bk)
, Bk =

Γ(ak − a[k])Γ(1 + b− ak)

Γ(ak − d)Γ(1 + c− ak)
. (5.4b)

Proof. Combining [33, formula (8.2.2.3)] with [33, fornula (8.2.2.4)] for x > 0 we get:

Gm,n
p,p

(
x

∣∣∣∣a, cb,d

)
= H(1− x)

m∑
k=1

Akx
bk

pFp−1

(
1− a+ bk, 1− c+ bk

1− b[k] + bk, 1− d+ bk
(−1)p−m−nx

)

+H(x− 1)

n∑
k=1

Bkx
ak−1

pFp−1

(
1 + b− ak, 1 + d− ak
1 + a[k] − ak, 1 + c− ak

(−1)p−m−n

x

)
,(5.5)

where Ak, Bk are defined in (5.4b) and H(t) = ∂tmax{t, 0} is the Heaviside function. According
to [22, Theorem 2.2] the Mellin transform∫ ∞

0
xs−1Gm,n

p,p

(
x

∣∣∣∣a, cb,d

)
dx =

Γ(1− a− s)Γ(b+ s)

Γ(c+ s)Γ(1− d− s)

exists for −min(Re(b)) < Re(s) < min(1− Re(a)) under conditions of the theorem. Assuming
that s = 0 belongs to this range we can take the Mellin transform with s = 0 on both sides
of (5.5) to obtain

Γ(1− a)Γ(b)

Γ(c)Γ(1− d)
=

m∑
k=1

Ak

∞∑
j=0

(1− a+ bk)j(1− c+ bk)j [(−1)p−m−n]j

(1− b[k] + bk)j(1− d+ bk)jj!

∫ 1

0
xbk+j−1dx

+
n∑

k=1

Bk

∞∑
j=0

(1 + b− ak)j(1 + d− ak)j [(−1)p−m−n]j

(1 + a[k] − ak)j(1 + c− ak)jj!

∫ ∞

1
xak−j−2dx

=

m∑
k=1

Ak

bk

∞∑
j=0

(1− a+ bk)j(1− c+ bk)j [(−1)p−m−n]j(bk)j
(1− b[k] + bk)j(1− d+ bk)jj!(bk + 1)j

+

n∑
k=1

Bk

1− ak

∞∑
j=0

(1 + b− ak)j(1 + d− ak)j [(−1)p−m−n]j(1− ak)j
(1 + a[k] − ak)j(1 + c− ak)j(2− ak)jj!

,

which proves (5.4a) under the restriction −min(Re(b)) < 0 < min(1− Re(a)). This restriction
can now be removed by analytic continuation. ■

Remark 5.2. An essential part of the above calculation was made by Slater in [37, formu-
las (4.8.1.14)–(4.8.1.23)]. For unknown reasons she decided not to make final step leading
to (5.4a). The case p = 2 of formula (5.4a) is known, see [33, formula (7.4.4.11)].
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6 Multi-term transformations of the terminating series

Introduce the following notation: m = (m1, . . . ,mr) ∈ Zr and n = (n1, . . . , nr) ∈ Zr,

M = m1 + · · ·+mr, N = n1 + · · ·+ nr,

mmin = min
1≤i≤r

(mi), nmax = max
1≤i≤r

(ni), p = max{−1,M −N − r + 1}.

In [14, Theorem 1] A. Kuznetsov and the second author established the following identity for
arbitrary a,b ∈ Cr such that the components of a are distinct modulo integers, and |z| < 1:

r∑
i=1

(1− b+ ai)m−niz
−ni(

ai − a[i]
)
n[i]−ni+1

rFr−1

(
b− ai

1 + a[i] − ai

∣∣∣z) rFr−1

(
1− b+ ai +m− ni

1− a[i] + ai + n[i] − ni

∣∣∣z)

= (1− z)−p−1
p−mmin∑
j=−nmax

βjz
j . (6.1)

The authors did not give any explicit expression for the numbers βj . Our aim here is to emp-
loy the above formula for deriving some identities for the generalized hypergeometric function
evaluated at 1. To this end we will need the explicit expressions for βj , which we present in the
following lemma.

Lemma 6.1. Formula (6.1) holds true for

βk =
k∑

j=max(−nmax,k−p−1)

(
p+ 1

k − j

)
(−1)k−j (6.2)

×
r∑

i=1

(1− b+ ai)m+j(
ai − a[i]

)
n[i]+j+1

(j + ni)!
2rF2r−1

(
−j− ni,b− ai, 1a[i] − ai − n[i] − j − 1

b− ai −m− j, 1 + a[i] − ai

)
,

where each term with j + ni < 0 is assumed to equal zero.

