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Abstract. There are representations of the type-A Hecke algebra on spaces of polynomials
in anti-commuting variables. Luque and the author [Sém. Lothar. Combin. 66 (2012),
Art. B66b, 68 pages, arXiv:1106.0875] constructed nonsymmetric Macdonald polynomials
taking values in arbitrary modules of the Hecke algebra. In this paper the two ideas are
combined to define and study nonsymmetric Macdonald polynomials taking values in the
aforementioned anti-commuting polynomials, in other words, superpolynomials. The mod-
ules, their orthogonal bases and their properties are first derived. In terms of the standard
Young tableau approach to representations these modules correspond to hook tableaux. The
details of the Dunkl–Luque theory and the particular application are presented. There is
an inner product on the polynomials for which the Macdonald polynomials are mutually or-
thogonal. The squared norms for this product are determined. By using techniques of Baker
and Forrester [Ann. Comb. 3 (1999), 159–170, arXiv:q-alg/9707001] symmetric Macdonald
polynomials are built up from the nonsymmetric theory. Here “symmetric” means in the
Hecke algebra sense, not in the classical group sense. There is a concise formula for the
squared norm of the minimal symmetric polynomial, and some formulas for anti-symmetric
polynomials. For both symmetric and anti-symmetric polynomials there is a factorization
when the polynomials are evaluated at special points.
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1 Introduction

Nonsymmetric Macdonald [13] polynomials are simultaneous eigenfunctions of a set of mutu-
ally commuting operators derived from an action of the type-A Hecke algebra on the space
of polynomials in N variables. They are significantly different from the symmetric Macdonald
polynomials in the technique of their respective definitions and yet Baker and Forrester [1]
established a strong relation between them. In the analogous theory of nonsymmetric Jack
polynomials Griffeth [11] constructed such polynomials which take values in modules of the
underlying groups, specifically the complex reflection groups in the infinite family G(`, p,N).
These polynomials constitute a standard module of the rational Cherednik algebra. Luque and
the author [9] extended the theory of nonsymmetric Macdonald polynomials in the direction
suggested by Griffeth’s work by studying polynomials taking values in modules of the Hecke
algebra. The development relies on exploiting standard Young tableaux and the Yang–Baxter
graph technique of Lascoux [12].

The superpolynomials considered here are generated by N anti-commuting and N commuting
variables. By defining representations of the Hecke algebra on anti-commuting variables the
theory of vector-valued nonsymmetric Macdonald polynomials is applied to define and ana-
lyze superpolynomials. There is a theory of symmetric Macdonald superpolynomials initiated
by Blondeau-Fournier, Desrosiers, Lapointe, and Mathieu [3] with further developments on norm

mailto:cfd5z@virginia.edu
https://uva.theopenscholar.com/charles-dunkl
https://doi.org/10.3842/SIGMA.2021.054


2 C.F. Dunkl

and special point values by González and Lapointe [10]. Their approach and definitions are
based on differential operators and linear combinations of the classical nonsymmetric Macdonald
polynomials, whose coefficients involve anti-commuting variables. The theory developed in the
present paper is different due to the method of using anti-commuting variables to form Hecke
algebra modules.

Nonsymmetric Macdonald polynomials associated with general root systems were intensively
studied by Cherednik [5]. By specializing to root systems of type A it becomes possible to
develop more detailed relations, formulas and structure. In particular, the papers of Noumi and
Mimachi [14], Baker and Forrester [1] provide important background for the present paper. Note
that some authors use different axioms for the quadratic relations of the Hecke algebra, such as(
T − t1/2

)(
T + t−1/2

)
= 0, rather than (T − t)(T + 1) = 0.

The theory of Hecke algebras of type A and their representations is briefly described in Sec-
tion 2 and then applied to modules of polynomials in anti-commuting variables. In general the
irreducible representations are constructed as spans of standard Young tableaux whose shape
corresponds to a fixed partition of N . In the present situation it is the hook tableaux which
arise. The basis vectors are constructed and the important transformation formulas are stated.
There is an inner product in which the generators of the Hecke algebra are self-adjoint which
leads to evaluation of the squared norms of the basis elements.

In Section 3 the theory of vector-valued nonsymmetric Macdonald polynomials developed
in [9] is applied to produce superpolynomials, considered as polynomials taking values in modules
of anti-commuting variables. The main results are stated without proofs but some important
details are carefully worked out. In [8] the author constructed an inner product in which the
nonsymmetric Macdonald polynomials are mutually orthogonal, in the general vector-valued
situation. This structure is worked out for the superpolynomials in Section 3.3 and the squared
norms are computed. In Section 4 the techniques of Baker and Forrester [1] are used to produce
supersymmetric Macdonald polynomials, and the squared norms. From results of [9] the labels
of these polynomials correspond to the superpartitions of Desrosiers, Lapointe, and Mathieu [6].
It has to be emphasized that in this paper the meaning of symmetric is with respect to the Hecke
algebra, not the symmetric group. Also the squared norm of the lowest degree supersymmetric
polynomial is determined – the formula is more elegant than the general formula; its calculation
is able to use telescoping arguments for simplifications. There is a derivation of formulas for
antisymmetric Macdonald polynomials in Section 4.5. In the conclusion some further topics
of investigation, such as evaluation at special points, are discussed.

2 The Hecke algebra of type A

2.1 Definitions and Jucys–Murphy elements

The Hecke algebraHN (t) of type AN−1 with parameter t is the associative algebra over an exten-
sion field of Q, generated by

{
T1, . . . , TN−1

}
subject to the braid relations

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i < N − 1, (2.1a)

TiTj = TjTi, |i− j| ≥ 2, (2.1b)

and the quadratic relations

(Ti − t)(Ti + 1) = 0, 1 ≤ i < N, (2.2)

where t is a generic parameter (this means tn 6= 1 for 2 ≤ n ≤ N). The quadratic relation
implies T−1

i = 1
t (Ti + 1 − t). There is a commutative set in HN (t) of Jucys–Murphy elements
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defined by ωN = 1, ωi = t−1Tiωi+1Ti for 1 ≤ i < N , that is,

ωi = ti−NTiTi+1 · · ·TN−1TN−1TN−2 · · ·Ti.

Simultaneous eigenvectors of {ωi} form bases of irreducible representations of the algebra. The
symmetric group SN is the group of permutations of {1, 2, . . . , N} and is generated by the
simple reflections (adjacent transpositions) {si : 1 ≤ i < N}, where si interchanges i, i + 1
and fixes the other points (the si satisfy the braid relations and s2

i = 1). There is a linear
isomorphism ZSN → HN (t) given by

∑
u∈SN auu →

∑
u∈SN auT (u), where T (u) = Ti1 · · ·Ti`

with u = si1 · · · si` being a shortest expression for u (in fact ` = #{(i, j) : i < j, u(i) > u(j)});
T (u) is well-defined because of the braid relations (see [7]).

2.2 Modules of anti-commuting variables

Consider polynomials in N anti-commuting (fermionic) variables θ1, θ2, . . . , θN . They satisfy
θ2
i = 0 and θiθj + θjθi = 0 for i 6= j. The basis for these polynomials consists of monomials

labeled by subsets of {1, 2, . . . , N}:

φE := θi1 · · · θim , E = {i1, i2, . . . , im}, 1 ≤ i1 < i2 < · · · < im ≤ N.

The polynomials have coefficients in an extension field of Q(q, t) with transcendental q, t,
or generic q, t satisfying q, t 6= 0, qa 6= 1, qatn 6= 1 for a ∈ Z and n 6= 2, 3, . . . , N .

Definition 2.1. P := span
{
φE : E ⊂ {1, . . . , N}

}
and Pm := span

{
φE : #E = m

}
for 0 ≤ m

≤ N . The fermionic degree of φE is #E.

Some utility formulas are used for working with {φE}.

Definition 2.2. For a subset E ⊂ {1, 2, . . . , N} and 1 ≤ i < N let

EC :=, 2, . . . , N}\E,
inv(E) := #

{
(i, j) ∈ E × EC : i < j

}
,

siφE = φsiE = φ(E\{i})∪{i+1}, (i, i+ 1) ∈ E × EC ,
siφE = φsiE = φ(E\{i+1})∪{i}, (i, i+ 1) ∈ EC × E.

(When {i, i + 1} ⊂ E or ⊂ EC then siE = E and siφE = φE .) Introduce a representation
of HN (t) on P.

Definition 2.3. For 1 ≤ i < N

TiφE =


−φE , {i, i+ 1} ⊂ E,
tφE , {i, i+ 1} ⊂ EC ,
siφE , (i, i+ 1) ∈ E × EC ,
(t− 1)φE + tsiφE , (i, i+ 1) ∈ EC × E.

Proposition 2.4. The operators {Ti} satisfy the braid and quadratic relations (2.1a) and (2.2).

Proof. It suffices to verify that T1T2T1 = T2T1T2 and (T1 − t)(T1 + 1) = 0 on the spaces
span{θ1, θ2, θ3} and span{θ2θ3, θ1θ3, θ1θ2}. The relations are trivially satisfied on span{1} and
span{θ1θ2θ3}. �
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Remark 2.5. For symbolic computation and to verify the previous proposition use

Tif(θ1, . . . , θN ) = tf + (tθi − θi+1)

(
∂

∂θi+1
− ∂

∂θi

)
f −

(
tθ2
i + θ2

i+1

) ∂2

∂θi∂θi+1
f,

T−1
i f(θ1, . . . , θN ) =

1

t
f +

(
θi −

1

t
θi+1

)(
∂

∂θi+1
− ∂

∂θi

)
f −

(
θ2
i +

1

t
θ2
i+1

)
∂2

∂θi∂θi+1
f,

with the partial derivatives being formal (the order of variables is ignored).

There is a symmetric bilinear form on P which is positive-definite for t > 0 and in which Ti
is self-adjoint for 1 ≤ i < N . The purpose of the form is to make the simultaneous eigenvectors
of {ωi} mutually perpendicular.

