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Abstract. There are representations of the type-A Hecke algebra on spaces of polynomials
in anti-commuting variables. Luque and the author [Sém. Lothar. Combin. 66 (2012),
Art. B66b, 68 pages, arXiv:1106.0875] constructed nonsymmetric Macdonald polynomials
taking values in arbitrary modules of the Hecke algebra. In this paper the two ideas are
combined to define and study nonsymmetric Macdonald polynomials taking values in the
aforementioned anti-commuting polynomials, in other words, superpolynomials. The mod-
ules, their orthogonal bases and their properties are first derived. In terms of the standard
Young tableau approach to representations these modules correspond to hook tableaux. The
details of the Dunkl-Luque theory and the particular application are presented. There is
an inner product on the polynomials for which the Macdonald polynomials are mutually or-
thogonal. The squared norms for this product are determined. By using techniques of Baker
and Forrester [Ann. Comb. 3 (1999), 159-170, arXiv:q-alg/9707001] symmetric Macdonald
polynomials are built up from the nonsymmetric theory. Here “symmetric” means in the
Hecke algebra sense, not in the classical group sense. There is a concise formula for the
squared norm of the minimal symmetric polynomial, and some formulas for anti-symmetric
polynomials. For both symmetric and anti-symmetric polynomials there is a factorization
when the polynomials are evaluated at special points.
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1 Introduction

Nonsymmetric Macdonald [13] polynomials are simultaneous eigenfunctions of a set of mutu-
ally commuting operators derived from an action of the type-A Hecke algebra on the space
of polynomials in N variables. They are significantly different from the symmetric Macdonald
polynomials in the technique of their respective definitions and yet Baker and Forrester [1]
established a strong relation between them. In the analogous theory of nonsymmetric Jack
polynomials Griffeth [11] constructed such polynomials which take values in modules of the
underlying groups, specifically the complex reflection groups in the infinite family G(¢,p, N).
These polynomials constitute a standard module of the rational Cherednik algebra. Luque and
the author [9] extended the theory of nonsymmetric Macdonald polynomials in the direction
suggested by Griffeth’s work by studying polynomials taking values in modules of the Hecke
algebra. The development relies on exploiting standard Young tableaux and the Yang-Baxter
graph technique of Lascoux [12].

The superpolynomials considered here are generated by N anti-commuting and N commuting
variables. By defining representations of the Hecke algebra on anti-commuting variables the
theory of vector-valued nonsymmetric Macdonald polynomials is applied to define and ana-
lyze superpolynomials. There is a theory of symmetric Macdonald superpolynomials initiated
by Blondeau-Fournier, Desrosiers, Lapointe, and Mathieu [3] with further developments on norm
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and special point values by Gonzilez and Lapointe [10]. Their approach and definitions are
based on differential operators and linear combinations of the classical nonsymmetric Macdonald
polynomials, whose coefficients involve anti-commuting variables. The theory developed in the
present paper is different due to the method of using anti-commuting variables to form Hecke
algebra modules.

Nonsymmetric Macdonald polynomials associated with general root systems were intensively
studied by Cherednik [5]. By specializing to root systems of type A it becomes possible to
develop more detailed relations, formulas and structure. In particular, the papers of Noumi and
Mimachi [14], Baker and Forrester [1] provide important background for the present paper. Note
that some authors use different axioms for the quadratic relations of the Hecke algebra, such as
(T —t/2) (T + t=/2) = 0, rather than (T —t)(T + 1) = 0.

The theory of Hecke algebras of type A and their representations is briefly described in Sec-
tion 2 and then applied to modules of polynomials in anti-commuting variables. In general the
irreducible representations are constructed as spans of standard Young tableaux whose shape
corresponds to a fixed partition of N. In the present situation it is the hook tableaux which
arise. The basis vectors are constructed and the important transformation formulas are stated.
There is an inner product in which the generators of the Hecke algebra are self-adjoint which
leads to evaluation of the squared norms of the basis elements.

In Section 3 the theory of vector-valued nonsymmetric Macdonald polynomials developed
in [9] is applied to produce superpolynomials, considered as polynomials taking values in modules
of anti-commuting variables. The main results are stated without proofs but some important
details are carefully worked out. In [8] the author constructed an inner product in which the
nonsymmetric Macdonald polynomials are mutually orthogonal, in the general vector-valued
situation. This structure is worked out for the superpolynomials in Section 3.3 and the squared
norms are computed. In Section 4 the techniques of Baker and Forrester [1] are used to produce
supersymmetric Macdonald polynomials, and the squared norms. From results of [9] the labels
of these polynomials correspond to the superpartitions of Desrosiers, Lapointe, and Mathieu [6].
It has to be emphasized that in this paper the meaning of symmetric is with respect to the Hecke
algebra, not the symmetric group. Also the squared norm of the lowest degree supersymmetric
polynomial is determined — the formula is more elegant than the general formula; its calculation
is able to use telescoping arguments for simplifications. There is a derivation of formulas for
antisymmetric Macdonald polynomials in Section 4.5. In the conclusion some further topics
of investigation, such as evaluation at special points, are discussed.

2 The Hecke algebra of type A

2.1 Definitions and Jucys—Murphy elements

The Hecke algebra H  (t) of type Ay_1 with parameter ¢ is the associative algebra over an exten-
sion field of Q, generated by {Tl, ... ,TN_l} subject to the braid relations

LT T =T TiTi 44, I1<i<N-—1, (2.1a)
I;T; = 1515, i —j| > 2, (2.1b)

and the quadratic relations
(T; —t)(T; + 1) =0, 1 <i <N, (2.2)

where ¢ is a generic parameter (this means t" # 1 for 2 < n < N). The quadratic relation

implies 7, ' = $(T; + 1 — t). There is a commutative set in Hy(t) of Jucys-Murphy elements
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defined by wy =1, w; = t‘lTinlTi for 1 <i < N, that is,
w; =t N Ty T T T—2 - T;.

Simultaneous eigenvectors of {w;} form bases of irreducible representations of the algebra. The
symmetric group Sy is the group of permutations of {1,2,..., N} and is generated by the
simple reflections (adjacent transpositions) {s;: 1 < i < N}, where s; interchanges 7, i + 1
and fixes the other points (the s; satisfy the braid relations and s? = 1). There is a linear
isomorphism ZSy — Hn(t) given by > cs. auu = Y2, cs, auT'(u), where T'(u) = T;, - T,
with u = s;, - -+ 55, being a shortest expression for u (in fact £ = #{(¢,7): ¢ < j, u(i) > u(j)});
T'(u) is well-defined because of the braid relations (see [7]).

2.2 Modules of anti-commuting variables

Consider polynomials in N anti-commuting (fermionic) variables 601,60s,...,0y. They satisfy
0? = 0 and 6,60; + 0;6; = 0 for i # j. The basis for these polynomials consists of monomials
labeled by subsets of {1,2,..., N}:

¢E::6i1-~9,~m, E:{il,iz,...,im}, 1<y <io< - <ty <N

The polynomials have coefficients in an extension field of Q(q,t) with transcendental ¢, ¢,
or generic ¢, t satisfying q,t #£ 0, ¢* # 1, ¢*t" # 1 for a € Z and n # 2,3,..., N.

Definition 2.1. P := span{gzbE: E C {1,...,N}} and P, := span {ng: #FE = m} for 0 <m
< N. The fermionic degree of ¢g is #E.

Some utility formulas are used for working with {¢z}.
Definition 2.2. For a subset £ C {1,2,...,N} and 1 <i < N let

EC:=2 ... N}\E,

inv(E) == #{(i,j) € E x E:i < j},

$ip = 5,8 = d(p\ipulivy,  (hit+1) € Ex EY,
$i0E = bs,8 = d(p\i+1pulip,  (hit+1) € Y x E.

(When {i,i + 1} C E or C EC then s;,E = FE and s;¢p = ¢p.) Introduce a representation
of Hn(t) on P.

Definition 2.3. For 1 <i < N

—bp, {i,i+1} C E,
Tiop tom, {i,i+1} c E®,
TET siom, (iyi+1) € Ex B,

(t —1)pp +ts;pp, (i,i+1)€ EC x E.
Proposition 2.4. The operators {T;} satisfy the braid and quadratic relations (2.1a) and (2.2).

Proof. It suffices to verify that 71757y = 15117, and (17 — ¢)(T71 + 1) = 0 on the spaces
span{fy, 02,63} and span{620s,6,163,0:102}. The relations are trivially satisfied on span{1} and
span{019203}. |
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Remark 2.5. For symbolic computation and to verify the previous proposition use

0 0 0?
Tif(01,...,0n) =tf + (t0; — 9i+1)<80+1 - %A)f — (t67 +912+1)W0+1f,

-1 _1 Ly V(00N (il O
g f((’l"""’N)—t”(a’ t@“)(aam o0;)7 ~\" 7% ) ogae,

with the partial derivatives being formal (the order of variables is ignored).

There is a symmetric bilinear form on P which is positive-definite for ¢ > 0 and in which T;
is self-adjoint for 1 <4 < N. The purpose of the form is to make the simultaneous eigenvectors
of {w;} mutually perpendicular.

Definition 2.6. For E, F C {1,2,...,N} define (¢g, dp) = (5E7Ft_m"(E) and extend the form
to P by linearity.

Proposition 2.7. Suppose f,g € P and 1 <1i < N then (T;f,g) = (f,T;g).
Proof. It suffices to consider T1. Let F' C {3,4,...,N}. Then Ti¢r = tér and Tidq 2yur =
—¢p12pur- Let F; = FU {i} for i = 1,2 and T1¢p, = ¢p, and T1¢p, = (t — 1)¢p, + tdr so that
(Ti6r,, ) = (b, bp,) =t~ ™2,
(0r, ThoR) = (dr, (t = V)ém + tor) = t (dr,, o) = 7D,
and inv(F}) = inv(Fy) + 1 by counting the pair (1,2) € Fy x FF. [

Corollary 2.8. If f,g€ P and 1 <i < N then (w;f,g) = (f,wig).
Proof. This follows from wy =1 and w; = t_lTinlTi for i < N. |

There are two degree-changing linear maps which commute with the Hecke algebra action.
Definition 2.9. For n € Z set o(n) := (—=1)" and for £ C {1,2,...,N}, 1 < i < N set
s(i,lz) = #{j € E:j < i}. Define the operators 0; and 0; by 9i0;¢p = ég, Oipp = 0
and 0;0p = 0;90p = o(s(i, £))ppupy fori ¢ £, while 0;¢pp = 0 fori € E (also i € E implies ¢p =
J(S(i, E))91¢E\{z} and 61¢E = U(S(i, E))d)E\{z}) Define M := sz\il 92 and D := vazl tiilai.

By direct computation one can show that @aj = —8]@ for i # j.

Proposition 2.10. M and D commute with T; for 1 <i < N.

Proof. It follows from the definitions that 9; and 5] commute with T; when j <ior j > i+ 1.
It suffices to show 01 + td2 and 61 4+ 02 commute with T3 applied to p1 := ¢p, p2 := (01 + 62)dF,
p3 = (t0) — 02)dF, py := 01020 with 1,2 ¢ F. Then Tip; = tp; for i = 1,2, Thp; = —p; for
i = 3,4 and

(al + taZ)[p17p27p37p4] = [07 (t + 1)p17 07 _p3])

(61 + 02)[p1, p2, p3, pa) = [p2, 0, —(t + 1)pa, 0].
This concludes the proof. |

It is clear that D> =0 = M?. For n=0,1,2,... let [n], := L== and [n],! := [1];[2]¢ - - [n]s.