Proof. Writing S(z) for the left hand side of (6.1) we get by collecting terms

S(z) =
∞∑

k=−nmax

zk
r∑

i=1

k+ni∑
j=0

γk+ni
i,j︸ ︷︷ ︸

=αk

=
∞∑

k=−nmax

αkz
k,

where, according to the formula on page 4 of [14], we have the first equality below:

γk+ni
i,j =

(−1)j(1− b+ ai − j)m+k(
ai − a[i] − j

)
n[i]+k+1

j!(k + ni − j)!

=
(1− b+ ai)m+k(b− ai)j

(
1 + a[i] − ai − n[i] − k − 1

)
j
(−k − ni)j

(b− ai −m− k)j
(
ai − a[i]

)
n[i]+k+1

(
1 + a[i] − ai

)
j
(k + ni)!j!

.

The second equality above is obtained by an application of the easily verifiable identities

(z − j)n =
(z)n(1− z)j
(1− z − n)j

and (m− j)! = (−1)j
m!

(−m)j
.

Hence,

αk =
r∑

i=1

(1− b+ ai)m+k(
ai− a[i]

)
n[i]+k+1

(k+ ni)!
2rF2r−1

(
−k− ni,b− ai, 1+ a[i]− ai− n[i]−k−1

b− ai −m− k, 1 + a[i] − ai

)
.(6.3)
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Multiplying both sides of (6.1) by (1− z)p+1 and expanding by the binomial theorem we obtain

p+1∑
j=0

(
p+ 1

j

)
(−z)j

∞∑
k=−nmax

αkz
k =

p−mmin∑
k=−nmax

βkz
k.

Multiplying both sides by znmax , changing k+nmax → k and writing β̂k = βk−nmax , α̂k = αk−nmax ,
we get

p+1∑
j=0

(
p+ 1

j

)
(−1)jzj

∞∑
k=0

α̂kz
k =

∞∑
s=0

zs
∑

j+k=s

(
p+ 1

j

)
(−1)jα̂k =

p−mmin+nmax∑
k=0

β̂kz
k.

In view of
(
p+1
j

)
= 0 for j > p+ 1, this implies that

βs−nmax = β̂s =

min(s,p+1)∑
j=0

(
p+ 1

j

)
(−1)jα̂s−j =

min(s,p+1)∑
j=0

(
p+ 1

j

)
(−1)jαs−j−nmax

for s = 0, . . . , p−mmin + nmax. Returning to k = s− nmax we obtain by changing the index of
summation according to the rule j → k − j:

βk =

min(k+nmax,p+1)∑
j=0

(
p+ 1

j

)
(−1)jαk−j =

k∑
j=max(−nmax,k−p−1)

(
p+ 1

k − j

)
(−1)k−jαj

for k = −nmax, . . . , p−mmin. Substituting the formula for αj we finally arrive at (6.2). ■

Next, we derive identities for the numbers αk defined in (6.3) and βk from (6.2). To formu-

late our proposition for αk, we will need the standard Bernoulli polynomials Bn(x) = B(1)
n (x),

where B(σ)
n (x) is defined in (2.20). Note that the explicit expression [32, formula (24.2.3)] implies

that the leading coefficient of Bn(x) is 1. Further, define the polynomial qp(k) by the recurrence

q0 = 1, qp(k) =
1

p

p∑
j=1

(−1)j+1

j + 1
Qj(k)qp−j(k), (6.4a)

where

Qj(k) =

r∑
i=1

[
Bj+1(−ai − k)− Bj+1(−bi + 1− k) + Bj+1(1− bi +mi)

− Bj+1(1− ai + ni)
]
. (6.4b)

In other words, qp(k) is the coefficient at z−p in the exponential expansion

exp

 ∞∑
j=1

(−1)j+1Qj(k)

(j)2zj

 = 1 +
∞∑
s=1

qs(k)

zs
,

where p = max{−1,M −N − r+1}. Clearly, q−1 = 0 and q0 = 1. There are several other ways
to compute qp(k): via the complete (or exponential) Bell polynomials, by the determinantal and
the explicit multiple sum formulas, see Section 2 and [10, Section 3.3]. We have the following
proposition.
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Theorem 6.2. For all k ≥ −mmin we have αk = qp(k) , or, in detail,

r∑
i=1

(1− b+ ai)m+k(
ai − a[i]

)
n[i]+k+1

(k + ni)!
2rF2r−1

(
−k− ni,b− ai, 1+ a[i]− ai− n[i]− k− 1

b− ai −m− k, 1 + a[i] − ai

)
= qp(k),

where qp is defined in (6.4). In particular, q−1(k) = 0, q0(k) = 1, and, furthermore,

q1(k) =
Q1(k)

2
, q2(k) =

Q2
1(k)

8
− Q2(k)

6
.