Definition 2.6. For E,F ⊂ {1, 2, . . . , N} define 〈φE , φF 〉 = δE,F t
− inv(E) and extend the form

to P by linearity.

Proposition 2.7. Suppose f, g ∈ P and 1 ≤ i < N then 〈Tif, g〉 = 〈f, Tig〉.
Proof. It suffices to consider T1. Let F ⊂ {3, 4, . . . , N}. Then T1φF = tφF and T1φ{1,2}∪F =
−φ{1,2}∪F . Let Fi = F ∪ {i} for i = 1, 2 and T1φF1 = φF2 and T1φF2 = (t− 1)φF2 + tφF1 so that

〈T1φF1 , φF2〉 = 〈φF2 , φF2〉 = t− inv(F2),

〈φF1 , T1φF2〉 = 〈φF1 , (t− 1)φF2 + tφF1〉 = t 〈φF1 , φF1〉 = t1−inv(F1),

and inv(F1) = inv(F2) + 1 by counting the pair (1, 2) ∈ F1 × FC1 . �

Corollary 2.8. If f, g ∈ P and 1 ≤ i ≤ N then 〈ωif, g〉 = 〈f, ωig〉.
Proof. This follows from ωN = 1 and ωi = t−1Tiωi+1Ti for i < N . �

There are two degree-changing linear maps which commute with the Hecke algebra action.

Definition 2.9. For n ∈ Z set σ(n) := (−1)n and for E ⊂ {1, 2, . . . , N}, 1 ≤ i ≤ N set
s(i, E) := #{j ∈ E : j < i}. Define the operators ∂i and θ̂i by ∂iθiφE = φE , ∂iφE = 0
and θ̂iφE = θiφE = σ(s(i, E))φE∪{i} for i /∈ E, while θ̂iφE = 0 for i ∈ E

(
also i ∈ E implies φE =

σ(s(i, E))θiφE\{i} and ∂iφE = σ(s(i, E))φE\{i}
)
. Define M :=

∑N
i=1 θ̂i and D :=

∑N
i=1 t

i−1∂i.

By direct computation one can show that θ̂i∂j = −∂j θ̂i for i 6= j.

Proposition 2.10. M and D commute with Ti for 1 ≤ i < N.

Proof. It follows from the definitions that ∂i and θ̂j commute with Ti when j < i or j > i+ 1.

It suffices to show ∂1 + t∂2 and θ̂1 + θ̂2 commute with T1 applied to p1 := φF , p2 := (θ1 + θ2)φF ,
p3 := (tθ1 − θ2)φF , p4 := θ1θ2φF with 1, 2 /∈ F . Then T1pi = tpi for i = 1, 2, T1pi = −pi for
i = 3, 4 and

(∂1 + t∂2)[p1, p2, p3, p4] = [0, (t+ 1)p1, 0,−p3],

(θ̂1 + θ̂2)[p1, p2, p3, p4] = [p2, 0,−(t+ 1)p4, 0].

This concludes the proof. �

It is clear that D2 = 0 = M2. For n = 0, 1, 2, . . . let [n]t := 1−tn
1−t and [n]t! := [1]t[2]t · · · [n]t.

Proposition 2.11. MD +DM = [N ]t.

Proof. Fix φE , #E = m; ∂jφE = σ(s(j, E))φE\{j}, then θ̂j∂jφE = σ(s(j, E))θjφE\{j} = φE
thus the coefficient of φE in MD is

∑
j∈E t

j−1. Also MφE =
∑

i/∈E θiφE and the coefficient

of φE in DMφE is
∑

i/∈E t
i−1 so that the coefficient of φE in MD+DM is

∑N
j=1t

j−1 = [N ]t.

Suppose i ∈ E, j /∈ E then θ̂jφE\{i} appears in MD with coefficient ti−1σ(s(i, E)) while

ti−1∂iθjφE = σ(s(i, E))ti−1∂iθjθiφE\{i} = −σ(s(i, E))ti−1θ̂jφE\{i}, and this term is canceled
out in MD +DM . �
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2.3 Representations of HN(t)

These representations correspond to partitions of N , namely λ = (λ1, . . . , λN ) ∈ NN0 with
λ1 ≥ λ2 ≥ · · · ≥ λN and

∑N
i=1 λi = N . The length of λ is `(λ) = max{i : λi ≥ 1}. There is

a graphical device to picture λ, called the Ferrers diagram, which has boxes at {(i, j) : 1 ≤ i ≤
`(λ) , 1 ≤ j ≤ λi} (integer points). A reverse standard tableau (RSYT) is a filling of the Ferrers
diagram with the numbers {1, 2, . . . , N} such that the entries decrease in each row and in each
column. The relevant representation of HN (t) is defined on the span of the RSYT’s of shape λ
in such a way that ωiY = tc(i,Y )Y for 1 ≤ i ≤ N , where Y [a, b] = i, c(i, Y ) = b−a (b−a is called
the content of [a, b]), and Y is a RSYT of shape λ. In the present work only hook tableaux will
occur, namely partitions of the form λ = (N − n, 1n) (the part 1 is repeated n times), so that
`(λ) = n+ 1.

We will show that Pm is a direct sum of the HN (t)-modules corresponding to (N −m, 1m)
and (N + 1−m, 1m−1). Here is a structure for labeling the φE of interest.

Definition 2.12. Let Y0 := {E : #E = m+ 1, N ∈ E} and Y1 := {E : #E = m− 1, N /∈ E}.

These sets are associated to RSYT’s of shape
(
N−m, 1m

)
and

(
N−m+1, 1m−1

)
respectively,

and this correspondence will be used to define content vectors for E.

Definition 2.13. Suppose E ∈ Y0 and E = {i1, . . . , im, im+1}, EC = {j1, . . . , jN−m−1} with
i1 < i2 < · · · < im+1 = N and j1 < j2 < · · · then YE is the RSYT of shape (N −m, 1m) given
by YE [k, 1] = im+2−k for 1 ≤ k ≤ m+ 1, and YE [1, k] = jN−m+1−k for 2 ≤ k ≤ N −m. Suppose
E ∈ Y1 and E = {i1, . . . , im−1}, EC = {j1, . . . , jN−m+1} with i1 < i2 < · · · and j1 < j2 < · · · <
jN−m+1 = N then YE is the RSYT of shape (N − m + 1, 1m−1) given by YE [k, 1] = im+1−k
for 2 ≤ k ≤ m, YE [1, k] = jN−m+2−k for 1 ≤ k ≤ N −m + 1. In both cases define the content
vector c(i, E) = c

(
i, YE

)
for 1 ≤ i ≤ N .

For space-saving convenience the RSYT’s are displayed in two rows, with the second row
consisting of the entries YE [2, 1], YE [3, 1], . . . . Recall the content of cell [i, j] is j − i.

As example let N = 8, m = 3, E = {2, 5, 7, 8} then

YE =

[
8 6 4 3 1
· 7 5 2

]
and [c(i, E)]8i=1 = [4,−3, 3, 2,−2, 1,−1, 0].

We will construct for each E ∈ Y0 ∪ Y1 a polynomial τE ∈ Pm such that ωiτE = tc(i,E)τE
for 1 ≤ i ≤ N . To start let E0 := {N −m,N −m+ 1, . . . , N} ∈ Y0. Then

YE0 =

[
N N −m− 1 N −m− 2 · · · · · · 1
· N − 1 N − 2 · · · N −m

]
,

[c(i, E0)]Ni=1 = [N −m− 1, N −m− 2, . . . , 1,−m, 1−m, . . . ,−1, 0].

Theorem 2.14. Let ψ0 = DφE0 ∈ kerD ∩ Pm, then ωiψ0 = tc(i,E0)ψ0 for 1 ≤ i ≤ N .

Proof. If N −m ≤ i < N then TiφE0 = −φE0 and so Tiψ0 = −ψ0, because TiD = DTi and
ψ0 = DφE0 , thus ωiψ0 = ti−Nψ0. It is clear that Tiψ0 = tψ0 for 1 ≤ i < N − m − 1 and so
it remains to prove ωN−m−1ψ0 = tψ0. (The remaining part of the argument is straightforward,
and is at the end of this proof; for example ωN−m−2ψ0 = t−1TN−m−2ωN−m−1TN−m−2ψ0 =
TN−m−2ωN−m−1ψ0 = t2ψ0.) Let F := {N −m− 1, N −m, . . . , N} and Fj := F\{j}, pj = φFj ,
(so that pN−m−1 = φE0) then Tipj = −pj if i > j or N−m−1 ≤ i < j−1, Tjpj = (1−t)pj+tpj+1
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and Tjpj+1 = pj . To set up an induction argument let UN−m−1 = TN−m−1 and Ui+1 = Ti+1Ui
for i < N − 1. We claim

UiφE0 = ti−N+m+2pi+1 + (t− 1)
i∑

j=N−m−1

(−1)i−jtj−N+m+1pj .

At the start of the induction TN−m−1pN−m−1 = tpN−m + (t− 1)pN−m−1. Suppose the formula
holds for i then

Ui+1φE0 = ti−N+m+2Ti+1pi+1 + (t− 1)

i∑
j=N−m−1

(−1)i−jtj−N+m+1Ti+1pj

= ti−N+m+2(tpi+2 + (t− 1)pi+1)− (t− 1)
i∑

j=N−m−1

(−1)i−jtj−N+m+1pj

= ti−N+m+3pi+2 + (t− 1)

i+1∑
j=N−m

(−1)j−i+1tj−N+m+1pj ,

as is to be shown. We also need

DφF =
N−1∑

j=N−m−1

(−1)j−N+m+1tj−1pj + (−1)m+1tN−1pN .