Proposition 2.11. MD + DM = [N];.

Proof. Fix ¢E7 #E = m; ajqu = O'(S(j, E))¢E‘\{]}a then 538]¢E = O'(S(j, E))9]¢E\{j} = ¢E
thus the coefficient of ¢g in MD is ZJEE ti=1. Also Mo = Z“EE 0;¢r and the coeflicient
of ¢p in DMop is 3 a5 t'~1 so that the coefficient of ¢ in M D+ DM is Zévzltj_l = [N];.
Suppose i € E, j ¢ E then @¢E\{i} appears in M D with coefficient t*~"1o(s(i, E)) while
100508 = o(s(i, B))t"10i0,0i0p\ 11y = —J(s(i,E))ti*1§j¢E\{i}, and this term is canceled
out in MD + DM. |



Nonsymmetric Macdonald Superpolynomials 5

2.3 Representations of Hn(t)

These representations correspond to partitions of N, namely A = (A1,...,Ay) € Név with
A > A > - > Ay and SN A\ = N. The length of A is £(\) = max{i: \; > 1}. There is
a graphical device to picture A, called the Ferrers diagram, which has boxes at {(7,7): 1 <1i <
(M) ,1 < j < \} (integer points). A reverse standard tableau (RSYT) is a filling of the Ferrers
diagram with the numbers {1,2,..., N} such that the entries decrease in each row and in each
column. The relevant representation of Hy(t) is defined on the span of the RSYT’s of shape A
in such a way that w;¥Y = t°Y)Y for 1 <i < N, where Y([a,b] =4, ¢(i,Y) = b—a (b—a is called
the content of [a,b]), and Y is a RSYT of shape A. In the present work only hook tableaux will
occur, namely partitions of the form A = (N — n,1™) (the part 1 is repeated n times), so that
l(A)=n+1.

We will show that P, is a direct sum of the H y(t)-modules corresponding to (N — m, 1™)
and (N + 1 —m, 1™~ 1), Here is a structure for labeling the ¢ of interest.

Definition 2.12. Let Yy :={E: #E=m+1, N€ E} and ), :={E: #E=m —1, N ¢ E}.

These sets are associated to RSYT’s of shape (N—m, 1m) and (N—m—i— 1, 1m_1) respectively,
and this correspondence will be used to define content vectors for F.

Definition 2.13. Suppose E € Yy and E = {i1,...,im,ims1}, B¢ = {j1,...,iN—m_1} with
i1 <ig <+ <imy1 =N and j; < jo < --- then Yg is the RSYT of shape (N — m,1™) given
by Ye[k,1] = ipyo_g for 1 <k <m+1, and Yg[1,k] = jn—ms1—k for 2 < k < N —m. Suppose
EcY and E={i1,...,im 1}, B¢ = {j1,...,iN-ms1} With iy <ig < --- and j; < jo < --- <
JjN-m+1 = N then Yg is the RSYT of shape (N — m + 1,1™71) given by Y[k, 1] = imi1-k
for 2 <k <m, Yg[l,k] = jN—ms2-k for 1 <k < N —m+ 1. In both cases define the content
vector c(i, E) = c(i,Yg) for 1 <i < N.

For space-saving convenience the RSYT’s are displayed in two rows, with the second row
consisting of the entries Yg[2,1], Yg[3,1],... . Recall the content of cell [i,j] is j — i.
As example let N =8, m =3, E = {2,5,7,8} then

8 6 4 3 1
YE‘[.752]

and [c(i, E)|8, = [4,-3,3,2,-2,1,—1,0].
We will construct for each E € Yy UV a polynomial 75 € P,, such that w;rg = t<GE) g
for 1 <i < N. To start let Ey :={N —m,N —m+1,...,N} € Jy. Then
Ve — N N-m—-1 N-m-2 --- 1
Bo— N-1 N-2 . N—-m |

(i, BN, =[N—=m—-1,N—m—2,....,1,—m,1—m,...,—1,0].
Theorem 2.14. Let ¢y = D¢g, € ker D NPy, then withg = o)y for 1 <i < N.

Proof. If N —m < i < N then Tj¢p, = —¢g, and so Tj1pg = —1)o, because T;D = DT; and
Yo = Dog,, thus wiypg = t=Napg. It is clear that Tjehg = tihg for 1 < i < N —m — 1 and so
it remains to prove wy_,,—1%o = ttbg. (The remaining part of the argument is straightforward,
and is at the end of this proof; for example wWyn_m—210 = t " TN—m—92WN—-m-1TN—m—2to =
TN—m—2WN—m—1%0 = t*1g.) Let F:={N —m —1,N —m,...,N} and F; := F\{j}, p; = OF;,
(so that pny—m—1 = ¢g,) then Tjp; = —p;ifi > jor N—m—1<i < j—1,Tjp; = (1-t)pj+tpj+1
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and T;pj41 = p;j. To set up an induction argument let Un_p,—1 = TN—ym—1 and U4 = T4 U;
for i < N — 1. We claim
7: .
Ui(on _ tz—N+m+2pi+1 + (t _ 1) Z (_1)Z—jtj—N+m+1pj.
j=N—-m—1

At the start of the induction Tn_m—1PN—m—1 = tPN—m + (t — 1)DN—m—1. Suppose the formula
holds for i then
i
Uit1¢r, = N2 T piy + (8= 1) Z (=1) =N p;
j=N-—-m-—1
i

_ tifN+m+2(tpi+2 + (t _ 1)pi+1) _ (t _ 1) Z (_1)ifjtij+m+1pj

j=N—-m—1
i+1
= NI g (1) YD (N,
j=N—m
as is to be shown. We also need
N-1
D¢F _ Z (_1)ij+m+1tJflpj + (_1)m+1tN71pN'
j=N—-m—1
Thus
N-1
UN—1¢EU _ thrle 4 (t o 1) (_1)N717]tij+m+1pj
j=N-—-m—1
— tm—i—le + (t . )(_1 mt—N+m+2{D¢F . (—1)m+1tN_1pN}

1)(-1)
— 2y 4 (¢ — 1)(<1)

mt—N+m+2 DQbF )

Then Un_1¢ = DUn_1¢5, = t™Dpy and Tn—m-1TN-m - Tn_1Un—1¢0 = t™" 2 Dpy_pm_1
= ™+ 24 since Tjpj+1 = p;j for N —m —1 < j < N. Hence wy_m_1thy = t-m-1=Nemt2y,
= t1yg. It follows that

i— N+m+1
withg =t NI Ty w1 TN —m—2 - - Tytho

— i NAmA LN —me =) N =miy,

for1<¢:<N-—-m-—1. [ |

Turning to the isotype (N —m+1, 1m_1), let By :={1,2,...,m — 1} € }; so that

v _ [N N-1 N-2 - - m
B m—1 m—-2 - 1 ’
e, BN, =[1-m,2—m,...,~1,N—m,N—m—1,...,1,0].

Theorem 2.15. Let ng, = M¢g, € ket M N'Py,. Then wing, = tc(i’El)nEl for1<i<N.

Proof. Since T;¢p, = t¢g, for m <i < N it follows that w;M¢gp, = tN_iMqSEI. Also T;¢p, =
—¢p, and T;M¢p, = —M¢pg, for 1 <i < m — 1 and so it remains to show w,,_1mg, = tilnEI.
Let F'={1,2,...,m =2} and form —1<j < N let F; = FU{j} and p; = ¢F;, (o5, = Pm—1)-
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Then Tjp; = pjy1 so that Tn 1Tn_2-- - Tr-1pm-1 = pn. Also Tjpjp1 = tpj + (t — 1)pjs1
and Tjp; = tp; for i > j + 1. By induction we prove that

N
TiTip1 - Tyoapy =t pi+ (=171 " py.
=it

The formula is valid for ¢ = N — 1 and assuming it is true for ¢ apply T;_1 to both sides, then
the first term becomes V% (p;_1 + (t — 1)p;) and the second term is multiplied by ¢. Substitute
Mop = Z;y:m_lpj in the formula with ¢ = m — 1 to obtain

Tm—l o 'TN—le = tN_m—Hpm—l + (t - 1)tN_m{M¢F - pm—l}
=tV 1+ (t = DT Mg,

Thus wy_1np, = " VNN Mp,, 1 = t~'ng, (since M? = 0). From Tyng, = —ng, for
1 <i<m—1it follows that w;ng, = t""™ng,. Thus wne, = tc(”El)nEl for 1 <i<N. |
2.4 Steps

Having found two polynomials which are {w;} simultaneous eigenfunctions we describe the
method for constructing for each ¥ € Yy U )Y a polynomial 75 € P, such that w;7p = tc(i’E)TE
for 1 <¢ < N. Recall the standard properties Tiw; = w;T; for i < j — 1 (obvious) and for i > j
(suppose i = j + 1) then

Tjriwj = t T TjTjwjro T Ty = t 21T Tiwjso T Ty = ¢ T T 1wy Ty Ty Ty
=t T Tj w2 T T T = wiTj,
by the braid relations; and
Tjwj =t ' Tjwin Ty = t{(t = DT + hwin Ty = (¢ — Dwj + wja Ty,
wjTy = Tjwjp1 + (t = Dwj. (2.3)
Proposition 2.16. Suppose w;f = X;f for 1 <j < N (f #0), \i # Xit1 and

(t =1\

=1T;
g f+)\i+1_)\i

f

then wjg = \jg for all j # 1,1+ 1 and w;g = N\it19, wiv19 = Nig- If Niy1 # tT1\; then g # 0.

Proof. If j > i+ 1 or j < ¢ then w;T; = Tjw; and thus w;jg = \jg. By (2.3)

(t- D (t— D\
ig = wiT; i = Tiw; t—1 Ai
wig wa+)\>\i+1—)\z‘f wir1f + +/\i+1—>\i f

(t—l))\z‘+1)\i

=N Lif + f=Xiq19.

Ait1 — A

A similar calculation using w;+17; = Tjw; — (t — 1)w; shows that w;119 = A\;g. Since T? =
(t-1)T;+t

(t 1)AM> < (t— D)\ > (it — As1) s — Ehar)
Ti+—~—F"F— )| Ti+ = ,
< Ai — Nit1 Ait1 — A (A — Aig1)?

thus \iy1 # tT1); implies g # 0. |
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Given the hypotheses of the proposition and the self-adjointness of w; (Corollary 2.8) it follows
that <f7 g> =0 ()\1<f7 g> = <W1f,g> = <f7wzg> = )\i+1<f7 g>)

Lemma 2.17. Suppose g = (T; + b)f and {f,g) = 0 then ||g||* = (1 — b)(¢t + b)|| f||*.

Proof. It follows from 7; being self-adjoint that (T;f, T;f) = <T2f, f> (t — DT f, f) +t]| f?
and (f,g) = 0 implies (T} f, f) + b|| f||* = 0. Thus

gl = 1T f 1P + 26(T3f, f) + I fIP = (¢ = 1+ 20)(Tif, f) + (¢ + 0| £
= {0t = 1+20) + £ + L} fI* = (=% = b(t = ) + ) [ I = (L= 0)(¢ + b)[|f]*.