Proof. Keeping the notation from the proof of Lemma 6.1 we can write

S(z) =

−mmin−1∑
k=−nmax

αkz
k +

∞∑
k=−mmin

αkz
k,

where the first sum is zero if −nmax > −mmin− 1. Furthermore [14, Lemma 1] shows that αk in
the second sum is precisely the polynomial qp(k) defined above, see the first formula below the
proof of [14, Lemma 1]. ■

Writing as before ν = ν(a;b) =
∑r

i=1(bi − ai), we have

Theorem 6.3. Let a,b ∈ Cr, m,n ∈ Zr and

ν −M +N − 1 < 0, −ν + r − 1 < 0. (6.5)

Then the numbers βk defined in (6.2) satisfy the following identity

p−mmin∑
k=−nmax

βk = (−1)r−1(ν)1−r(1− ν)M−N . (6.6)

Proof. According to (3.2a) the asymptotic relation

rFr−1

(
c
d

∣∣∣∣ z) =
Γ(d)Γ(−ν(c;d))

Γ(c)
(1− z)ν(c;d)(1 + o(1)) as z → 1,

is valid if ν(c;d) =
∑r−1

j=1 dj −
∑r

j=1 cj < 0. Hence, under conditions (6.5) the above relation
is applicable to both series in each summand in (6.1). Summing both inequalities in (6.5) we
see that M − N − r + 1 > −1 which implies by definition of p that p = M − N − r + 1.
A straightforward calculation using the asymptotic relation above then shows that the total
power of 1− z does not depend on i and equals −p− 1. Hence, we get from (6.1) as z → 1

Γ(−ν +M −N + 1)Γ(ν − r + 1)(1 + o(1− z))

×
r∑

i=1

(1− b+ ai)m−niz
−ni(

ai − a[i]
)
n[i]−ni+1

Γ
(
1 + a[i] − ai

)
Γ
(
1− a[i] + ai + n[i] − ni

)
Γ(b− ai)Γ(1− b+ ai +m− ni)

=

p−mmin∑
j=−nmax

βjz
j .

In the limit z = 1 we thus obtain after simple rearrangement and application of the reflection
formula Γ(x)Γ(1− x) = π/ sin(πx) that

(−1)r−1Γ(−ν +M −N + 1)Γ(ν − r + 1)

r∑
i=1

sin[π((b− ai))]

π sin[π((a[i] − ai))]
=

p−mmin∑
j=−nmax

βj .

Finally, an application of the identity [16, identity (3.14)]

r∑
i=1

sin[π((b− ai))]

sin[π((a[i] − ai))]
= sin(πν)

yields (6.6). ■
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In a rather recent work [12] the authors discovered some curious three-term duality relations
for the q-hypergeometric functions. As q → 1 they naturally lead to identities for ordinary
generalized hypergeometric functions which do not seem to appear in the literature previously.
The general case and its corollary are presented below. We will then use them to derive three-
term relations for terminating hypergeometric series evaluated at ±1.

Lemma 6.4. Let r, s ≥ 0 be integers, a, b, c, d ∈ C, e ∈ Cr, f ∈ Cs. Then we have in the sense
of formal power series:

a(b− d)(c− d)(b+ c− a) r+4Fs+3

(
b+ c− a− 1, b+ c− 2, c, d, e
a, b− 1, b+ c− d− 1, f

∣∣∣∣ z)
× r+4Fs+3

(
b+ c− a+ 1, b+ c, c, d, e+ 1
a, b+ 1, b+ c− d+ 1, f + 1

∣∣∣∣ z)
− d(b− a)(c− a)(b+ c− d)r+4Fs+3

(
b+ c− a, b+ c− 2, c, d− 1, e
a− 1, b− 1, b+ c− d, f

∣∣∣∣ z)
× r+4Fs+3

(
b+ c− a, b+ c, c, d+ 1, e+ 1
a+ 1, b+ 1, b+ c− d, f + 1

∣∣∣∣ z)
= bc(a− d)(b+ c− a− d) r+4Fs+3

(
b+ c− a, b+ c− 2, c− 1, d, e
a− 1, b, b+ c− d− 1, f

∣∣∣∣ z)
× r+4Fs+3

(
b+ c− a, b+ c, c+ 1, d, e+ 1
a+ 1, b, b+ c− d+ 1, f + 1

∣∣∣∣ z). (6.7)