Thus

UN−1φE0 = tm+1pN + (t− 1)

N−1∑
j=N−m−1

(−1)N−1−jtj−N+m+1pj

= tm+1pN + (t− 1)(−1)mt−N+m+2
{
DφF − (−1)m+1tN−1pN

}
= tm+2pN + (t− 1)(−1)mt−N+m+2DφF .

Then UN−1ψ0 = DUN−1φE0 = tm+2DpN and TN−m−1TN−m · · ·TN−1UN−1ψ0 = tm+2DpN−m−1

= tm+2ψ0 since Tjpj+1 = pj for N −m − 1 ≤ j < N . Hence ωN−m−1ψ0 = tN−m−1−N tm+2ψ0

= tψ0. It follows that

ωiψ0 = ti−N+m+1Ti · · ·TN−m−2ωN−m−1TN−m−2 · · ·Tiψ0

= ti−N+m+1t1+2(N−m−1−i)ψ0 = tN−m−iψ0,

for 1 ≤ i ≤ N −m− 1. �

Turning to the isotype
(
N −m+ 1, 1m−1

)
, let E1 := {1, 2, . . . ,m− 1} ∈ Y1 so that

YE1 =

[
N N − 1 N − 2 · · · · · · m
· m− 1 m− 2 · · · 1

]
,

[c(i, E1)]Ni=1 = [1−m, 2−m, . . . ,−1, N −m,N −m− 1, . . . , 1, 0].

Theorem 2.15. Let ηE1 = MφE1 ∈ kerM ∩ Pm. Then ωiηE1 = tc(i,E1)ηE1 for 1 ≤ i ≤ N .

Proof. Since TiφE1 = tφE1 for m ≤ i < N it follows that ωiMφE1 = tN−iMφE1 . Also TiφE1 =
−φE1 and TiMφE1 = −MφE1 for 1 ≤ i < m− 1 and so it remains to show ωm−1ηE1 = t−1ηE1 .
Let F = {1, 2, . . . ,m− 2} and for m− 1 ≤ j ≤ N let Fj = F ∪ {j} and pj = φFj (φE1 = pm−1).
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Then Tjpj = pj+1 so that TN−1TN−2 · · ·Tm−1pm−1 = pN . Also Tjpj+1 = tpj + (t − 1)pj+1

and Tjpi = tpi for i > j + 1. By induction we prove that

TiTi+1 · · ·TN−1pN = tN−ipi + (t− 1)tN−i−1
N∑

j=i+1

pj .

The formula is valid for i = N − 1 and assuming it is true for i apply Ti−1 to both sides, then
the first term becomes tN−i (pi−1 + (t− 1)pi) and the second term is multiplied by t. Substitute
MφF =

∑N
j=m−1 pj in the formula with i = m− 1 to obtain

Tm−1 · · ·TN−1pN = tN−m+1pm−1 + (t− 1)tN−m
{
MφF − pm−1

}
= tN−mpm−1 + (t− 1)tN−mMφF .

Thus ωm−1ηE1 = tm−1−N tN−mMpm−1 = t−1ηE1 (since M2 = 0). From TiηE1 = −ηE1 for
1 ≤ i < m− 1 it follows that ωiηE1 = ti−mηE1 . Thus ωiηE1 = tc(i,E1)ηE1 for 1 ≤ i ≤ N . �

2.4 Steps

Having found two polynomials which are {ωi} simultaneous eigenfunctions we describe the
method for constructing for each E ∈ Y0 ∪ Y1 a polynomial τE ∈ Pm such that ωiτE = tc(i,E)τE
for 1 ≤ i ≤ N . Recall the standard properties Tiωj = ωjTi for i < j − 1 (obvious) and for i > j
(suppose i = j + 1) then

Tj+1ωj = t−2Tj+1TjTj+1ωj+2Tj+1Tj = t−2TjTj+1Tjωj+2Tj+1Tj = t−2TjTj+1ωj+2TjTj+1Tj

= t−2TjTj+1ωj+2Tj=1TjTj+1 = ωjTj+1,

by the braid relations; and

Tjωj = t−1T 2
j ωj+1Tj = t−1{(t− 1)Tj + t}ωj+1Tj = (t− 1)ωj + ωj+1Tj ,

ωjTj = Tjωj+1 + (t− 1)ωj . (2.3)

Proposition 2.16. Suppose ωjf = λjf for 1 ≤ j ≤ N (f 6= 0), λi 6= λi+1 and

g := Tif +
(t− 1)λi
λi+1 − λi

f

then ωjg = λjg for all j 6= i, i+ 1 and ωig = λi+1g, ωi+1g = λig. If λi+1 6= t±1λi then g 6= 0.

Proof. If j > i+ 1 or j < i then ωjTi = Tiωj and thus ωjg = λjg. By (2.3)

ωig = ωiTif + λi
(t− 1)λi
λi+1 − λi

f = Tiωi+1f +

{
t− 1 +

(t− 1)λi
λi+1 − λi

}
λif

= λi+1Tif +
(t− 1)λi+1λi
λi+1 − λi

f = λi+1g.

A similar calculation using ωi+1Ti = Tiωi − (t − 1)ωi shows that ωi+1g = λig. Since T 2
i =

(t− 1)Ti + t(
Ti +

(t− 1)λi+1

λi − λi+1

)(
Ti +

(t− 1)λi
λi+1 − λi

)
=

(λit− λi+1)(λi − tλi+1)

(λi − λi+1)2
,

thus λi+1 6= t±1λi implies g 6= 0. �
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Given the hypotheses of the proposition and the self-adjointness of ωi (Corollary 2.8) it follows
that 〈f, g〉 = 0 (λi〈f, g〉 = 〈ωif, g〉 = 〈f, ωig〉 = λi+1〈f, g〉).

Lemma 2.17. Suppose g = (Ti + b)f and 〈f, g〉 = 0 then ‖g‖2 = (1− b)(t+ b)‖f‖2.

Proof. It follows from Ti being self-adjoint that 〈Tif, Tif〉 =
〈
T 2
i f, f

〉
= (t− 1)〈Tif, f〉+ t‖f‖2

and 〈f, g〉 = 0 implies 〈Tif, f〉+ b‖f‖2 = 0. Thus

‖g‖2 = ‖Tif‖2 + 2b〈Tif, f〉+ b2‖f‖2 = (t− 1 + 2b)〈Tif, f〉+ (t+ b2)‖f‖2

=
{
−b(t− 1 + 2b) + t+ b2

}
‖f‖2 =

(
−b2 − b(t− 1) + t

)
‖f‖2 = (1− b)(t+ b)‖f‖2. �

Corollary 2.18. Suppose g = (Ti + b)f , 〈g, f〉 = 0 and b = 1 or b = −t then g = 0.

2.4.1 Isotype (N −m, 1m)

This concerns the polynomials in Pm,0 = kerD ∩ Pm = DPm+1. Recall Y0 = {E : #E = m+ 1,
N ∈ E}.

Definition 2.19. For #E = m+ 1 define ψE = DφE .

The set
{
ψE : E ∈ Y0

}
spans Pm,0; for suppose N /∈ E then θNDφE is a linear combi-

nation of φF with F ∈ Y0 and t1−NDθNDφE = DφE = ψE . The map p
(
θ1, . . . , θN

)
→

p
(
θ1, . . . , θN−1, 0

)
takes ψE to tN−1φE\{N}; thus dimPm,0 =

(
N−1
m

)
. The function inv(E) pro-

vides a partial order on Y0.

Definition 2.20. For 0 ≤ n ≤ m(N − 1−m) let

P(n)
m,0 := span

{
ψE : E ∈ Y0, inv(E) ≤ n

}
.

The extreme cases are inv({N −m, . . . , N}) = 0 and inv({1, 2, . . . ,m,N}) = m(N − 1−m).

Lemma 2.21. Suppose E ∈ Y0 and inv(E) = n. If {i, i + 1} ⊂ E then TiψE = −ψE, or if
{i, i+1}∩E = ∅ then TiψE = tψE. If (i, i+1) ∈ E×EC then inv(siE) = n−1 and TiψE = ψsiE.

If i(i, i+ 1) ∈ EC × E then inv(siE) = n+ 1 and TiψE = (t− 1)ψE + tψsiE ∈ P
(n+1)
m,0 . That is,

TiP(n)
m,0 ⊂ P

(n+1)
m,0 .

Proof. The transformation rules follow from Definition 2.3 and DTi = TiD (see Proposi-
tion 2.10). �

Theorem 2.22. Suppose for some n and for each E ∈ Y0 with inv(E) = n there is a polynomial

τE = tnψE + pE with pE ∈ P(n−1)
m,0 such that ωiτE = tc(i,E)τE for all i then this property holds

for n+ 1.

Proof. Suppose E ∈ Y0 with inv(E) = n+ 1 then for some i it holds that (i, i+ 1) ∈ E × EC
(otherwise E = E0 = {N − m,N − m + 1, . . . , N} and inv(E0) = 0), then let F = siE so
that inv(F ) = n. Then c(j, E) = c(j, F ) for j 6= i, i + 1 and c(i, E) = c(i + 1, F ) ≤ −1,
c(i+ 1, E) = c(i, F ) ≥ 1. By Proposition 2.16 let

τE =

(
Ti +

(t− 1)tc(i,F )

tc(i+1,F ) − tc(i,F )

)
τF .

Then ωjτE = tc(j,E)τE for all j; and τE = (Ti+b)
(
tnψF+pF

)
= tn+1ψE+tn(t−1+b)ψF+(Ti+b)pE

(for a constant b). By the lemma tn(t− 1 + b)ψF + (Ti + b)pE ∈ P(n)
m,0. �
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Corollary 2.23. For each E ∈ Y0 and inv(E) = n there is a unique τE ∈ Pm,0 with τE =

tnψE + pE and pE ∈ P(n−1)
m,0 such that ωiτE = tc(i,E)τE for all i.