Corollary 2.18. Suppose g = (T; +b)f, (g, f) =0 and b=1 or b = —t then g = 0.

2.4.1 Isotype (N —m,1™)

This concerns the polynomials in Pp, o = ker D NPy, = DPpq1. Recall Yo = {E: #E =m + 1,
N € E}.

Definition 2.19. For #F = m + 1 define Y5 = D¢p.

The set {1/}];: E € yo} spans P, 0; for suppose N ¢ E then OyD¢p is a linear combi-
nation of ¢p with F € Yy and t'"VDOyD¢r = Dép = ¢p. The map p(6y,...,0n5) —
p(91, e ,9]\[_1,0) takes Vg to tN71¢E\{N}; thus dim Py, o = (N_l

). The function inv(E) pro-
vides a partial order on ).

Definition 2.20. For 0 <n < m(N —1—m) let
737(722) = span{sz: E € Yy, inv(E) < n}
The extreme cases are inv({N —m,...,N}) =0 and inv({1,2,...,m,N}) =m(N —1—m).

Lemma 2.21. Suppose E € Yy and inv(E) = n. If {i,i + 1} C E then Tjyg = —¢g, or if
{i,i+1}NE = @ then Tpp = tyg. If (i,i+1) € ExEC then inv(s;E) = n—1 and Typp = Vs, E-
Ifi(i,i+1) € EC x E then inv(s;E) =n + 1 and Ty = (t — 1)bg + ths,z € Py nH). That is,
TP Py,

Proof. The transformation rules follow from Definition 2.3 and DT; = T;D (see Proposi-
tion 2.10). ]

Theorem 2.22. Suppose for some n and for each E € Yy with inv(E) = n there is a polynomial

5 = t"p + pp with pp € PG = ¢e(i.E)

forn+1.

such that w;TE T for all i then this property holds

Proof. Suppose E € ) with inv(E) = n + 1 then for some i it holds that (i,i 4+ 1) € E x E®
(otherwise E = Ey = {N —m,N —m +1,...,N} and inv(Ey) = 0), then let F = s;F so
that inv(F) = n. Then ¢(j,E) = ¢(j,F) for j # i,i+ 1 and c¢(i, E) = ¢(i + 1, F) < —1,
c(i+1,E) = c(i, F) > 1. By Proposition 2.16 let

B (t — 1))
TE = (TZ + te(+1,F) _ ¢e(i,F) TF-

Then wjtp = t°UE) 7 for all j; and 7 = (Ti+b) (("Yr+pr) = " pp+t"(t—14b)Yp+(Ti+b)pp
(for a constant b). By the lemma t"(t — 1+ b)yp + (T; + b)pg € PTS%. [ |
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Corollary 2.23. For each E € Yy and inv(E) = n there is a unique Tg € Pp o with Tp =

(n—1)

t"pp + pg and pp € Pm,O such that witg = t<0E) g for all 3.

Proof. The existence follows from induction starting with 75, = g, and Theorem 2.14.
Uniqueness follows from the leading term. The {w; }-eigenvalues of 7 determine F uniquely. W

Corollary 2.24. Suppose E € )y, if {i,i+ 1} C E then Tytp = —1g and if {i,i+ 1} N E =9
ori=N —1¢ E then TyTg = t7g.

Proof. Let b= TV ol I {i,i+1} C E then c(i+ 1, E) = 1 + (i, E)
and b = 1; thus ((T; + 1)7g, 7e) = 0 (by the comment after Proposition 2.16) and ||(T; + 1)7g||?
= 0 by Corollary 2.18. If {i,i+1}NE =@ (ori =N —1¢ E) thenc(i+1,F) =c(i,E) — 1
and b = ;7L = —; thus ||(T; — t)7g[* = 0. |

Definition 2.25. Let u(z) := % Suppose v € ZY and v; # 0 for j < N, vy = 0, then
C(v) := H {u(@ ™) v; <0< v} (2.4)

1<i<j<N
Proposition 2.26. Suppose E € )y then
I75]% = *N =" Dm + 1),C ([e(i, E)X,).

Proof. By definition 75, = Z;VN m (=) g iy and ||7'Eo||2 = ZjVN ot
where i; = inv (Eo\{j}) = j — N + m; thus ||7g,|* = t2(N=m=1) > i ot’. Suppose the formula
is valid for all F with inv(E) < n and inv(E) = n+ 1. Then E = s;F for some i € E with
i+1¢ Eandinv(F)=n (soi+1€ F,i¢ F). By Lemma 2.17 ||7g[|?> = (1 — b)(t + b)||7#|?,

where b = Mfi(l’m Write z = tc(i+1’F) C(z F) = tc(z E) C(l+1 E) then

(t—2)(1—tz)
(1-2)

In the product for ||7x||? the factors for pairs (i) (k,£) with {k, ¢} N {i,i +1} = @, (i) (k,i),

keF,k<i, (ii) (i+1,¢), £ ¢ F,£ > i+ 1 are the same in the product for ||7z||? for the pairs

(@) (k,0), (ii) (k,i+ 1), (i45i) (i,£), respectively. The extra factor in the product for ||7x||? has
the desired value. |

I7el® = I7el? = u(z)ll7e .

2.4.2 TIsotype (N —m +1,1m71)
This concerns the polynomials in Py, 1 = ker M NPy, = MPp,—1.
Definition 2.27. For #E = m—1 define ng := M¢p. Theset Yy = {E: #E =m—1,N ¢ E}.

The set {nE: E e yl} spans Py, 1; for suppose N € E then Oy M ¢E is a linear combination
of ¢pp with F' € Y; and M(@NquE) = Mo¢rp = ng. Furthermore Onng = ¢g and thus
dim Py, 1 = (7]7\2 1) The function inv(F) provides a partial order on };. The extreme cases are
inv{N —m+1,...,N—1})=m—1and inv({1,2,...,m—1}) = (m — 1)(N —m+1).

Definition 2.28. For 0 <n < (m —1)(N —m + 1) let
737(:)1 = Span{nE: E €}, inv(E) > n}

Lemma 2.29. Suppose E € Y and inv(E) = n. If {i,i+ 1} C E then Tiyng = —ng, or if
{i,i+1}NE=g thenTmE =tng. Ifit ¢ E, i+ 1€ E then inv(s;E) = n+1 and Ting =
(t —Dng +1tns,p € 77 Ifie E,i+1¢FE then inv(s;E) =n—1 and Ting = ns,p € PSZIU.
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Proof. The transformation rules follow from Definition 2.3 and MT; = T; M. |

Theorem 2.30. Suppose for some n and for each E € Y1 with inv(E) = n there is a polynomial
TE = N + pe with pg € P;:jl) such that witp = t°CE gy for all i then this property holds

forn —1.

Proof. Suppose F € Y; with inv(E) = n — 1 then for some i it holds that i ¢ E,i+1 € E
(otherwise E = F1 = {1,...,m — 1} and inv(E;) = (m — 1)(N —m + 1)), then let F = s;F
so that inv(F) = n. Then ¢(j,E) = ¢(j,F) for j # i,i + 1 and ¢(i, E) = c(i + 1, F) > 1,
c(i+1,F) =c(i, F) < —1. By Proposition 2.16 let

B (t — 1)teF)
TE = (TZ + te+1,F) _ ¢e(i,F) TF-

Then w;Tp = tGE)rp for all j; and 75 = (T; + b)(np —i—pF) = ng + bnr + (T; + b)pr (for
a constant b). By the previous lemma bnr + (T; + b)pg € P(n)l. [

m,

Corollary 2.31. For each E € Y; and inv(E) = n < (m — 1)(N —m + 1) there is a unique
TE € Pm, with Tg = ng + pE and pg € Pr(r?jl) such that w;rg = tGE) g for all 1.

Proof. The existence follows from induction starting with 75, = M¢g, = ng, and Theo-
rem 2.15. Uniqueness follows from the leading term. The eigenvalues of 7p determine E
uniquely. |

Corollary 2.32. Suppose E € ), if {i,i+ 1} € E then Tyrp = —7p and if {i,i+ 1} NE =&
then TyTp = t7E.

Proof. This has the same proof as Corollary 2.24. |
Proposition 2.33. Suppose E € Y, then

Irel® = ¢ N TIIN —m 4 1], C([—eli, B)Y,).

Proof. By definition 75 = (—1)""1 Z;V:m dpugy and [l |? = Z;V:m t7%, where i; =
inv (B, U {j}) = m(N + 1 —m) — j; thus [|7g,||? = t ™) Z;V:_Om /. Suppose the formula is
valid for all E with inv(E) > n and inv(E) =n—1. Then F = s;F for some ¢ ¢ E withi+1 € E
and inv(F) = n (so (i,i + 1) € F x FY). By Lemma 2.17 ||7g||> = (1 — b)(¢t + b)||7r||?, where

b= Mfi(zl’)l Write z — tc(iJrl,F)fc(i,F) — tC(i,E)*C(i‘i’l,E) then

Irel? = C 202 el = wio el

In the product for |7#|? the factors for pairs (i) (k,€) with {k, ¢} N {i,i + 1} = @, (i) (k,q),
k¢, k<i, (iii) (i+1,0), £ € F, £ > i+ 1 are the same in the product for |rz|? for the pairs
(@) (k,0), (ii) (k,i+ 1), (iii) (i,€), respectively. The extra factor in the product for |7z|? has
the desired value. [}

Proposition 2.34. Let Fy ={1,...,m,N}, F} ={1,...,m} then 7r, € Ppmo and 7r, € Pmi1,1
have the same {w;}-eigenvalues and

”2 _ t(m+2)(mefl) [N]t
[N - m]t
7 || = ¢ HIN=IEDNYN — ]2 |2,

DTF1 = ti(erl)(Nimil) [N - m]tTFov ”DTFI H2 = tNimil[N]tuTFl H2

HTFO ) ||TF1H2 = ti(erl)(Nimil)[N - m]t7
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Proof. The content vector for Fy is [-m,1 —m,...,—1,N —m —1,...,1,0] (the same as F})
so that
m N—m—1 i
(t — t—z J)(l — t17i70)
=1 j=1
Nem—1 , ;4: il
_tmleﬁ ﬁ fiti+l 1 -1 _ 1
ttd — 1 tti — 1
=1 j=1
leNﬁl gt g -1
i t+i—1 tm+i — 1
_m(N-m-y (_t=1 tN -1\ _ DN,
tN-m _ 1 AL | [N — m}t[m + l]t
by use of telescoping arguments. Thus |75 ||? = t(m+2DN=m=1) [N[lefz]t by Proposition 2.26.

The value of |7 || is from Proposition 2.33. By definition 7, = M¢p, = (Oms1 + -+ + 0n) ¥
0105 - - - 0, and the coefficient of ¢p, in D7p, is ZZ S t=1 = ™[N — m];. The coefficient
of ¢p, in T, = Do, is (—1)™t™N=1=m)+N=1(see Theorem 2.22). From D7p, and 7, having

the same {w; }-eigenvalues it follows that D7, = atp, for some constant. |

2.5 Isomorphisms

This section concerns the action of the maps M, D on the irreducible H y(¢)-modules. The fol-
lowing is a version of Schur’s lemma for irreducible representations.

Lemma 2.35. Suppose u is a linear isomorphism Vi — Va of irreducible Hy (t)-modules such
that Ty = p1I; for 1 < i < N and Vi, Vo are equipped with inner products in which each T; is
self-adjoint, then ||uf||?/||f||? is constant for f € V.