Proof. Replacing a, b, c, d by qa, qb, qc, qd; e1, e2, . . . , er by qe1 , qe2 , . . . , qer and f1, f2, . . . , fs
by qf1 , qf2 , . . . , qfs and letting q → 1 in [12, Theorem 1.1] we get the result. ■

By specializing parameters in [12, Theorem 1.1] the authors get [12, Corollary 1.2]. Its limi-
ting case is the following:

Lemma 6.5. For a given integer r ≥ 1 suppose a ∈ Cr+1 and b ∈ Cr. Then

a1(a2 − b1) r+1Fr

(
a1− 1,a[1]
b1− 1,b[1]

∣∣∣∣ z) r+1Fr

(
a2,a[2]+ 1

b+ 1

∣∣∣∣ z)− a2(a1 − b1) r+1Fr

(
a2 − 1,a[2]
b1 − 1,b[1]

∣∣∣∣ z)
× r+1Fr

(
a1,a[1] + 1

b+ 1

∣∣∣∣ z) = b1(a2 − a1) r+1Fr

(
a
b

∣∣∣∣ z) r+1Fr

(
a1, a2,a[1,2] + 1

b1,b[1] + 1

∣∣∣∣ z).
Proof. Replacing a1, a2, . . . , ar by qa1 , qa2 , . . . , qar and b1, b2, . . . , br by qb1 , qb2 , . . . , qbr , and let-
ting q → 1 in [12, Corollary 1.2] we arrive at the claim. ■

Theorem 6.6. Let r, s ≥ 0 be integers, a, b, c, d ∈ C, e ∈ Cr, f ∈ Cs. Define t = r + s + 8,
ân = 1− a− n, b̂n = 1− b− n, ĉn = 1− c− n, d̂n = 1− d− n for any integer n ≥ 0. Then we
have

(b− d)(c− d)(a− 1)2(b+ c− a− 1)2
(a+ n− 1)(b+ c− a+ n− 1)

× tFt−1

(
−n, b̂n − c+ d+ 1, b+ c− a+ 1, c, d, ân, b̂n + 1, b+ c, e, 2− f − n

b+ c− d+ 1, b̂n − c+ a+ 1, ĉn, d̂n, a, b+ 1, b̂n − c+ 2, 2− e− n, f

∣∣∣∣ (−1)t
)

− (b− a)(c− a)(d− 1)2(b+ c− d− 1)2
(d+ n− 1)(b+ c− d+ n− 1)

× tFt−1

(
−n, b̂n − c+ d, b+ c− a, c, d+ 1, ân + 1, b̂n + 1, b+ c, e, 2− f − n

b+ c− d, b̂n − c+ a, ĉn, d̂n + 1, a+ 1, b+ 1, b̂n − c+ 2, 2− e− n, f

∣∣∣∣ (−1)t
)
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=
(a− d)(b+ c− a− d)(b− 1)2(c− 1)2

(b+ n− 1)(c+ n− 1)

× tFt−1

(
−n, b̂n − c+ d+ 1, b+ c− a, c+ 1, d, ân + 1, b̂n, b+ c, e, 2− f − n

b+ c− d+ 1, b̂n − c+ a, ĉn + 1, d̂n, a+ 1, b, b̂n − c+ 2, 2− e− n, f

∣∣∣∣ (−1)t
)
.

Proof. Equating coefficients at zn on both sides of (6.7), using the standard Cauchy product
and relations (2.5) we arrive at the result. ■

In a similar fashion from Lemma 6.5 we obtain the following:

Theorem 6.7. For a given integer r ≥ 1 suppose a ∈ Cr+1, b ∈ Cr. Then for all integer n ≥ 0

(a2 − b1)
a1(a1 − 1)

(a1 + n− 1)
2r+2F2r+1

(
−n, 2− b1 − n, 1− b[1] − n, a2,a[2] + 1

2− a1 − n, 1− a[1] − n,b+ 1

)
− (a1 − b1)

a2(a2 − 1)

(a2 + n− 1)
2r+2F2r+1

(
−n, 2− b1 − n, 1− b[1] − n, a1,a[1] + 1

2− a2 − n, 1− a[2] − n,b+ 1

)
= (a2 − a1)

b1(b1 − 1)

(b1 + n− 1)
2r+2F2r+1

(
−n, 1− b− n, a1, a2,a[1,2] + 1

1− a− n, b1,b[1] + 1

)
.
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