Proof. The existence follows from induction starting with τE0 = ψE0 and Theorem 2.14.
Uniqueness follows from the leading term. The {ωi}-eigenvalues of τE determine E uniquely. �

Corollary 2.24. Suppose E ∈ Y0, if {i, i+ 1} ⊂ E then TiτE = −τE and if {i, i+ 1} ∩ E = ∅
or i = N − 1 /∈ E then TiτE = tτE.

Proof. Let b = (t−1)tc(i,E)

tc(i+1,E)−tc(i,E) = t−1
tc(i+1,E)−c(i,E)−1

. If {i, i+ 1} ⊂ E then c(i+ 1, E) = 1 + c(i, E)

and b = 1; thus 〈(Ti + 1)τE , τE〉 = 0 (by the comment after Proposition 2.16) and ‖(Ti + 1)τE‖2
= 0 by Corollary 2.18. If {i, i + 1} ∩ E = ∅ (or i = N − 1 /∈ E) then c(i + 1, E) = c(i, E) − 1
and b = t−1

t−1−1
= −t; thus ‖(Ti − t)τE‖2 = 0. �

Definition 2.25. Let u(z) := (t−z)(1−tz)
(1−z)2 . Suppose v ∈ ZN and vj 6= 0 for j < N , vN = 0, then

C(v) :=
∏

1≤i<j<N

{
u
(
tvi−vj

)
: vi < 0 < vj

}
. (2.4)

Proposition 2.26. Suppose E ∈ Y0 then

‖τE‖2 = t2(N−m−1)[m+ 1]tC
(
[c(i, E)]Ni=1

)
.

Proof. By definition τE0 =
∑N

j=N−m t
j−1(−1)N−m−jφE0\{j} and ‖τE0‖

2 =
∑N

j=N−m t
2j−2t−ij ,

where ij = inv
(
E0\{j}

)
= j −N + m; thus ‖τE0‖2 = t2(N−m−1)

∑m
j=0 t

j . Suppose the formula
is valid for all E with inv(E) ≤ n and inv(E) = n + 1. Then E = siF for some i ∈ E with
i + 1 /∈ E and inv(F ) = n (so i + 1 ∈ F , i /∈ F ). By Lemma 2.17 ‖τE‖2 = (1 − b)(t + b)‖τF ‖2,
where b = t−1

tc(i+1,F )−c(i,F )−1
. Write z = tc(i+1,F )−c(i,F ) = tc(i,E)−c(i+1,E) then

‖τE‖2 =
(t− z)(1− tz)

(1− z)2
‖τF ‖2 = u(z)‖τF ‖2.

In the product for ‖τF ‖2 the factors for pairs (i) (k, `) with {k, `} ∩ {i, i + 1} = ∅, (ii) (k, i),
k ∈ F , k < i, (iii) (i+ 1, `), ` /∈ F, ` > i+ 1 are the same in the product for ‖τE‖2 for the pairs
(i) (k, `), (ii) (k, i + 1), (iii) (i, `), respectively. The extra factor in the product for ‖τE‖2 has
the desired value. �

2.4.2 Isotype (N −m + 1, 1m−1)

This concerns the polynomials in Pm,1 = kerM ∩ Pm = MPm−1.

Definition 2.27. For #E = m−1 define ηE := MφE . The set Y1 =
{
E : #E = m−1, N /∈ E

}
.

The set
{
ηE : E ∈ Y1

}
spans Pm,1; for suppose N ∈ E then ∂NMφE is a linear combination

of φF with F ∈ Y1 and M
(
∂NMφE

)
= MφE = ηE . Furthermore ∂NηE = φE and thus

dimPm,1 =
(
N−1
m−1

)
. The function inv(E) provides a partial order on Y1. The extreme cases are

inv({N −m+ 1, . . . , N − 1}) = m− 1 and inv({1, 2, . . . ,m− 1}) = (m− 1)(N −m+ 1).

Definition 2.28. For 0 ≤ n ≤ (m− 1)(N −m+ 1) let

P(n)
m,1 := span

{
ηE : E ∈ Y1, inv(E) ≥ n

}
.

Lemma 2.29. Suppose E ∈ Y1 and inv(E) = n. If {i, i + 1} ⊂ E then TiηE = −ηE, or if
{i, i + 1} ∩ E = ∅ then TiηE = tηE. If i /∈ E, i + 1 ∈ E then inv(siE) = n + 1 and TiηE =

(t− 1)ηE + tηsiE ∈ P
(n)
m,1. If i ∈ E, i+ 1 /∈ E then inv(siE) = n− 1 and TiηE = ηsiE ∈ P

(n−1)
m,1 .
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Proof. The transformation rules follow from Definition 2.3 and MTi = TiM . �

Theorem 2.30. Suppose for some n and for each E ∈ Y1 with inv(E) = n there is a polynomial

τE = ηE + pE with pE ∈ P(n+1)
m,1 such that ωiτE = tc(i,E)τE for all i then this property holds

for n− 1.

Proof. Suppose E ∈ Y1 with inv(E) = n − 1 then for some i it holds that i /∈ E, i + 1 ∈ E
(otherwise E = E1 = {1, . . . ,m − 1} and inv(E1) = (m − 1)(N − m + 1)), then let F = siE
so that inv(F ) = n. Then c(j, E) = c(j, F ) for j 6= i, i + 1 and c(i, E) = c(i + 1, F ) ≥ 1,
c(i+ 1, E) = c(i, F ) ≤ −1. By Proposition 2.16 let

τE =

(
Ti +

(t− 1)tc(i,F )

tc(i+1,F ) − tc(i,F )

)
τF .

Then ωjτE = tc(j,E)τE for all j; and τE = (Ti + b)
(
ηF + pF

)
= ηE + bηF + (Ti + b)pF (for

a constant b). By the previous lemma bηF + (Ti + b)pE ∈ P(n)
m,1. �

Corollary 2.31. For each E ∈ Y1 and inv(E) = n ≤ (m − 1)(N −m + 1) there is a unique

τE ∈ Pm,1 with τE = ηE + pE and pE ∈ P(n+1)
m,1 such that ωiτE = tc(i,E)τE for all i.

Proof. The existence follows from induction starting with τE1 = MφE1 = ηE1 and Theo-
rem 2.15. Uniqueness follows from the leading term. The eigenvalues of τE determine E
uniquely. �

Corollary 2.32. Suppose E ∈ Y1, if {i, i+ 1} ∈ E then TiτE = −τE and if {i, i+ 1} ∩ E = ∅
then TiτE = tτE.

Proof. This has the same proof as Corollary 2.24. �

Proposition 2.33. Suppose E ∈ Y1 then

‖τE‖2 = t−m(N−m)[N −m+ 1]t C
(
[−c(i, E)]Ni=1

)
.

Proof. By definition τE1 = (−1)m−1
∑N

j=m φE1∪{j} and ‖τE1‖2 =
∑N

j=m t
−ij , where ij =

inv
(
E1 ∪ {j}

)
= m(N + 1−m)− j; thus ‖τE1‖2 = t−m(N−m)

∑N−m
j=0 tj . Suppose the formula is

valid for all E with inv(E) ≥ n and inv(E) = n−1. Then E = siF for some i /∈ E with i+1 ∈ E
and inv(F ) = n (so (i, i + 1) ∈ F × FC). By Lemma 2.17 ‖τE‖2 = (1 − b)(t + b)‖τF ‖2, where
b = t−1

tc(i+1,F )−c(i,F )−1
. Write z = tc(i+1,F )−c(i,F ) = tc(i,E)−c(i+1,E) then

‖τE‖2 =
(t− z)(1− tz)

(1− z)2
‖τF ‖2 = u(z)‖τF ‖2.

In the product for |τF |2 the factors for pairs (i) (k, `) with {k, `} ∩ {i, i + 1} = ∅, (ii) (k, i),
k /∈ F , k < i, (iii) (i+ 1, `), ` ∈ F , ` > i+ 1 are the same in the product for |τE |2 for the pairs
(i) (k, `), (ii) (k, i + 1), (iii) (i, `), respectively. The extra factor in the product for |τE |2 has
the desired value. �

Proposition 2.34. Let F0 = {1, . . . ,m,N}, F1 = {1, . . . ,m} then τF0 ∈ Pm,0 and τF1 ∈ Pm+1,1

have the same {ωi}-eigenvalues and

‖τF0‖2 = t(m+2)(N−m−1) [N ]t
[N −m]t

, ‖τF1‖2 = t−(m+1)(N−m−1)[N −m]t,

‖τF0‖2 = t(2m+3)(N−m−1)[N ]t[N −m]−2
t ‖τF1‖2,

DτF1 = t−(m+1)(N−m−1)[N −m]tτF0 , ‖DτF1‖2 = tN−m−1[N ]t‖τF1‖2.
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Proof. The content vector for F0 is [−m, 1−m, . . . ,−1, N −m− 1, . . . , 1, 0] (the same as F1)
so that

C
(
[c(i, F0)]Ni=1

)
=

m∏
i=1

N−m−1∏
j=1

(t− t−i−j)(1− t1−i−j)
(1− t−i−j)2

= tm(N−m−1)
m∏
i=1

N−m−1∏
j=1

(
ti+j+1 − 1

ti+j − 1

)(
ti+j−1 − 1

ti+j − 1

)

= tm(N−m−1)
N−m−1∏
j=1

(
tm+1+j − 1

t1+j − 1

)(
tj − 1

tm+j − 1

)

= tm(N−m−1)

(
t− 1

tN−m − 1

)(
tN − 1

tm+1 − 1

)
=

tm(N−m−1)[N ]t
[N −m]t[m+ 1]t

by use of telescoping arguments. Thus ‖τF0‖2 = t(m+2)(N−m−1) [N ]t
[N−m]t

by Proposition 2.26.