Proof. The argument is based on orthogonal bases defined in the previous sections. By hypo-
thesis V7 has an orthogonal basis consisting of {w;}-eigenfunctions. The image of this basis
under p has the same property. For a typical basis element f € V; suppose w;f = A;f for
all j and Ay # tT')\; then g = (T; + b)f satisfies wig = \iy19,wip19 = \ig for b = )Et:lil)/\)f
and ||g]|> = (1 — b)(t + b)| f||* (this equation follows from T; being self-adjoint and (f, g) = 0).
By hypothesis wjpf = A\juf for all j and pg = (T;+b)puf satisfies w,ug = Nip1 4G, Wit1 g = Ai[J4g.

By Lemma 2.17 [|lug|® = (1 — b)(t + b)l|uf||* and so v := |lugl® /llgll* = llnfI*/| fII*. By the
step constructions ||if[|?/||f||?> = 7 holds for every basis vector of V;. |

The relation M D+ DM = [N]; (Proposition 2.11) implies that Py, is a direct sum of P, o =
Pm Nker D and Py, 1 = Pp, Nker M.

Theorem 2.36. The maps M, D are linear isomorphisms Pp,0 — Pm+1,1, Pm+t1,1 — Pm,o r€s-
pectively, of Ha(t)-modules, [Mf|? = t"1=N[NJ,|f|2 for f € Pro and | Dg|l* = -1 x
[Nellgll* for g € Prg1,1.

Proof. M and D commute with each 7; and hence with each w;. Furthermore if f € Py, 0
then (MD + DM)f = DM f = [N].f (by Proposition 2.11) and thus M is one-to-one on Pp, o.
Similarly if g € P41, then [N]yg = (MD + DM)g = MDg and D is one-to-one. By the
lemma there are constants 1,72 such that [|[Mf||? = | f||*> and ||Dg|? = 92/g//*>. From
(MD + DM)f = DM it follows that [DMf|* = [NR[£]? = 22l Mf|? and 1 = [N]?/7.
By Proposition 2.34 y5 = tN~"™~1[N]; and thus v; = t™+1=N[N],. u
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3 Nonsymmetric Macdonald polynomials

3.1 Operators on polynomials

The following presents the key concepts for our constructions: the definition of the action
of Hy(t) on superpolynomials and the ingredients necessary to define the Cherednik opera-
tors whose simultaneous eigenvectors are the nonsymmetric Macdonald superpolynomials. Here
we extend the polynomials in {6;} by adjoining N commuting variables z1,...,zy (that is
[zi, 2] =0, [x;,0;] =0, 6;0; = —0;0; for all i, j). Each polynomial is a sum of monomials 2“¢,
where £ C {1,2,...,N} and a € NY, 2* := Hfil z$". The partitions in N} are denoted
by Név’+ (e NéV’Jr if and only if A\; > Ay > --- > Ay). The fermionic degree of this monomial
is #E and the bosonic degree is |a| := Zf\il a;. Let sPy, := span {xO‘QSE: a € NY, #E = m}
Then using the decomposition Py, = Pr0 ® Pp1 let

5’Pm70 = span {:EO‘¢E: o€ N(])V, E e yo},
§Pma = span {z%np: a € N, E € W1 }.

The Hecke algebra H () is represented on sP,,. This allows us to apply the theory of nonsym-
metric Macdonald polynomials taking values in H x(t)-modules (see [8, 9]).

Definition 3.1. Suppose p € sP,, and 1 < i < N then set

p(x;0) — p(wsi; 0)
T — Tit+1

Tip(x;0) := (1 —t)zit1 + Tip(xs4; 0).

Note that T; acts on the 8 variables according to Definition 2.3.

Theorem 3.2 ([9, Proposition 3.5]). Suppose 1 < i < N — 1 then T;T;11\T; = T;11T;Ti11,
if1<i<N then (T; +1)(T; —t) =0 and if 1 <i<j—1< N —2 then T,;T; = T;T;.

We also use

T,_lp(x; 0) = <1 _ t)xip(:n; 0) — p(wsi;0) + Tl-_lp(xsi; 0).

! t T — Tiy1

Definition 3.3. Let T(V) = T 1In_o---Tiand forp € sP, and 1 << N

wp(x; 0) := TMNp(qun, w1, 29, ..., an-1;6),
Ep(;0) =t NT Ty - TnqwT Tyt - T p(a; 0).

The operators §; are Cherednik operators, defined by Baker and Forrester [1] (see Braverman
et al. [4] for the significance of these operators in double affine Hecke algebras). They mutually
commute (the proof in the vector-valued situation is in [9, Theorem 3.8]). Observe &_1 =
tilTi_lfiTi_l. Their key properties are

Ty =Ty T T Ty - Ty = Ty -+ Too Ty Ty -+ Ty = TTWY,
(T(N))2 =T (Ty_y - T))T1 = (T - T1)TMT = Ty, (T(N))le,

(T(N))QTl _ TN,l(T(N))2,

wTl'iy1 = Tw, w? T =Ty 1w,

wilp(x; 9) = T1_1T2_1 o T]Gilp(‘%é? Z3,..., TN, qilxl; 0) (31)

There is a basis of sP,, consisting of simultaneous eigenvectors of {{;} and these are the non-
symmetric Macdonald superpolynomials (henceforth abbreviated to “NSMP”).
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Suppose p(#) is independent of x then T';p = T;p and
&p(0) =t NIy - Ty (T - ToTy) Ty Ty - T2 p(6)
=t N T TvoaTv-1 - Tip(0) = wip(0),

that is & agrees with w; on polynomials of bosonic degree 0. Also wT;+; = T;w. Suppose
7 >1+1 then

&T; =t""T;Tiy - Ty T T Ty T
=t'"NT,Tiy - Ty TjowTy Ty T
— " NTy . (T, T;Tj1) - Tn_wT{ Ty - T
=t NT, .. (T;T;1Tj) - Tn_1wT{ Ty T Y =Té.

A similar argument shows &T'; = T;&; when j <i— 1, by using T; 'T;\T; = T; 1 T; 'T; ;.

3.2 Properties of nonsymmetric Macdonald polynomials

They have a triangularity property with respect to the partial order > on the compositions N,
which is derived from the dominance order:

i i
a<Be=> ;<> B 1<i<N, a#f,
j=1 j=1

a<f <= (la] =|8]) A [(oz+ -<6+) \/(oz+ :ﬁ+Aa-<ﬁ)].
The rank function on compositions is involved in the formula for an NSMP.
Definition 3.4. For o € Név, 1<i<N

ro(i) == #{j: aj > o} + #{j: 1 < j <, a5 = o4},

then ro, € Sy. There is a shortest expression o = s, 84, - - - 8;, and Ry = (T3, T; "'Tik)_l €
Hy(t) (that is, Ry = T(ro) 7).

A consequence is that roa = a, the nonincreasing rearrangement of o, for any a € N(])V .
For example if a = (1,2,0,5,4,5) then r, = [5,4,6,1,3,2] and roa = ot = (5,5,4,2,1,0)
(recall (uar); = ay-1(;). Also 7o = I if and only if a € Név’+.

Theorem 3.5 ([9, Theorem 4.12]). Suppose o € NYY and E € Yy, k = 0,1 then there exists
a (&)-simultaneous eigenfunction

My, (25 0) = 4" Ry (15(0)) + > 2v0,5,8(0; ¢, 1), (3.2)
B<a

where vo 3. (6;¢,t) € Pr i and its coefficients are rational functions of q, t. Also &M g (x;60) =
Co,(1)Mq, g (x;0), where (o p(1) = qo‘itc(ra(i)’E) for 1 <i < N. The exponent b(a) := Zfil (Oé’)
and e(at) == SN o (N —i+ (i, E)).

The spectral vector is [Ca,g(i)]Y.,. Note that the leading term involves the element R (75 (6))

of Hy(t) acting on fermionic variables. The explanation for the exponents e(a™) and b(«) is
in Proposition 3.10 below. The relations (2.3) hold when w;, T; is replaced by &;, T'; respectively

Ti& = (t—1)& +&nTy,
§T; =T+ (t— 1),

and this leads to the following, which has the same proof as Proposition 2.16:
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Proposition 3.6. Suppose &if = Njf for 1 < j < N (f #0 and f € sPy,) and g :=T;f +

#ﬁi_lf then &g = Ajg for all j # i,i+ 1 and &g = Niy1g, &iv19 = Nig- If Niv1 # 5N
then g # 0.

This together with a degree-raising operation provides the method for constructing the Mac-
donald polynomials.
Suppose « € Név, E € )YyUY: and a; # it then let z = (o p(i + 1)/, p(i) and

t—1
Msicx,E = Ca,E <T’L + Z_1>Moz,E> (33)

where co p =1 if oy < ajq1 and co p = u(2) if @; > 1. The spectral vector (5,05 = 5iCa,E-

Suppose a € N)Y and E € Yo U1 and a; = ayy1, then let j = ro(i). If {j,j +1} € E
or j =N-—1¢€E then TiMag = -Map. ¥ {jj+1}NE=2orj=N—-1¢E
then TiMop = tMap. If j < N—2and (j,j+1) € Ex EC or (j,j + 1) € EY x E then
2= Cop(i+1)/Cap(i) = tUHLE)I=eG.E) and

Ma,SjE = Ca,E <T7, + H>MQ,E7
z—1

where co p = 1if (1) E € Yp and (j,j +1) € EC x Eorif (2) E€ Y and (j,j +1) € E x EY,
orcop=u(z)"tif (1) E€Yoand (j,j+1) € Ex EC orif (2) E € Yy and (j,j+1) € B¢ x E.
In all cases Co,s;5 = SiCa,E-

The above equations are implicit formulas for T;M,, g. Formula (3.3) is the same as that for
the scalar case, as in [1, 14].

The affine step is defined as follows: for o € N{)V , EeYoU

da = (ag,as,...,ay,a1 + 1),

<<I>oz,E = [Ca,E(z)ﬂ Ca,E(3)7 RN Coe,E(N)7 qga,E(D]v

Moo p = xNwWMy E.

This is based on the relations {yzyw = qgrywéy and Eayw = eywéq for 1 <4 < N.

Denote 0 = (0,...,0) € N) and recall By = {N —m,..., N}, By = {1,2,...,m —1}. In [9,
Section 4.1] a Yang-Baxter directed graph method is used to inductively construct the M, g
(this technique is due to Lascoux [12]). Label the nodes (a, E); for )y the root is (0,Ep) with
Mo, gy = 7B, = D¢E,; and for ) the root is (0, Ey) with Mo g, = 7p, = M¢g,. The equations
have been set up so that My g = 7. The arrows in the graph point from (o, F) to (®«, E), and
from (o, E) to (sio, E) (o < ajq1) or to (o, s;E) when j = ro(E) and co,p = 1 in the cases
described above.

Here is a brief discussion of the effect of T'; on %R, 7 for the ¢, p = 1 cases. For a € Név let

inv () := #{(i,4): i < j, @i < aj}

then roa = o and ro = si, ---8;,, where £ = inv(a). Recall R, = TJITJI and the
value of R, is independent of the expressions for r, of length ¢. Suppose «o; < ;41 then
inv(a) = inv(s;a) + 1; write s;a = r;éour and 7,6 = si; -8, with ¢ = inv(s;a). Thus

r;l = 5;8, -+ 8;, and Ry = Ti_lRSia and so T;x*RoTp = 2% Rs,oTe +p(x; 0), where p is a sum

of 27p'(0) with s;a > B.