The value of ‖τF1‖2 is from Proposition 2.33. By definition τF1 = MφF1 = (θm+1 + · · ·+ θN )×
θ1θ2 · · · θm and the coefficient of φF1 in DτF1 is

∑N
i=m+1 t

i−1 = tm[N − m]t. The coefficient

of φF1 in τF0 = DφF1 is (−1)mtm(N−1−m)+N−1(see Theorem 2.22). From DτF1 and τF0 having
the same {ωi}-eigenvalues it follows that DτF1 = aτF0 for some constant. �

2.5 Isomorphisms

This section concerns the action of the maps M , D on the irreducible HN (t)-modules. The fol-
lowing is a version of Schur’s lemma for irreducible representations.

Lemma 2.35. Suppose µ is a linear isomorphism V1 → V2 of irreducible HN (t)-modules such
that Tiµ = µTi for 1 ≤ i < N and V1, V2 are equipped with inner products in which each Ti is
self-adjoint, then ‖µf‖2/‖f‖2 is constant for f ∈ V1.

Proof. The argument is based on orthogonal bases defined in the previous sections. By hypo-
thesis V1 has an orthogonal basis consisting of {ωi}-eigenfunctions. The image of this basis
under µ has the same property. For a typical basis element f ∈ V1 suppose ωjf = λjf for

all j and λi+1 6= t±1λi then g = (Ti + b)f satisfies ωig = λi+1g, ωi+1g = λig for b = (t−1)λi
λi+1−λi

and ‖g‖2 = (1 − b)(t + b)‖f‖2 (this equation follows from Ti being self-adjoint and 〈f, g〉 = 0).
By hypothesis ωjµf = λjµf for all j and µg = (Ti+b)µf satisfies ωiµg = λi+1µg, ωi+1µg = λiµg.
By Lemma 2.17 ‖µg‖2 = (1 − b)(t + b)‖µf‖2 and so γ := ‖µg‖2 /‖g‖2 = ‖µf‖2/‖f‖2. By the
step constructions ‖µf‖2/‖f‖2 = γ holds for every basis vector of V1. �

The relation MD+DM = [N ]t (Proposition 2.11) implies that Pm is a direct sum of Pm,0 =
Pm ∩ kerD and Pm,1 = Pm ∩ kerM .

Theorem 2.36. The maps M , D are linear isomorphisms Pm,0 → Pm+1,1, Pm+1,1 → Pm,0 res-
pectively, of HN (t)-modules, ‖Mf‖2 = tm+1−N [N ]t‖f‖2 for f ∈ Pm,0 and ‖Dg‖2 = tN−m−1 ×
[N ]t‖g‖2 for g ∈ Pm+1,1.

Proof. M and D commute with each Ti and hence with each ωi. Furthermore if f ∈ Pm,0
then (MD +DM)f = DMf = [N ]tf (by Proposition 2.11) and thus M is one-to-one on Pm,0.
Similarly if g ∈ Pm+1,1 then [N ]tg = (MD + DM)g = MDg and D is one-to-one. By the
lemma there are constants γ1, γ2 such that ‖Mf‖2 = γ1‖f‖2 and ‖Dg‖2 = γ2‖g‖2. From
(MD + DM)f = DMf it follows that ‖DMf‖2 = [N ]2t ‖f‖2 = γ2‖Mf‖2 and γ1 = [N ]2t /γ2.
By Proposition 2.34 γ2 = tN−m−1[N ]t and thus γ1 = tm+1−N [N ]t. �
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3 Nonsymmetric Macdonald polynomials

3.1 Operators on polynomials

The following presents the key concepts for our constructions: the definition of the action
of HN (t) on superpolynomials and the ingredients necessary to define the Cherednik opera-
tors whose simultaneous eigenvectors are the nonsymmetric Macdonald superpolynomials. Here
we extend the polynomials in {θi} by adjoining N commuting variables x1, . . . , xN (that is
[xi, xj ] = 0, [xi, θj ] = 0, θiθj = −θjθi for all i, j). Each polynomial is a sum of monomials xαφE ,

where E ⊂ {1, 2, . . . , N} and α ∈ NN0 , xα :=
∏N
i=1 x

αi
i . The partitions in NN0 are denoted

by NN,+0 (λ ∈ NN,+0 if and only if λ1 ≥ λ2 ≥ · · · ≥ λN ). The fermionic degree of this monomial

is #E and the bosonic degree is |α| :=
∑N

i=1 αi. Let sPm := span
{
xαφE : α ∈ NN0 , #E = m

}
.

Then using the decomposition Pm = Pm,0 ⊕ Pm,1 let

sPm,0 = span
{
xαψE : α ∈ NN0 , E ∈ Y0

}
,

sPm,1 = span
{
xαηE : α ∈ NN0 , E ∈ Y1

}
.

The Hecke algebra HN (t) is represented on sPm. This allows us to apply the theory of nonsym-
metric Macdonald polynomials taking values in HN (t)-modules (see [8, 9]).

Definition 3.1. Suppose p ∈ sPm and 1 ≤ i < N then set

T ip(x; θ) := (1− t)xi+1
p(x; θ)− p(xsi; θ)

xi − xi+1
+ Tip(xsi; θ).

Note that Ti acts on the θ variables according to Definition 2.3.

Theorem 3.2 ([9, Proposition 3.5]). Suppose 1 ≤ i < N − 1 then T iT i+1T i = T i+1T iT i+1,
if 1 ≤ i < N then (T i + 1)(T i − t) = 0 and if 1 ≤ i < j − 1 ≤ N − 2 then T iT j = T jT i.

We also use

T−1
i p(x; θ) =

(
1− t
t

)
xi
p(x; θ)− p(xsi; θ)

xi − xi+1
+ T−1

i p(xsi; θ).

Definition 3.3. Let T (N) = TN−1TN−2 · · ·T1 and for p ∈ sPm and 1 ≤ i ≤ N

wp(x; θ) := T (N)p(qxN , x1, x2, . . . , xN−1; θ),

ξip(x; θ) := ti−NT iT i+1 · · ·TN−1wT−1
1 T−1

2 · · ·T
−1
i−1p(x; θ).

The operators ξi are Cherednik operators, defined by Baker and Forrester [1] (see Braverman
et al. [4] for the significance of these operators in double affine Hecke algebras). They mutually
commute (the proof in the vector-valued situation is in [9, Theorem 3.8]). Observe ξi−1 =
t−1T i−1ξiT i−1. Their key properties are

T (N)Ti+1 = TN−1 · · ·Ti+1TiTi+1Ti−1 · · ·T1 = TN−1 · · ·Ti+2TiTi+1Ti · · ·T1 = TiT
(N),(

T (N)
)2

= T (N)
(
TN−1 · · ·T2

)
T1 =

(
TN−2 · · ·T1

)
T (N)T1 = T−1

N−1

(
T (N)

)2
T1,(

T (N)
)2
T1 = TN−1

(
T (N)

)2
,

wT i+1 = T iw, w2T 1 = TN−1w
2,

w−1p(x; θ) = T−1
1 T−1

2 · · ·T−1
N−1p(x2, x3, . . . , xN , q

−1x1; θ). (3.1)

There is a basis of sPm consisting of simultaneous eigenvectors of {ξi} and these are the non-
symmetric Macdonald superpolynomials (henceforth abbreviated to “NSMP”).
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Suppose p(θ) is independent of x then T ip = Tip and

ξip(θ) = ti−NTiTi+1 · · ·TN−1

(
TN−1 · · ·T2T1

)
T−1

1 T−1
2 · · ·T−1

i−1p(θ)

= ti−NTiTi+1 · · ·TN−1TN−1 · · ·Tip(θ) = ωip(θ),

that is ξi agrees with ωi on polynomials of bosonic degree 0. Also wT i+1 = T iw. Suppose
j > i+ 1 then

ξiT j = ti−NT iT i+1 · · ·TN−1wT jT
−1
1 T−1

2 · · ·T
−1
i−1

= ti−NT iT i+1 · · ·TN−1T j−1wT
−1
1 T−1

2 · · ·T
−1
i−1

= ti−NT i · · · (T j−1T jT j−1) · · ·TN−1wT
−1
1 T−1

2 · · ·T
−1
i−1

= ti−NT i · · · (T jT j−1T j) · · ·TN−1wT
−1
1 T−1

2 · · ·T
−1
i−1 = T jξi.

A similar argument shows ξiT j = T jξi when j < i− 1, by using T−1
j T−1

j+1T j = T j+1T
−1
j T−1

j+1.

3.2 Properties of nonsymmetric Macdonald polynomials

They have a triangularity property with respect to the partial order � on the compositions NN0 ,
which is derived from the dominance order:

α ≺ β ⇐⇒
i∑

j=1

αj ≤
i∑

j=1

βj , 1 ≤ i ≤ N, α 6= β,

α� β ⇐⇒ (|α| = |β|) ∧
[(
α+ ≺ β+

)
∨
(
α+ = β+ ∧ α ≺ β

)]
.

The rank function on compositions is involved in the formula for an NSMP.

Definition 3.4. For α ∈ NN0 , 1 ≤ i ≤ N

rα(i) := #{j : αj > αi}+ #{j : 1 ≤ j ≤ i, αj = αi},

then rα ∈ SN . There is a shortest expression rα = si1si2 · · · sik and Rα := (Ti1Ti2 · · ·Tik)−1 ∈
HN (t) (that is, Rα = T (rα)−1).

A consequence is that rαα = α+, the nonincreasing rearrangement of α, for any α ∈ NN0 .
For example if α = (1, 2, 0, 5, 4, 5) then rα = [5, 4, 6, 1, 3, 2] and rαα = α+ = (5, 5, 4, 2, 1, 0)
(recall (uα)i = αu−1(i)). Also rα = I if and only if α ∈ NN,+0 .