Proposition 3.7. Suppose o; = a1 with j = ro(i) then T;x*Romp = x*T;Romp and
ER(X = Ra,rj-
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Proof. Let ro = s;, -+ -5, with £ = inv(a). Let 5 = a except fi11 = ai—i-% then inv(f) = ¢+ 1.
From roo = a™ it follows that r,s;8 = 7. By definition of j we obtain B;-r =a;+ %, ;—H =y
and ryls; 81T = B. Now rys;8 = 87 and sjro8 = 1 and rusi, sjre have (at least) £ + 1 factors
si, and inv(8) = ¢+ 1. This implies ros; = sjrq and 13, Ty, - - - T3, T; = T;T3, Ty, - - - T, that is,
RT, = TyR, . [

Thus in the case a; = 41 the transformation laws (Theorem 2.22 and Corollary 2.24) apply

to (Tj + %)TE with z = t¢UHLE)=¢G.E) (with the possible results —7g, t75, Ts;Er- -+ )
Hence only the affine step changes the power of ¢ in the coefficient of x“. It remains to

consider zNwx*R,TE.
Proposition 3.8. Suppose a € N}/ and ro(1) = j then TR, = tN7I Rpqw.

Proof. Let £ = #{(i,j): 1 <i < j < N, o < oj}. Then there is a product v = s;, 54, - - - 5y,
such that ua = (al,af, . ,ozjll,a;-:l, .. ,a}), and each i, > 1. By definition ¢ > j implies
_l’_

of < a; < ag+1, and ¢ < j implies aj > a1 + 1. Then s;_15;j_2---sjua = at and
Rt = (Tj,l e Tl)U, where U =T;, ---T;,. Let v/ = s;,_1 -+ sj,—1 then
u'(Par) = (af, .. ,a;r_l,ajH, ... ,a}, a1 + 1)
and s;8j41 - sy_1u/ (®Pa) = (Pa)t. Thus R(;; = (Tj---TN_l)U’ and U = T;,_1---T;,—1.
By (3.1) TMU = U'T™) and
Rq_)clyT(N) = (T;-- -TN_l)U’T(N) = (Tj-- -TN_l)T(N)U
— (Tj~--TN_1TN_1-~-Tj)Tj_1---T1U=tN_jij;1- [
As a consequence £ ywz® Ryt = 1tV ItcGE) 2o Ry rp with j = ro(1). Denote (ag + 1,
ag+1,--- ,ay+1) by a+ 1.

Corollary 3.9. (:L'N'w)NMa,E = Myt1,5 = q‘a|t”(a:1x2~~-1:N)Ma’E, where v = 5 +
N .
> iz ci, E).

Proof. Suppose the coefficient of 2R, (75(0)) in M, g is ¢°® then
l'N'UJMa,E — MCIDQ,E — qa+a1tN_Ta(1)+C(r°‘(1)’E)l‘(baRq>a(TE) 4o

Then (zyw)2M, g involves 7p4(1) = r4(2). Repeating this process yields a factor of ¢/* and the
t-exponent Zi]\il(N —1ro(i) + c(ra(i), E)) = w + Zfil c(i, E). Furthermore ®Va = a + 1
and Ry4+1 = R, [ |

If E € Yy, )1 then Zfil c(i, E) = w — Nm, w — N(m — 1) respectively (so
v=N(NN—-—m—1)or N(N —m)).

Proposition 3.10. The exponent on q in (3.2) is b(a) = SN | (%). The exponent on't in (3.2)
is S Mi(N =i+ (i, B)).

Proof. For the value of b(a)) we use induction on |a|. The statement b(0) = 0 is true since
Mo g = 7. The steps at a; < a;41 taking 2 to %% do not involve ¢ (which does affect the
other terms of the polynomial), and indeed b(«) is invariant under s;. The affine step takes z®
to 2% and multiplies by ¢°!, that is, b(®a) = b(a) + a1, and (3) + 1 = (0“;1). Induct
on /(\) for the t-exponent. Note that only the affine step affects the exponent so it depends only

on A = at. Suppose \; > 1 and \; = 0 for i > k. The affine step from \*) with )\Z(-k) = \; except
AP = X\ —1 proceeds by A®) — (Ap—1, A1, .., Ap-1,0,...,0) = (AL, o, A1, 0, -, 0, A) — A

and multiplies by tNV=*+¢(k:E) - Thus passing from (A1, ..., A\y_1,0,...,0) to X contributes a factor
of k(N —k+c(k,E)) [}
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Example 3.11. Explicit formulas for M, g tend to be complicated; here is a fairly simple one.
Let N =5 m=2, F={3,4,5} and a = (0,0, 1,0,0):

Ma,E = t6$3(t39294 - t29294 + 9394)
t—1)t°
L =Dt

qt3 1 {$4 (t39293 — 10505 + 9395) — 5 (t29293 — 10204 + (93(94)}

The spectral vector is [t,t_Q, qt?, 1, 1] and TyMy g = —Mq E.

There is a pairwise commuting set of (bosonic) degree lowering operations, namely the Dunkl
operators defined by Baker and Forrester [1].

Definition 3.12. Suppose f € sP,, then Dyf := %(f —¢&nf) and if i« < N then D;f =
17D T f.

Assuming the existence of the nonsymmetric Macdonald polynomials M, g the argument for
showing that D, f is a polynomial is the following:

Proposition 3.13. Suppose o € Nf)v and E € YoU1; if oy =0 then DMy g =0 orifay > 1
then DNMo g = (1 — (o5 (IN))wMp g, where o = ®F. Also DyMaa,p = (1 — qCa(1))wMy E.

Proof. If any = 0 then ro(N) = N,¢(N,E) =0 and {nMo g = Mo g and (1 — En) My g = 0.
If any > 1 then a = ®f with || = |a| =1 and (1 — &nv)Map = (1 — Ca5(N)) My g = (1 —
Ca,B(N))znwMp g, and thus DMy g = (1 — (0,5 (N))wMgs g. For the other statement note
that (ga,z(N) = qla,r(1). u

Remark 3.14. We conjecture that there are evaluation formulas for the special case £ =
{1,2,...,m,N}, a; =0fori > mand zo = (tN_l,tN_Q, R 1). Here are some small examples
in isotype (2,1,1)

5(,_ +4
P01 o),

q
t(q — %) (¢* — ')

)
J(1,2,0,0),E(x0) ( — t2) (QQ tS) 912
?)

( ~ ) (a1 (¢* ~ 1)

J(2,1,0,0),2(0) = - 2) (¢ P) 912(0),
)

J1,1,0,0),(70) =

g12(0) = 6162 — (t61 — 62)(03 + 04).

#
2(1 + 1)

Replace g12(6) by (010203 + 0160204) for the P31 version (by applying M).

3.3 Symmetric bilinear form

In this section we define an inner product (symmetric bilinear form) on sP,, in which T, &
are self-adjoint, the Macdonald polynomials are pairwise orthogonal and it is positive-definite
for t,q > 0, ¢ # 1 and min (ql/N,qfl/N) < t < max (ql/N,qfl/N). The background and
proofs for this section are in [8]. The hypotheses (T';f,g) = (f,Tig) for 1 < i < N and
(nf,9) = (f,&ng) already imply that (& f, g) = (f, &g) for all i since & = ¢~ T;&;1T; and thus
(Mo,p, Mg r) = 0if (o, E) # (B, F) (at least one different {¢;}-eigenvalue). Denote (f, f) =
| £]I?, even if possibly nonpositive. The aim is to determine a formula for || M, g||? which, other
than leading coefficients ¢*t*, involves only linear factors of the form (1 — ¢?t*) with a € Ny,

beZ, |b| < N. Recall u(z) := 2052 from Definition 2.25.
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Proposition 3.15. Suppose there is a symmetric bilinear form on sP in which each T; and &;
is self-adjoint and suppose E € Yo UV, o € Név and a; < a;y1 for some i then

HMs-a E||2 _ u(qai-u—aitc(ra(i+1),E)—c(ra(i),E)) ||Ma E||2
Proof. This is the same argument used in Lemma 2.17. |

We introduce a product for expressing || Ma,g|? in terms of || M+ g|?.
Definition 3.16. For £E € Yy U1, o € Név let
R(OZ, E) = H u(qaj_aitc(rﬂ(j)vE)_c(Ta(i)vE)) .
1<i<j<N, ai<ay

There are inv(«) terms in the product. The next proposition assumes the same hypotheses
on the bilinear form.

Proposition 3.17. Suppose E € Yo U Y1, a € NJ then
1Mo+ 2l* = R(a, E)||Ma,p]*.
Proof. With the same argument as in Proposition 2.26 one shows «; < ay41 implies

Rl E) i —as je(ra(i41),E)—c(ra (i).E)
R(sia, E) u(g t ): "

Another hypothesis is required to define the inner product for all polynomials starting with
bosonic degree 0 (Mo g = 7). The approach of making D; the adjoint of multiplication by z;,
or making an isometry out of the latter (torus norm) as is done in the Jack polynomial situation,
does not work here without a modification.

Theorem 3.18 ([8, Section 3.3]). There is a unique symmetric bilinear form on sPy, which
extends the form in Definition 2.6 and satisfies (for f,g € sPy and 1 <1i < N)

Enfog)=(f.&na), (3.5)
(w™'Dnf,g) = (1 — ¢){f, zywg). 3

It follows from & = t~1T;&.1T; that (&f,9) = (f,&g) for all i. The reason for the fac-
tor (1—gq) is to allow the limit as t — 1 when ¢ = t'/* to obtain nonsymmetric Jack polynomials.
In [8] hypothesis (3.6) is stated in the equivalent form

(Dnf,g9) = (1 —q) ([, xnww”g),

where
w* =TTy TyqwTy ' Ty Ty,
(wf,g) = (f,w’g),

and this expression follows from w = tN 1T | - T5 T 1¢;. Next we use hypothesis (3.6) to
relate norms for polynomials of different bosonic degrees.

Proposition 3.19. Suppose E € Yy U1, a € Név then

1— qoq-i-ltc(ra(l),E)
1 _

1Mo, gl|* = 1Mo e
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Proof. In (3.6) set g = M, g and f = Mga g then (1—¢)(f, zywg) = (1—q)||[Maa gl/?. On the
other hand

1 1
Dyf = (1 —éN)f = . —(1 = (pa,e(N))Msa,e = (1 = Cpa,e(N))wM, £,
<w lDva > = (1 - C‘Pa,E(N))<Ma,E7 Ma,E>a
thus [ Moo, 5112 = =22 A 12 and Gaa p(N) = gGa,p(1) = gD D) .

With this formula and Proposition 3.17 we can use induction to find ||M, g||* for any «
The first step uses o« = 0 and any E € Yy U Vi, where Mo = 7 and the spectral vector
(oY) = [tCP]L,. Then da = (0,...,0,1) and Maap = enTM7e, Mool

1— qtc(l E)
1—

The argument for establishing the formula for ||M,\,E||2, where \ € Név T uses the following
steps, starting with the assumption that Ay > 1 and A; = 0 for £ < j < N. Throughout E is
fixed. Let

|I7E||? (see Propositions 2.26 and 2.33 for this value).

= (A1 Ae—1, A — 1,0..,0) = o™
04:(Ak—1,)\1,...,)\k,1,0,...,0),
B:(Al,...,)\k_l,o,...,o,)\k):‘1304

Ak ge(k, E)

s that [ Ma,pl* = R(a, B) M| Mysl?, [|M,pll* = =52 =—|Map|? (since ra(1) = k) and
|Mygll*> = R(B,E)||Msg|/*>. In the resulting formula we use a slightly different expression

for u(z) = (t_(z)_(})_;z) = t(l_fz/i)gg_tz) because u(z)/t is invariant under ¢ — 1, z — 1, but this

causes a power of t to appear in the form k() := Zi:l(N —2i+ 1))\ for A € Név+. The shifted
g-factorial (z;9)o = 1, (2;@)n+1 = (2;¢)n(1 — 2¢™), n =0,1,2,... is used.

Theorem 3.20 ([8]). Suppose \ € N]OV’+, a,B € NY and E,F € Yy Uy then the following
satisfy the hypotheses (3.4), (3.5), and (3.6):

(Mo,5, Mg ) =0,  (a,E)# (B, F),
[ Ma,g]* = R(c, E) [ Mo+ gl

My g2 = £ 3 'A‘H (qt°CPs ),
D) ,E . i, E)—c(j,E)+1.
. H (qtC )c(y )— ’q))\i_Aj(th(z )—c(j,B)+1, q)Ai_Aj
- . 2 .
1§’L<]§N (qtc(sz)fc(]»E)’ q) )\,L—AJ

As Griffeth [11] pointed out there is not much cancellation between successive terms in gene-
ral; there is a certain amount for the extreme cases Ey = {N — m,N —m + 1,...,N} and
By ={1,2,...,m — 1}. By [8, Proposition 11] ||[M, g||*> > 0 if ¢ > 0 and min (q_l/N,ql/N) <
t < max (qil/N,ql/N).

4 Symmetric Macdonald superpolynomials

4.1 From nonsymmetric to symmetric

This concerns polynomials p in sP,, which satisfy T;p = tp for 1 < ¢ < N and which are
eigenfunctions of Zf\il &. We call polynomials satisfying T;p = tp for all ¢, or T;p = —p
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for all i, symmetric or antisymmetric, respectively. (The meaning of symmetric here is not
the same as for the symmetric group situation, as will be shown by example.) There are two
approaches to producing symmetric polynomials. One way is to identify a set of M, g which
is closed under the steps f — (T'; + b)f of the type described in Proposition 3.6 and then to
apply the symmetry conditions to a linear combination of these polynomials with undetermined
coefficients. The other way is to apply a symmetrization operator to one polynomial. The ori-
ginal idea for these approaches comes from Baker and Forrester [2].

Definition 4.1. For o € Név and E € Yy U let |a, E| denote the tableau obtained from Yg
by replacing i by «;f for 1 <i < N. Let M(a, E) = span{Mps r: |8, F| = |o, E|}.

Example: let N =9, m = 4, E = {2,3,6,8,9), a = (3,5,6,2,2,1,4,4,6), at = (6,6,5,4,4,
3,2,2,1) and

9 7 5 4 1

12 4 4 6
YE_{- 8 6 3 2 }

LWEJ:{ 2 35 6

Theorem 4.2 ([9, Proposition 5.2]). Suppose a € N) and E € Yo U Yy, then there is a series
of transformations of the form a(T; +b) mapping My g to Mg if and only if |5, F] = |, E].

It is a consequence of the transformation rules that if |8, F| = |«, F] then the spectral
vector (g r is a permutation of (, g. Furthermore M(a, E) is an H y(t)-module.

Theorem 4.3 (]9, Theorem 5.27]). Suppose o € NY and E € YyUY and |, E| is column-strict
(the entries in column 1 are strictly decreasing) then there is a unique symmetric polynomial
(up to multiplication by a constant) in M(a, E) otherwise there is no nonzero symmetric poly-
nomaal.

In [6] the authors defined a superpartition with N parts and fermionic degree m as an N-tuple
(Al, cos Ny A1, - .,AN) which satisfies Ay > Ao > -+ > A, and A1 > Ao > -+ > Ap.
Suppose A € Név’+, E € )p and |\, E] is column strict, then A; = [\, E|[m+2 —1,1] for 1 <4
<mand A; = |\, E|[1, N+1—i] form+1<i <N, and also A,,, > Ay. Alternatively suppose
A e N, E e and |\ E| is column strict, then A; = |\, E|[m+1—1i,1] for 1 <i <m
and A; = [\, E|[1,N+2—i] for m+1<i <N, and also A, < Ay (because A,,, = |\, E|[1,1]
and Ay = |\, E][1,2]). Thus the inequalities A,, > Ax and A, < Ay distinguish )} from Y.

As a standardization for the labels use A = a* and for E use the root Er or the sink Fg

Definition 4.4. Suppose E € Yy, A € N(])V’+ then the root Er and the sink Eg (which implicitly
depend on \) satisfy

inv(Eg) = min { inv(F): |, F| = [\, E|},

inv(Eg) = max { inv(F): |a,F| = [\, E]}.

The root and the sink are produced by minimizing the entries of F' in row 1, respectively
minimizing the entries of F' in column 1. For F € ) the definitions of Fr and Eg are reversed.

So in the above example Fr = F and Fg = {1,3,6,7,9} and there are four sets F' such that
A F| = [A Es].

Consider p = ZLB,FJ=L/\,ERJ A(B,F)Mpg p then the action of T'; decomposes the sum into
pairs and singletons. Suppose |5, F]| = L)\,ERJ for some S with 8; < (i+1, some i. Let

z=(3p(i+ 1)/ r(i) then

t—1 t—1
<TZ + Z—l) Mﬂ,F = M&;B,F’ TlMB,F = _;Mﬁ,F + MStiF’

-1 t—1
<Ti + — 1>Ms¢ﬁ,F = u(z)M@F, Tz‘Msiﬁ,F = u(z)MB’F _ 2_17

Z_l — 1Msiﬁ,F7
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and
(T; — t)(A(B, F)Mg p + A(si3, F)Mg,3,r) =0
implies A(3, F) = =2 A(s;8, F).

1—2
Definition 4.5. Let ugp(z) := %, ui(z) = % and for B € N), F€ Yo U1, k=1,2 let
Rk(ﬁ,F) = H U (quj7Bitc(rﬂ(j)7F)7c(rﬂ(i)vF)).

1<i<j<N, B;<B;
Thus R(B, F) = Ro(B, F)R1(B, F) (see Definition 3.16).
Lemma 4.6. If T;p =tp for 1 <i < N then
A(B, F) = Ro(B, F)A(BT, F).
Proof. Suppose §; > ;41 then

W:uo( ¢a.r (i) >

Ro(B, F) Cor(i+1)
The same argument as in Proposition 2.26 applies. |
Definition 4.7. For k = 0,1 let Cy(E) := I1 uy, () —eli3. B))
1<i<j<N,

c(i,E)
Thus C|c(i, E)|Y,) = Co(E)C1(E) (see (2.4)).
A(B7F) _ A(BaES)
Co(F) Co (Es)
Proof. Consider the possibilities when 5; = f;11 and j = rg(¢): if ¢(j,F) = ¢(j + 1, F) + 1,
that is, j and j + 1 are in adjacent cells of row 1 of Yz then T;Mg rp = tMg F, imposing no
conditions on A(fS, F'); if ¢(j,F) = ¢(j + 1,F) — 1 then T;Mg p = —Mgar but this occurs
only if there are adjacent equal values (5;) in column 1 of |\, Eg|, ruled out by hypothesis;
c(j, F) <0 < ¢e(j+ 1, F). In this case we relate Mg r to Mg, r, where inv(s;F') = inv(F) — 1:

<0<c(j,F)

Lemma 4.8.

the formulas similar to (3.2) with 2z = C[fi’fﬁ)l) = t¢GF)=cG+LE) appear here:
t—1
TiMps,r = _jMB,st + Mg F,
t—1
TiMp,p = u(2)Mp,s;r — 7 —7Mps,F,
then (T'; — t) (A(B, F)Mg r + A(p, SjF)Mﬁ,st) = 0 implies A(B, st) = {:’;A(ﬁ, F). |

Ro(B, F)Co(Es)
Co(F)

Theorem 4.9. Suppose \ € Név’+, E € )y, and |\, E| is column-strict then

CO (ES) RO (av F)
Z Co(F)

So A(B,F) = Ro(B, F)A(BT, F) = A(X, Es)

PNE = Ma,F
la,Fl=|\E]
is the supersymmetric polynomial in M(X, E), unique when the coefficient of My g is 1.
To show that this meaning of symmetric is different from the group case consider N = 4,
E ={1,2}, m =3, A = (2,1,0,0) and the corresponding symmetric polynomial (too large to
display here) begins:

p= x%x29192(03 +04) — $%$391(t9293 + (t — 1)0204 — 0504) — ta:%x401 (02 4 03)04 + -+ - .
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4.2 Symmetrization operator and norms

The symmetrization operator is defined analogously to the group case.
Definition 4.10. For n > 11let Xg=1and X,, =1 + TpX,,_1, and S™ = X1 Xy - - X,.
Equivalently X,, =1+T,+T, Ty 1+ ---+T,---ToT.

Theorem 4.11. If 1 < j < n then (Tj — t)S(”) =0.

Proof. Consider the same formulas with T'; replaced by s; and denote )Z'n =14+ s, Xp—1.
In the full expansion there are (n + 1)! terms and the coefficient of tk in [n + 1];! is the number
of terms with k factors. Claim that S = X;X5---X,, = Zu63n+1 u € ZSp+1; proceeding

by induction the statement is true for n = 1, where X; = 1+ s; and now suppose it is true
for n and consider ZHE&LH (14 Spp1+ Spp1Sn+- -+ 8N41---51) acting on v = (Y1, -+ ., Yns2);
then spp1--5;7 = (V1-- Vel Yitly - - - Ynt2,%). Thus Zuesnﬂ USp4+1---Sj is the sum of
all u(? such that (u(i)’y)nJr2 — ~;. This shows S = 3
with k factors in S(™ is the same as the number of u of length k£ each term is of minimum
length (the shortest expression of u as a product of {s;}). Thus replacing each s; by T'; shows
that S =" T(u).

Replacing T'; by Tp41—; for 1 <¢ <nin S (") does not affect the sum (implicitly the braid
relations are used). Given j < n apply the map T; — T'j11—; in X1 X5 --- X, to obtain

UESmpa Ur Since the number of terms

u63n+1

S = (1+T) A+ Tjm1 +TjaTy) - (L +T1+ - +T1 - Tj) X1 Xan
and it is now obvious that (Tj — t) S = . |
Corollary 4.12. Suppose f € sPy, then T;j(SW=Vf) =tSV=Uf for1 <j < N.
Corollary 4.13. S §®) — [n + l}t!S(”).
Proof. The effect of X; on an invariant polynomial is to multiply by 1 +¢+#2+---+t/. W
Corollary 4.14. Suppose f,g € sPy, then (SN=V f g) = (f,SWV-Vg).