Theorem 3.5 ([9, Theorem 4.12]). Suppose α ∈ NN0 and E ∈ Yk, k = 0, 1 then there exists
a (ξi)-simultaneous eigenfunction

Mα,E(x; θ) = te(α
+)qb(α)xαRα(τE(θ)) +

∑
βCα

xβvα,β,E(θ; q, t), (3.2)

where vα,β,E(θ; q, t) ∈ Pm,k and its coefficients are rational functions of q, t. Also ξiMα,E(x; θ) =

ζα,E(i)Mα,E(x; θ), where ζα,E(i) = qαitc(rα(i),E) for 1 ≤ i ≤ N . The exponent b(α) :=
∑N

i=1

(
αi
2

)
and e(α+) :=

∑N
i=1 α

+
i (N − i+ c(i, E)).

The spectral vector is [ζα,E(i)]Ni=1. Note that the leading term involves the element Rα(τE(θ))
of HN (t) acting on fermionic variables. The explanation for the exponents e(α+) and b(α) is
in Proposition 3.10 below. The relations (2.3) hold when ωi, Ti is replaced by ξi, T i respectively

T jξj = (t− 1)ξj + ξj+1T j ,

ξjT j = T jξj+1 + (t− 1)ξj ,

and this leads to the following, which has the same proof as Proposition 2.16:
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Proposition 3.6. Suppose ξjf = λjf for 1 ≤ j ≤ N (f 6= 0 and f ∈ sPm) and g := T if +
t−1

λi+1/λi−1f then ξjg = λjg for all j 6= i, i + 1 and ξig = λi+1g, ξi+1g = λig. If λi+1 6= t±1λi
then g 6= 0.

This together with a degree-raising operation provides the method for constructing the Mac-
donald polynomials.

Suppose α ∈ NN0 , E ∈ Y0 ∪ Y1 and αi 6= αi+1 then let z = ζα,E(i+ 1)/ζα,E(i) and

Msiα,E = cα,E

(
T i +

t− 1

z − 1

)
Mα,E , (3.3)

where cα,E = 1 if αi < αi+1 and cα,E = u(z) if αi > αi+1. The spectral vector ζsiα,E = siζα,E .

Suppose α ∈ NN0 and E ∈ Y0 ∪ Y1 and αi = αi+1, then let j = rα(i). If {j, j + 1} ∈ E
or j = N − 1 ∈ E then T iMα,E = −Mα,E . If {j, j + 1} ∩ E = ∅ or j = N − 1 /∈ E
then T iMα,E = tMα,E . If j < N − 2 and (j, j + 1) ∈ E × EC or (j, j + 1) ∈ EC × E then
z = ζα,E(i+ 1)/ζα,E(i) = tc(j+1,E)−c(j,E) and

Mα,sjE = cα,E

(
T i +

t− 1

z − 1

)
Mα,E ,

where cα,E = 1 if (1) E ∈ Y0 and (j, j + 1) ∈ EC × E or if (2) E ∈ Y1 and (j, j + 1) ∈ E × EC ,
or cα,E = u(z)−1 if (1) E ∈ Y0 and (j, j+ 1) ∈ E×EC or if (2) E ∈ Y1 and (j, j+ 1) ∈ EC ×E.
In all cases ζα,sjE = siζα,E .

The above equations are implicit formulas for T iMα,E . Formula (3.3) is the same as that for
the scalar case, as in [1, 14].

The affine step is defined as follows: for α ∈ NN0 , E ∈ Y0 ∪ Y1

Φα = (α2, α3, . . . , αN , α1 + 1),

ζΦα,E =
[
ζα,E(2), ζα,E(3), . . . , ζα,E(N), qζα,E(1)

]
,

MΦα,E = xNwMα,E .

This is based on the relations ξNxNw = qxNwξ1 and ξixNw = xNwξi+1 for 1 ≤ i < N .

Denote 0 = (0, . . . , 0) ∈ NN0 and recall E0 = {N −m, . . . , N}, E1 = {1, 2, . . . ,m− 1}. In [9,
Section 4.1] a Yang–Baxter directed graph method is used to inductively construct the Mα,E

(this technique is due to Lascoux [12]). Label the nodes (α,E); for Y0 the root is (0,E0) with
M0,E0 = τE0 = DφE0 ; and for Y1 the root is (0, E1) with M0,E1 = τE1 = MφE1 . The equations
have been set up so that M0,E = τE . The arrows in the graph point from (α,E) to (Φα,E), and
from (α,E) to (siα,E) (αi < αi+1) or to (α, sjE) when j = rα(E) and cα,E = 1 in the cases
described above.

Here is a brief discussion of the effect of T i on xαRατE for the cα,E = 1 cases. For α ∈ NN0 let

inv(α) := #
{

(i, j) : i < j, αi < αj
}

then rαα = α+ and rα = si1 · · · si` , where ` = inv(α). Recall Rα = T−1
i`
· · ·T−1

i1
and the

value of Rα is independent of the expressions for rα of length `. Suppose αi < αi+1 then
inv(α) = inv(siα) + 1; write siα = r−1

siαα+ and rsiα = si1 · · · si` with ` = inv(siα). Thus

r−1
α = sisi1 · · · si` and Rα = T−1

i Rsiα and so T ix
αRατE = xsiαRsiατE +p(x; θ), where p is a sum

of xβp′(θ) with siα B β.

Proposition 3.7. Suppose αi = αi+1 with j = rα(i) then T ix
αRατE = xαTiRατE and

TiRα = RαTj.
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Proof. Let rα = si1 · · · si` with ` = inv(α). Let β = α except βi+1 = αi+
1
2 then inv(β) = `+1.

From rαα = α+ it follows that rαsiβ = β+. By definition of j we obtain β+
j = αi + 1

2 , β
+
j+1 = αi

and r−1
α sjβ

+ = β. Now rαsiβ = β+ and sjrαβ = β+ and rαsi, sjrα have (at least) `+ 1 factors
sin and inv(β) = ` + 1. This implies rαsi = sjrα and Ti1Ti2 · · ·Ti`Ti = TjTi1Ti2 · · ·Ti` , that is,
R−1
α Ti = TjR

−1
α . �

Thus in the case αi = αi+1 the transformation laws (Theorem 2.22 and Corollary 2.24) apply
to
(
Tj + t−1

z−1

)
τE with z = tc(j+1,E)−c(j,E) (with the possible results −τE , tτE , τsjE , . . . ).

Hence only the affine step changes the power of t in the coefficient of xα. It remains to
consider xNwxαRατE .

Proposition 3.8. Suppose α ∈ NN0 and rα(1) = j then T (N)Rα = tN−jRΦαωj.

Proof. Let ` = #{(i, j) : 1 < i < j ≤ N, αi < αj}. Then there is a product u = si1si2 · · · si`
such that uα =

(
α1, α

+
1 , . . . , α

+
j−1, α

+
j+1, . . . , α

+
N

)
, and each ik > 1. By definition i > j implies

α+
1 ≤ αi < α1 + 1, and i < j implies α+

i ≥ α1 + 1. Then sj−1sj−2 · · · s1uα = α+ and
R−1
α =

(
Tj−1 · · ·T1

)
U , where U = Ti1 · · ·Ti` . Let u′ = si1−1 · · · si`−1 then

u′(Φα) =
(
α+

1 , . . . , α
+
j−1, α

+
j+1, . . . , α

+
N , α1 + 1

)
and sjsj+1 · · · sN−1u

′(Φα) = (Φα)+. Thus R−1
Φα =

(
Tj · · ·TN−1

)
U ′ and U ′ = Ti1−1 · · ·Ti`−1.

By (3.1) T (N)U = U ′T (N) and

R−1
ΦαT

(N) =
(
Tj · · ·TN−1

)
U ′T (N) =

(
Tj · · ·TN−1

)
T (N)U

=
(
Tj · · ·TN−1TN−1 · · ·Tj

)
Tj−1 · · ·T1U = tN−jωjR

−1
α . �

As a consequence xNwx
αRατE = qα1tN−j+c(j,E)xΦαRΦατE with j = rα(1). Denote (α1 + 1,

α2 + 1, · · · , αN + 1) by α+ 1.

Corollary 3.9. (xNw)NMα,E = Mα+1,E = q|α|tv(x1x2 · · ·xN )Mα,E, where v = N(N−1)
2 +∑N

i=1 c(i, E).

Proof. Suppose the coefficient of xαRα (τE(θ)) in Mα,E is qatb then

xNwMα,E = MΦα,E = qa+α1tN−rα(1)+c(rα(1),E)xΦαRΦα(τE) + · · · .

Then (xNw)2Mα,E involves rΦα(1) = rα(2). Repeating this process yields a factor of q|α| and the

t-exponent
∑N

i=1(N − rα(i) + c(rα(i), E)) = N(N−1)
2 +

∑N
i=1 c(i, E). Furthermore ΦNα = α+ 1

and Rα+1 = Rα. �

If E ∈ Y0,Y1 then
∑N

i=1 c(i, E) = N(N−1)
2 − Nm, N(N−1)

2 − N(m − 1) respectively (so
v = N(N −m− 1) or N(N −m)).

Proposition 3.10. The exponent on q in (3.2) is b(α) =
∑N

i=1

(
αi
2

)
. The exponent on t in (3.2)

is
∑N

i=1 λi(N − i+ c(i, E)).

Proof. For the value of b(α) we use induction on |α|. The statement b(0) = 0 is true since
M0,E = τE . The steps at αi < αi+1 taking xα to xsiα do not involve q (which does affect the
other terms of the polynomial), and indeed b(α) is invariant under si. The affine step takes xα

to xΦα and multiplies by qα1 , that is, b(Φα) = b(α) + α1, and
(
α1

2

)
+ α1 =

(
α1+1

2

)
. Induct

on `(λ) for the t-exponent. Note that only the affine step affects the exponent so it depends only

on λ = α+. Suppose λk ≥ 1 and λi = 0 for i > k. The affine step from λ(k) with λ
(k)
i = λi except

λ
(k)
k = λk−1 proceeds by λ(k) → (λk−1, λ1, . . . , λk−1, 0, . . . , 0)→ (λ1, . . . , λk=1, 0, . . . , 0, λk)→ λ

and multiplies by tN−k+c(k,E). Thus passing from (λ1, . . . , λk−1, 0, . . . , 0) to λ contributes a factor
of tλk(N−k+c(k,E)). �
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Example 3.11. Explicit formulas for Mα,E tend to be complicated; here is a fairly simple one.
Let N = 5, m = 2, E = {3, 4, 5} and α = (0, 0, 1, 0, 0):

Mα,E = t6x3(t3θ2θ4 − t2θ2θ4 + θ3θ4)

+
(t− 1)t9q

qt3 − 1

{
x4

(
t3θ2θ3 − tθ2θ5 + θ3θ5

)
− x5

(
t2θ2θ3 − tθ2θ4 + θ3θ4

)}
.

The spectral vector is
[
t, t−2, qt2, t−1, 1

]
and T 4Mα,E = −Mα,E .

There is a pairwise commuting set of (bosonic) degree lowering operations, namely the Dunkl
operators defined by Baker and Forrester [1].

Definition 3.12. Suppose f ∈ sPm then DNf := 1
xN

(f − ξNf) and if i < N then Dif =
1
tT iDi+1T if .

Assuming the existence of the nonsymmetric Macdonald polynomials Mα,E the argument for
showing that Dif is a polynomial is the following:

Proposition 3.13. Suppose α ∈ NN0 and E ∈ Y0∪Y1; if αN = 0 then DNMα,E = 0 or if αN ≥ 1
then DNMα,E = (1− ζα,E(N))wMβ,E, where α = Φβ. Also DNMΦα,E = (1− qζα(1))wMα,E.

Proof. If αN = 0 then rα(N) = N, c(N,E) = 0 and ξNMα,E = Mα,E and (1 − ξN )Mα,E = 0.
If αN ≥ 1 then α = Φβ with |β| = |α| − 1 and (1 − ξN )Mα,E = (1 − ζα,E(N))Mα,E = (1 −
ζα,E(N))xNwMβ,E , and thus DNMα,E = (1 − ζα,E(N))wMβ,E . For the other statement note
that ζΦα,E(N) = qζα,E(1). �

Remark 3.14. We conjecture that there are evaluation formulas for the special case E =
{1, 2, . . . ,m,N}, αi = 0 for i > m and x0 =

(
tN−1, tN−2, . . . , t, 1

)
. Here are some small examples

in isotype (2, 1, 1)

J(1,1,0,0),E(x0) =
t5
(
q − t4

)
q − t2

g12(θ),

J(1,2,0,0),E(x0) =
t7
(
q − t4

)(
q2 − t4

)(
q − t2

)(
q2 − t3

) g12(θ),

J(2,1,0,0),E(x0) =
t7
(
q − t2

)(
q − t4

)(
q2 − t4

)
(q − t)

(
q − t2

)(
q2 − t3

) g12(θ),

g12(θ) = θ1θ2 −
1

t2(1 + t)
(tθ1 − θ2)(θ3 + θ4).

Replace g12(θ) by (θ1θ2θ3 + θ1θ2θ4) for the P3,1 version (by applying M).

3.3 Symmetric bilinear form

In this section we define an inner product (symmetric bilinear form) on sPm in which T i, ξi
are self-adjoint, the Macdonald polynomials are pairwise orthogonal and it is positive-definite
for t, q > 0, q 6= 1 and min

(
q1/N , q−1/N

)
< t < max

(
q1/N , q−1/N

)
. The background and

proofs for this section are in [8]. The hypotheses 〈T if, g〉 = 〈f,T ig〉 for 1 ≤ i < N and
〈ξNf, g〉 = 〈f, ξNg〉 already imply that 〈ξif, g〉 = 〈f, ξig〉 for all i since ξi = t−1T iξi+1T i and thus
〈Mα,E ,Mβ,F 〉 = 0 if (α,E) 6= (β, F ) (at least one different {ξi}-eigenvalue). Denote 〈f, f〉 =
‖f‖2, even if possibly nonpositive. The aim is to determine a formula for ‖Mα,E‖2 which, other
than leading coefficients q∗t∗, involves only linear factors of the form (1 − qqtb) with a ∈ N0,

b ∈ Z, |b| ≤ N . Recall u(z) := (t−z)(1−tz)
(1−z)2 from Definition 2.25.
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Proposition 3.15. Suppose there is a symmetric bilinear form on sP in which each T i and ξi
is self-adjoint and suppose E ∈ Y0 ∪ Y1, α ∈ NN0 and αi < αi+1 for some i then

‖Msiα,E‖2 = u
(
qαi+1−αitc(rα(i+1),E)−c(rα(i),E)

)
‖Mα,E‖2.

Proof. This is the same argument used in Lemma 2.17. �

We introduce a product for expressing ‖Mα,E‖2 in terms of ‖Mα+,E‖2.

Definition 3.16. For E ∈ Y0 ∪ Y1, α ∈ NN0 let

R(α,E) :=
∏

1≤i<j≤N,αi<αj

u
(
qαj−αitc(rα(j),E)−c(rα(i),E)

)
.

There are inv(α) terms in the product. The next proposition assumes the same hypotheses
on the bilinear form.

Proposition 3.17. Suppose E ∈ Y0 ∪ Y1, α ∈ NN0 then

‖Mα+,E‖2 = R(α,E)‖Mα,E‖2.

Proof. With the same argument as in Proposition 2.26 one shows αi < αi+1 implies

R(α,E)

R(siα,E)
= u

(
qαi+1−αitc(rα(i+1),E)−c(rα(i),E)

)
. �

Another hypothesis is required to define the inner product for all polynomials starting with
bosonic degree 0 (M0,E = τE). The approach of making Di the adjoint of multiplication by xi,
or making an isometry out of the latter (torus norm) as is done in the Jack polynomial situation,
does not work here without a modification.

Theorem 3.18 ([8, Section 3.3]). There is a unique symmetric bilinear form on sPm which
extends the form in Definition 2.6 and satisfies (for f, g ∈ sPm and 1 ≤ i < N)

〈T if, g〉 = 〈f,T ig〉, (3.4)

〈ξNf, g〉 = 〈f, ξNg〉, (3.5)

〈w−1DNf, g〉 = (1− q)〈f, xNwg〉. (3.6)

It follows from ξi = t−1T iξi+1T i that 〈ξif, g〉 = 〈f, ξig〉 for all i. The reason for the fac-
tor (1−q) is to allow the limit as t→ 1 when q = t1/κ to obtain nonsymmetric Jack polynomials.

In [8] hypothesis (3.6) is stated in the equivalent form

〈DNf, g〉 = (1− q)〈f, xNww∗g〉,

where

w∗ = T 1T 2 · · ·TN−1wT−1
1 T−1

2 · · ·T
−1
N−1,

〈wf, g〉 = 〈f,w∗g〉,

and this expression follows from w = tN−1T−1
N−1 · · ·T

−1
2 T−1

1 ξ1. Next we use hypothesis (3.6) to
relate norms for polynomials of different bosonic degrees.

Proposition 3.19. Suppose E ∈ Y0 ∪ Y1, α ∈ NN0 then

‖MΦα,E‖2 =
1− qα1+1tc(rα(1),E)

1− q
‖Mα,E‖2.
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Proof. In (3.6) set g = Mα,E and f = MΦα,E then (1−q)〈f, xNwg〉 = (1−q)‖MΦα,E‖2. On the
other hand

DNf =
1

xN
(1− ξN )f =

1

xN
(1− ζΦα,E(N))MΦα,E = (1− ζΦα,E(N))wMα,E ,

〈w−1DNf, g〉 = (1− ζΦα,E(N))〈Mα,E ,Mα,E〉,

thus ‖MΦα,E‖2 =
1−ζΦα,E(N)

1−q ‖Mα,E‖2 and ζΦα,E(N) = qζα,E(1) = qα1+1tc(rα(1),E). �

With this formula and Proposition 3.17 we can use induction to find ‖Mα,E‖2 for any α.
The first step uses α = 0 and any E ∈ Y0 ∪ Y1, where M0,E = τE and the spectral vector

[ζ0,E(i)]Ni=1 =
[
tc(i,E)

]N
i=1

. Then Φα = (0, . . . , 0, 1) and MΦα,E = xNT
(N)τE , ‖MΦα,E‖2 =

1−qtc(1,E)

1−q ‖τE‖2 (see Propositions 2.26 and 2.33 for this value).

The argument for establishing the formula for ‖Mλ,E‖2, where λ ∈ NN,+0 uses the following
steps, starting with the assumption that λk ≥ 1 and λj = 0 for k < j ≤ N . Throughout E is
fixed. Let

µ = (λ1, . . . , λk−1, λk − 1, 0.., 0) = α+,

α = (λk − 1, λ1, . . . , λk−1, 0, . . . , 0),

β = (λ1, . . . , λk−1, 0, . . . , 0, λk) = Φα

so that ‖Mα,E‖2 = R(α,E)−1‖Mµ,E‖2, ‖Mβ,E‖2 = 1−qλk tc(k,E)

1−q ‖Mα,E‖2 (since rα(1) = k) and

‖Mλ,E‖2 = R(β,E)‖Mβ,E‖2. In the resulting formula we use a slightly different expression

for u(z) = (t−z)(1−tz)
(z−1)2 = t (1−z/t)(1−tz)

(z−1)2 because u(z)/t is invariant under t → 1
t , z →

1
z , but this

causes a power of t to appear in the form k(λ) :=
∑N

i=1(N − 2i+ 1)λi for λ ∈ NN,+0 . The shifted
q-factorial (z; q)0 = 1, (z; q)n+1 = (z; q)n(1− zqn), n = 0, 1, 2, . . . is used.