Proof. Suppose u € Sy and u = s;, - - s, is a shortest expression for u so that T'(u) =T, - - -

X Tig then <T(U)f, g> = <f’ Tie o T’L1g> = <f,T(U_1)g> Since ZUESNT(U) = ZuGSNT(u_l)
this completes the proof. |

There is a summation-free formula for ||p) g%, derived as follows:
Suppose |a, F| = |\ E] then SN-VM, p = cpy g for some constant ¢, because of the
uniqueness of py g in M(A, E). Then

(pam, SNV My 7Y = clprmoag) = (SN Vpy g, My r)

'Co (Es)Ro(Oé, F)

= [N]i{px,E, Ma,F) = [N]¢! Co(F) | Mo r|?. (4.1)

The evaluation depends on determining ¢, which can be done by using My~ g, where A~ is the
nondecreasing rearrangement of \. For each i < Ay let m; = #{j: |\, Es|[1,j] = i} (the mul-
tiplicity of 4 in row 1 of L)\, ESJ) We will show that the coefficient of M) g in S(N_l)MAﬂER
is [m;]¢!. (This was shown in [9, Theorem 5.39]; we are outlining a proof here with simplifications
due to the simple hook shape (N —m, 1™), also to accommodate the different notation.) Here
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is an illustration of the following theorem and the method of proof. Suppose A = (3,2,2,2,1,0)
and

6 5 3 2 0122 6 5 4 3
YER:[- 41 ] D’ESJ:[- 2 3 ] YES:[. 2 1 }

We demonstrate the effect on the significant terms by using the spectral vectors:

(A7, ER) ~ (1,qt,q2t3,q2t2,q2t_1,q3t_2),
X5Z (qt q2t3, q2t2, th—l7 q3t_2, 1)7

Xa: (P8, ¢t ¢t %, qt, 1),

X3: (141) x ( 7 % P gt 1),
Xo: (L+1t) x (Pt ¢t 2,6, %, qt, 1),
Xi: (L+1) x (P2, ¢t 1 %, 2, qt, 1),

and this is the spectral vector of ()\, ES).

Theorem 4.15. For each Mg € M(A,ES) with (B, F) # ()\, ES) there is a constant cg
such that

A1

SWUM - g, = [[ImaiMags + Y. {carMprp: (B, F) # (X, Es)}.

i=1 \.ﬂ?FJ:L)“ESJ

Proof. The proof relies on identifying the intermediate steps in transforming {L')‘_R/\_(TER )
to :c’\TES. Roughly the action of X_;; transforms M, ;) g t0 My(iq1),r by means of T'y_1—;
--T1, where a(0) = A~ and for i > 1

(i) = (AN—is AN—25 -, AL, AN—i41, - - - AN)

however the situation is not this simple because repeated values of A; have to taken into account.
Note that X; does not affect the variables xj for £ > j + 1. It (almost) suffices to consider the
coefficient of z*1) in X N-1Mx_ g,. (Throughout we use ¥ to denote a linear combination
of terms Mg  which can not be transformed into M) g, by the operators X --- X;.) Suppose
that Ay < An-_1 (that is, \| < Ay) then Tny_1_; - T1 My~ g, = Mya),, +2, and the process
is repeated with M, 1) g, The other possibility is that Ay > Ay_g4+1 = --- = Ay for some
k > 2. This implies 7y~ (i) = N —k+ ¢ for 1 <i <k and c(ry-(i), Er) = k — i, because the
entries N — k 4+ 1,..., N are adjacent in row 1 of Y, (by hypothesis [\, E|[2,1] > Ay and
so Ay = Ay—1 implies [\, E][1,2] = N —1). Thus T; M- g, = tM- g, for 1 <i <k —1 and

Ty o1 Th(1+Tpy +Tp 1T+ +Th1---T1)My- g,
= (1+t+t2+"‘+tk71)TN—1"'TkM>ﬁ,ER— {M ER+E}
Then (1) = ()\N_l,...,)\N,kH,AN,k,...,)\l,/\N) and the previous argument applies with
k — 1 replacing k. The result of applying Xy -+ Xn_1 is [k]{Muyu),pr + 2. Now a(k) =
()\N_k, AN—k+1,° ) and the Ay < Ay_1 type process applies.

The last case to consider is Ay_;j—1—k > AN—i—k = - = AN—i > AN—it1, Where Yg,[(,1] =
N —i and the entries N —i —1,N —7—2,..., N —i — k are adjacent in row 1 of Yg,. Then

(i) = (AN—is - AN—i—ks AN—i—k—1)
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and similarly to the previous case T ;M) pr = tMyy,pr for 1 < i < k — 1. The set E' is
an intermediate step in a series of transpositions transforming Er to Eg, at this stage using
only s; with ¢ > N — ¢. Similarly

Tnoi1 Tr(I+Th1+Tp1Tr2+ - +Th1-T1) My, e
=(L+t+2+ A+t NIy TiMogy = Ke{ Magi1),5 + 5}

Here T transforms M) g to My) gr, where E” = sy 1 E' (since ¢(N —i,E') < 0 <
¢(N —i—1,F') and inv(E") = inv(E’) + 1. Eventually these steps transform Eg to Eg and A~

to A. Each set of m; (contiguous) A; values A\; = i in row 1 of |, Es| contributes a factor
of [m;];!. By beginning with Er the factors appearing in (T'; + b)Mp r are always 1 (see (3.3)
and (3.2)). [

Lemma 4.16. Suppose

F(a,E) = H g(aj_aiuc(roz(j))E)_C(Ta(ivE)))
Ee

for some function g then

= I] 9(» c(i, B) — c(j, E)).
Ai>Aj
Proof. It is clear that A\; > \; if and only if )‘Xf—s—l—i > )‘&—H—j' fhgo1 > Aag =" = Aapi—1 >

Aotk then [ry-(b+i)¥ =[a,a+1,...;a+k—1]and A\, , = A forb=N+1—-a—k,1<i<k.
The corresponding contents [c(ry- (b + 1)), E]¥_; are the same as [c(a +i — 1), E]¥_;. So each
term in F\- p matches one in the stated A-product. |

Theorem 4.17. Suppose |\, Es| is column-strict and m; = #{j A Es][l,7] = z} for 0 < i
< A1 then
N .
Ipamsll? = XD o 4 1],(1 = )M T (at<079);.9)
i=1
(qtc(l Eg)—c(i,Es)— q)A— (th(Z Es)—c(j,Eg)+ q))\ A

Ai

< J1 :
1<i<j<N (1 — q)‘i_)‘]' tC(%ES)_C(JvES)) (th(ZaES) C(]yES); q)

" [N]¢!
T Co(Es)C ().

i>0
Proof. By (4.1) and Theorem 4.15 ¢ = [[;5q[mil¢!,

s e |2 =~ Co(Es)Ro()\_,ER)H T
PN\ Eg H[ml]t' CO(ER) A ,ERr
>0
[N]i! Co(Es)Ro(X"., Er)

= 2
a [T [m]e! CO(ER)E()\—,ER) HMA,ERH
i>0

Ai—XAj—1

and

N
HMA,ERHQ = 1"V, |[IP(1 = g) 7 H (qte-FR); q),,
=1

(qtc(lvER)fc(JzER)fl, q) (qtc(szR)fc(JrER)+1’ q)

Xi—)j

< ]I . .
1<i<j<N (qte-Pr)=eli-Br); Q)QFM

A=)




24 C.F. Dunkl

Also ||7gg|? = 2=V m + 1),C([c(s, Br)|Y,) = *W=""Vm + 1],Co(Er)C1(ER). Since
E(A_,ER) = Ryo ()\_,ER)T\’,l ()\_,ER) the terms RO(A_,ER) and CO(ER) cancel out. By the
lemma

. . 1—

- - 11 NN el Pr) eGPy — - T q

Ri(A7 Bs) = w g )= 1 — P2itelEr) <G Er)
1<i<j<N 1<i<j<N

Ai=Aj¢e(i,Er)—c(§,Er)+1

and dividing by this product changes two of the (x; Q)Aﬁ/\j terms to (x; q)/\ii)\jfl. |

Note that Eg can be replaced by Eg in the first two lines of the formula for ||py g4 ||*. By using
the M map the formulas produce supersymmetric polynomials in Py, 1: consider the polynomials
M (px Es), where py gg € Pm—1,0. This is why we do not go into detail about the £ € & case.
The norm formula implies the identity

Z C1(F)Ro(a, F) [N]¢! C1(ER)

Co(F)Ri(a, F) — Tl[mils! Co(Es)R1 (A", ER)

| F]=[A\E] 50

This formula was checked by computer algebra for a “small” example, N =5, m = 2, A\ =
(2,2,1,1,0) with

0 1 2
nes = |0 1Al Er=t2a8) Es= (130

there are 120 labels (3, F') with |8, F| = L)\,ESJ, that is dim./\/l()\,Eg) = 120.

4.3 Special values

In the scalar Macdonald polynomial situation there are formulas for special values. There is one
such fairly simple formula here. Let F' = {1,2,...,m, N}. (In the YVi-case use Fj.) Refer to
Proposition 2.34 for useful facts about 77 and ||7x||%.

Proposition 4.18. Suppose p € sPy, is symmetric and

z = (21,22, e 2, T2t 1)
then
m
p(z;0) = H (2 — tzy) H (zk — thm)po(zl, ey Zm) TR,
1<i<j<m k=1

where py s Sy -symmetric.

Proof. First we show that if T;p(x;0) = tp(x;0) then ﬂp(x(i);é?) = tp(x(i);é?), where xl(-i) =
ta:gl. By hypothesis
p(z;0) — p(xs;0)

(L+T)p(z;0) = (1 +t)p(x;0) = p(x;0) + (1 — t)wia i — T

+ Tip(xsi; 0).
Substitute x; = tx;11 in the equations:
(1 +t)p(x;0) = p(z;0) — (p(x;0) — p(xs;0)) + Tip(wsi; 0) = (1 + Ti)p(xsi; 0)

and this shows (¢ — T})p(z;0) = 0 at = z(?). By hypothesis on z this shows Tjp(z;0) = tp(z; 6)
for m +1 <4 < N and this implies w;p(2;0) = tN"p(2;0) for m +1 < i < N. There is only
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one 7 which has these {w;}-eigenvalues, namely 77. Thus p(z;0) = p(z1, ..., 2m)7F for some
polynomial p and T;p(2)7p = tp(z)7p for 1 < i < m. In this range T;7p = —7p thus p satisfies
the equation

p(z) — p(zsi)

TE — D(28:)TE,
Zi T Zi4+1

tp(2)tTE = (1 —t)zi41

~ Zi+1 — tZZ' ~
z8;) = ———p(2).
p(zsi) P tzmp( )
Thus z; — tz;+1 is a factor of p(z) because p(zs;) is polynomial. Furthermore p(2)/(z; — tziy1)
is s;-invariant. We claim by induction that (z; — tz;11) is a factor of p(z) for 1 <i <i+k <m:
this is valid for k = 1 so consider that (z; — tz;41) is a factor of p(z) and p(z)/(zitx — tZitk+1)
is s;qg-invariant thus (z; — tz;1x+1) is a factor (where i + k + 1 < m).

Suppose 2, = tN™ = tzly_,. . then T,,p(2')7p = tp(z')7 but this implies p(z’) = 0
or wy,Tp = " "M7p which is impossible. Thus (2, — tV~™) is a factor of p(z). The symmetry
properties imply (z’ - tN_m) is a factor of p(z) for 1 <i < m. |

Gonzélez and Lapointe [10] proved an evaluation formula for the version of supersymmetric
Macdonald polynomials constructed in [3], with

2= (N Tgmm N2t N g N 1),

q
An example appears to show there is no such general result in our version. However there may
be one for the special case where |\, Eg][1,j] =0 for 1 < j < N —m. At this point we offer no
conjecture, but some very small examples with N = 3, 4 and |\| < 4 suggest there is something
to be found.

4.4 Minimal symmetric polynomial

For given N, m, isotype (N —m, 1) there is a unique column-strict tableau with minimum sum
of entries, namely

000 -- 0
A\ E] = 102 ...

m )

thus A = (m,m —1,...,2,1,0,...,0) and Er = Eg = {1,2,...,m,N}. There is non-trivial
multiplicity mo = N — m. Thus py g is the symmetric polynomial in Py, ¢ of minimum bosonic

m(m+1)
2

degree There is a concise formula for ||py g2

Theorem 4.19. Suppose A = (m,m —1,...,1,0,...,0) € NéV’Jr and E={1,2,...,m,N} then
|\, E'] is column-strict and

m

t! nal _ s
Hp)\,EH2 = [N _[NT}L]t['][V]\]]t_ ml (qt N; q)mjl_‘[2 (qt 7 Q)jfla

with N = (N Cm— 1)(1 + (m+1)2(m+2)) + m(m+16)(m+2) .

Proof. The exponent on ¢ is

y=2(N-m—1)+k\) +mN —m—1)

:(m+2)(N—m—1)+§:(N—2i+1)(m+1—i).
i=1
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my—m m—ltl—m 1 tN—m—l )

The spectral vector is (y g = [q ,q R A ] Consider the con-
tent product (part of C) Il for the pairs (m + 1 — k,m + j) Wlth <k <mandj=
1,....N—m-—1:

N—-m—1 N—m—1 —k—i41 —k—1i _ —_k—N
A A A N 1—t 1—t tm

Hk - H u(tikij) = H 11—tk 1—¢tk-J =t 1—¢t—k—N+m+1 1 _ k-1 °
j=1 j=1

by telescoping the products (and ¢t — t=%77 = ¢(1 — t~*=371)) then

m(N-m-1)_1— R e gm(N=m—1) [N]:

m
1:[ N 1—¢—m—11_—¢—N+m [m + 1]t[N — m]t'

Consider the g-factors for the pairs (m+1—k,m+j) withl1 <k<mandj=1,...,N—-m—1
(use telescoping)

O T R st et PR
, = (qt_k—]; q)k (qt—k—J; q)k—l (qt—m1; q)m(qt—k—N—i—m—&-l; q)k—l
then
(@ ™:9),,

Py _lek_tm—lq)

m

Next consider (m + 1 — k,m + 1 — i) with k > ¢ > 1 together with (m + 1 — k, N):

1 (qt k4i— 1,q) (qt_k+i+1;q)k—i—1 - (qt—k—1;q)k

Py = = .
o g) (gt ), (at™5q), (at=*;q),,
Combine
N m (gt~ m —k. —k—1.
4 gt q) (qt™":q), (¢t™" 1 q)
gt q), P ] Po = o g g
E( I kl;[l (=™ 14q),, kl;[l (gt7%:9),
m—1
= (@ ™;9),, I (@ 09),
k=1
This concludes the proof. |
The formula has a hook length interpretation: J](; /ey, (qt*ho‘)k(i’j ) q) leg(i.j)} here leg(1 )

for 2 < j < N—m; hook(i, 1) = m+2—1, leg(i,1) = m+1—i,2 < i < m+1 and hook(1,1) =
leg(1,1) = m (see [9, Theorem 6.22]).
4.5 Antisymmetric superpolynomials

Consider p, = EL,B,FJ=L>\,ERJ A(B,F)Mg r, where |\, E| is row-strict and T;p, = —p, for
1 < i < N. Recall the action of T'; on the sum, which decomposes into pairs and singletons.
Suppose |3, F'| = |\, Eg| for some  with 8; < i1, some i. Let 2 = (g p(i + 1)/(g (i) then
by (3.3)

(Tz_‘_l)(A(B? )M,BF“‘A(Szﬁ, ) sif3, F) 0

—ZL A(s;8, F). Recall o(n) = (—1)" (Definition 2.9).

implies A(3, F) = —
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Lemma 4.20. If T;p, = —pg for 1 <i < N then
A(B, F) = o(inv(B))R1 (B, F)A(BT, F).
Proof. Suppose §; > §;+1 then

Ri(siB, F) " Ca,r (1)
Ri(B,F) 1<<B,F(z'+1>>' -

Consider the possibilities when ; = 841 and j = rg(i): (3) if ¢(4,F) = c(j + 1, F) — 1,
that is, 7 and j + 1 are in adjacent cells of column 1 of Yz then T;Mg r = —Mpg r, imposing
no conditions on A(B, F); (ii) if ¢(j, F) = ¢(j + 1,F) + 1 then T;Mgp = tMgp but this
occurs only if there are adjacent equal values (53;) in row 1 of |\, Er], ruled out by hypothesis;
(4ii) c(j, F') < 0 < ¢(j+1, F). In this case we relate Mp r to Mg . p, where inv(s; F') = inv(F)—1:
the formulas similar to (3.2) with z = (5 #(i)/Cs r(i + 1) = t°UF)=¢U+LE) appear here: then

(T + 1) (A(B, F)Mps.p + A(B, 8;F)Mp 4, r) =0

implies A(B, st) = - lf_tZZA(Ba F).

A(B, F)
C1(F)

A(B, Es)

Lemma 4.21. o(inv(F)) e (Bs)

= o(inv(Es))
Thus
A(ﬁv F) = O'(IHV(,B))Rl(ﬂ,F)A(ﬁ+,F)

= G(inv(ﬁ) —+ IHV(F) + inv (ES'))A()\,Es) Rl(ﬁ,F)Cl (Es)

Ci(F)

Theorem 4.22. Suppose \ € Név’+, E € )y, and |\, E| is row-strict then

Cl (Es)Rl (Oé, F)
Cl (F) a,F

PAE = Z o(inv(B) + inv(F) + inv (Es))
Lo, FI€T (M E)

is the antisymmetric polynomial in M (X, E), unique when the coefficient of My gy is 1.
The antisymmetrizing operator is defined analogously to S.

Definition 4.23. Forn > 1let X¢ =1 and X2 =1- 1T,X,,_;, and A™ = X{ X X2

Equivalently X¢ =1 — 1T, + LT, Ty + -+ 5T, ... ToT.
Theorem 4.24. If 1 < j <n then (T; +1)A™ = 0.

Proof. The operators {—%Ti} satisfy the braid relations so the same approach as in Theo-
rem 4.11 works here, and the proof then follows from (T'; +1)(1 — $7T7;) = 0. |

Similarly to Corollary 4.13 one can show that

A(Nfl)A(Nfl) — t*N(N*l)/Z[N]t!A(Nfl)'

There is a result analogous to Proposition 4.18.

Lemma 4.25. Suppose for some i that T;p(x;0) = —p(z;0) then T;p (x(i);e) = —p (x(i);ﬂ),
(i) (1)

where x; L =tr;.
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Proof. By hypothesis

p(x;0) — p(asi; 0)
Ti — Tit+1

(t = Ti)p(x;0) = (t + 1)p(x;0) = tp(x;0) — (1 — t)zigy Tip(xs;; 0).

Substitute z; 11 = tx; in the equations:
(t+ 1)p(x;0) = tp(x;0) — t(p(z;0) — p(xsi; 0)) — Tip(wsi; 0) = (t — T;)p(wsi; 0)
and this shows (1 + T;)p(z;0) = 0 at = z(®. [

Suppose p§ p is antisymmetric and Ep = {N—-—m,N—m+1,...,N} and consider pi}E(z),
where z = (21,22, AN, T 2 1), then by the lemma T;p(z;60) = —p(z;0) for
N —m < i < N which w;p(z;0) = t""Vp(z;0) for N—m < i < N. The eigenvalues determine 7,
and thus p(z;0) = p(2)7g,(6). If range 1 <i < N —m — 2 then T;7p = t7F thus p satisfies the
equation

p(z) — p(zsi)

—p(2)TE, = (1 = t)2i11 TEy + 1D(25:)TE,,

2 — Zi41
. Zi —t2i41 -
28;) = ————p(2).
p(zs:) o tZip( )
This implies (zi11 — t2;) is a factor of p(z) and - ffi)tzi is s;-invariant. Furthermore (tz; — z;)

is a factor of p(z) for 1 <i < j < N —m—1. Also z2y_m_1 =t~ ™! implies p(z) = 0 (or else
WN-—m-1TE, = t ™ 175, contra) and so (tm“zN,m,l - 1) is a factor of p(z). Thus

N—m—1
p*(z;0) = H (tzi — zj) H (thzk — l)pg(zl, ey EN—m—1)TE,
1<i<j<N—m—1 k=1

and pg 18 Sy_m_1-symmetric. With methods similar to those of Theorem 4.19 and by use of
the antisymmetrizing operator A=Y one can derive a formula for [F2 =l

5 Conclusion

We constructed a representation of the Hecke algebra H(¢) on superpolynomials and applied
the theory of vector-valued nonsymmetric Macdonald polynomials to this situation. The basic
facts such as orthogonal bases for irreducible representations on fermionic variables, the partial
order on compositions used in expressions for the Macdonald polynomials, and a sketch of the
Yang—Baxter graph technique for constructing the polynomials starting from degree zero were
presented. The polynomials are mutually orthogonal with respect to a bilinear form in which
the generators of the Hecke algebra are self-adjoint. The ideas of Baker and Forrester were used
to construct symmetric polynomials and to determine their squared norms.

There are some topics which deserve further investigation. What can be proven about values
of the nonsymmetric Macdonald polynomials at special points such as (tN “LeN=2 e 1)
(see Remark 3.14)7 Are there special values of the symmetric and anti-symmetric polynomials?
A minimal factorization was proven in Proposition 4.18.

Characterizing singular values of the parameters ¢, t and the corresponding polynomials is
another important problem: this means that for a specific value of (g,t) there is a polynomial
annihilated by D; for 1 < i < N (see Definition 3.12). This problem is connected with the
existence of maps between different modules. Also there should be interesting factorizations.
Here are two examples with N = 5.
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Let a = (2,0,0,0,0), m = 2, E = {3,4,5} € Yo then D;M,p = 0 for 1 < i <5 when
¢?t> =1 or qt = —1 (that is ¢?t> = 1, gt # 1), and

Ma,E (.rl, 9, t.il?g, t2.%'2, t3x2) = tlo(t.%'l - xQ)(thl - .CI?Q)TE,
15 = t40504 — 30505 + 26,405,

when (g, t) takes on a singular value (note if ¢ = —1/¢ then gtx; — x2 = —(x1 + x2)).
Let a = (2,0,0,0,0), m =3, E = {1,2} € V) then D;M, g =0for 1 <i <5 when ¢t 5 =1
or ¢ = —t (that is ¢>t=2 =1 and ¢t~ # 1), and

Me g (21, 22, t g, t %y, t_31132) = (t_lim — 3) (qt_1$1 — 22)7TE,
TE = 0102(05 + 64 + 605),

when ¢? = t° (set ¢ = u®, t = u?) or ¢ = —t.
Obviously there are delicate interactions among «, F, ¢, t, x for such factorizations to hold.
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