Theorem 3.20 ([8]). Suppose λ ∈ NN,+0 , α, β ∈ NN0 and E,F ∈ Y0 ∪ Y1 then the following
satisfy the hypotheses (3.4), (3.5), and (3.6):

〈Mα,E ,Mβ,F 〉 = 0, (α,E) 6= (β, F ),

‖Mα,E‖2 = R(α,E)−1‖Mα+,E‖2,

‖Mλ,E‖2 = tk(λ)‖τE‖2(1− q)−|λ|
N∏
i=1

(
qtc(i,E); q

)
λi

×
∏

1≤i<j≤N

(
qtc(i,E)−c(j,E)−1; q

)
λi−λj

(
qtc(i,E)−c(j,E)+1; q

)
λi−λj(

qtc(i,E)−c(j,E); q
)2
λi−λj

.

As Griffeth [11] pointed out there is not much cancellation between successive terms in gene-
ral; there is a certain amount for the extreme cases E0 = {N − m,N − m + 1, . . . , N} and
E1 = {1, 2, . . . ,m − 1}. By [8, Proposition 11] ‖Mα,E‖2 > 0 if q > 0 and min

(
q−1/N , q1/N

)
<

t < max
(
q−1/N , q1/N

)
.

4 Symmetric Macdonald superpolynomials

4.1 From nonsymmetric to symmetric

This concerns polynomials p in sPm which satisfy T ip = tp for 1 ≤ i < N and which are
eigenfunctions of

∑N
i=1 ξi. We call polynomials satisfying T ip = tp for all i, or T ip = −p
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for all i, symmetric or antisymmetric, respectively. (The meaning of symmetric here is not
the same as for the symmetric group situation, as will be shown by example.) There are two
approaches to producing symmetric polynomials. One way is to identify a set of Mα,E which
is closed under the steps f → (T i + b)f of the type described in Proposition 3.6 and then to
apply the symmetry conditions to a linear combination of these polynomials with undetermined
coefficients. The other way is to apply a symmetrization operator to one polynomial. The ori-
ginal idea for these approaches comes from Baker and Forrester [2].

Definition 4.1. For α ∈ NN0 and E ∈ Y0 ∪ Y1 let bα,Ec denote the tableau obtained from YE
by replacing i by α+

i for 1 ≤ i ≤ N . Let M(α,E) = span{Mβ,F : bβ, F c = bα,Ec}.

Example: let N = 9, m = 4, E = {2, 3, 6, 8, 9}, α = (3, 5, 6, 2, 2, 1, 4, 4, 6), α+ = (6, 6, 5, 4, 4,
3, 2, 2, 1) and

YE =

[
9 7 5 4 1
· 8 6 3 2

]
, bα,Ec =

[
1 2 4 4 6
· 2 3 5 6

]
.

Theorem 4.2 ([9, Proposition 5.2]). Suppose α ∈ NN0 and E ∈ Y0 ∪ Y1, then there is a series
of transformations of the form a(T i + b) mapping Mα,E to Mβ,F if and only if bβ, F c = bα,Ec.

It is a consequence of the transformation rules that if bβ, F c = bα,Ec then the spectral
vector ζβ,F is a permutation of ζα,E . Furthermore M(α,E) is an HN (t)-module.

Theorem 4.3 ([9, Theorem 5.27]). Suppose α ∈ NN0 and E ∈ Y0∪Y1 and bα,Ec is column-strict
(the entries in column 1 are strictly decreasing) then there is a unique symmetric polynomial
(up to multiplication by a constant) in M(α,E) otherwise there is no nonzero symmetric poly-
nomial.

In [6] the authors defined a superpartition with N parts and fermionic degree m as an N -tuple(
Λ1, . . . ,Λm; Λm+1, . . . ,ΛN

)
which satisfies Λ1 > Λ2 > · · · > Λm and Λm+1 ≥ Λm+2 ≥ · · · ≥ ΛN .

Suppose λ ∈ NN,+0 , E ∈ Y0 and bλ,Ec is column strict, then Λi = bλ,Ec[m+ 2− i, 1] for 1 ≤ i
≤ m and Λi = bλ,Ec[1, N + 1− i] for m+ 1 ≤ i ≤ N , and also Λm > ΛN . Alternatively suppose
λ ∈ NN,+0 , E ∈ Y1 and bλ,Ec is column strict, then Λi = bλ,Ec[m + 1 − i, 1] for 1 ≤ i ≤ m
and Λi = bλ,Ec[1, N + 2− i] for m+ 1 ≤ i ≤ N , and also Λm ≤ ΛN (because Λm = bλ,Ec[1, 1]
and ΛN = bλ,Ec[1, 2]). Thus the inequalities Λm > ΛN and Λm ≤ ΛN distinguish Y0 from Y1.

As a standardization for the labels use λ = α+ and for E use the root ER or the sink ES

Definition 4.4. Suppose E ∈ Y0, λ ∈ NN,+0 then the root ER and the sink ES (which implicitly
depend on λ) satisfy

inv(ER) = min
{

inv(F ) : bα, F c = bλ,Ec
}
,

inv(ES) = max
{

inv(F ) : bα, F c = bλ,Ec
}
.

The root and the sink are produced by minimizing the entries of F in row 1, respectively
minimizing the entries of F in column 1. For E ∈ Y1 the definitions of ER and ES are reversed.

So in the above example ER = E and ES = {1, 3, 6, 7, 9} and there are four sets F such that
bλ, F c = bλ,ESc.

Consider p =
∑
bβ,F c=bλ,ERcA(β, F )Mβ,F then the action of T i decomposes the sum into

pairs and singletons. Suppose bβ, F c =
⌊
λ,ER

⌋
for some β with βi < βi+1, some i. Let

z = ζβ,F (i+ 1)/ζβ,F (i) then(
T i +

t− 1

z − 1

)
Mβ,F = Msiβ,F , T iMβ,F = − t− 1

z − 1
Mβ,F +Msiβ,F ,(

T i +
t− 1

z−1 − 1

)
Msiβ,F = u(z)Mβ,F , T iMsiβ,F = u(z)Mβ,F −

t− 1

z−1 − 1
Msiβ,F ,
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and

(T i − t)
(
A(β, F )Mβ,F +A(siβ, F )Msiβ,F

)
= 0

implies A(β, F ) = t−z
1−zA(siβ, F ).

Definition 4.5. Let u0(z) := t−z
1−z , u1(z) := 1−tz

1−z and for β ∈ NN0 , F ∈ Y0 ∪ Y1, k = 1, 2 let

Rk(β, F ) =
∏

1≤i<j≤N, βi<βj

uk
(
qβj−βitc(rβ(j),F )−c(rβ(i),F )

)
.

Thus R(β, F ) = R0(β, F )R1(β, F ) (see Definition 3.16).

Lemma 4.6. If T ip = tp for 1 ≤ i < N then

A(β, F ) = R0(β, F )A
(
β+, F

)
.

Proof. Suppose βi > βi+1 then

R0(siβ, F )

R0(β, F )
= u0

(
ζβ,F (i)

ζβ,F (i+ 1)

)
.

The same argument as in Proposition 2.26 applies. �

Definition 4.7. For k = 0, 1 let Ck(E) :=
∏

1≤i<j<N,
c(i,E)<0<c(j,E)

uk
(
tv(i,E)−c(ij,E)

)
.

Thus C
[
c(i, E)]Ni=1

)
= C0(E)C1(E) (see (2.4)).

Lemma 4.8.
A(β, F )

C0(F )
=
A (β,ES)

C0 (ES)
.

Proof. Consider the possibilities when βi = βi+1 and j = rβ(i): if c(j, F ) = c(j + 1, F ) + 1,
that is, j and j + 1 are in adjacent cells of row 1 of YF then T iMβ,F = tMβ,F , imposing no
conditions on A(β, F ); if c(j, F ) = c(j + 1, F ) − 1 then T iMβ,F = −Mβ,F but this occurs
only if there are adjacent equal values (βi) in column 1 of bλ,ERc, ruled out by hypothesis;
c(j, F ) < 0 < c(j + 1, F ). In this case we relate Mβ,F to Mβ,sjF , where inv(sjF ) = inv(F )− 1:

the formulas similar to (3.2) with z =
ζβ,F (i)
ζβ,F (i+1) = tc(j,F )−c(j+1,F ) appear here:

T iMβ,sjF = − t− 1

z − 1
Mβ,sjF +Mβ,F ,

T iMβ,F = u(z)Mβ,sjF −
t− 1

z−1 − 1
Mβ,F ,

then (T i − t)
(
A(β, F )Mβ,F +A(β, sjF )Mβ,sjF

)
= 0 implies A

(
β, sjF

)
= t−z

1−zA(β, F ). �

So A(β, F ) = R0(β, F )A(β+, F ) = A(λ,ES)
R0(β, F )C0(ES)

C0(F )
.

Theorem 4.9. Suppose λ ∈ NN,+0 , E ∈ Y0, and bλ,Ec is column-strict then

pλ,E =
∑

bα,F c=bλ,Ec

C0 (ES)R0 (α, F )

C0(F )
Mα,F

is the supersymmetric polynomial in M(λ,E), unique when the coefficient of Mλ,ES is 1.

To show that this meaning of symmetric is different from the group case consider N = 4,
E = {1, 2}, m = 3, λ = (2, 1, 0, 0) and the corresponding symmetric polynomial (too large to
display here) begins:

p = x2
1x2θ1θ2(θ3 + θ4)− x2

1x3θ1(tθ2θ3 + (t− 1)θ2θ4 − θ3θ4)− tx2
1x4θ1(θ2 + θ3)θ4 + · · · .
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4.2 Symmetrization operator and norms

The symmetrization operator is defined analogously to the group case.

Definition 4.10. For n ≥ 1 let X0 = 1 and Xn = 1 + T nXn−1, and S(n) = X1X2 · · ·Xn.

Equivalently Xn = 1 + T n + T nT n−1 + · · ·+ T n · · ·T 2T 1.

Theorem 4.11. If 1 ≤ j ≤ n then
(
T j − t

)
S(n) = 0.

Proof. Consider the same formulas with T i replaced by si and denote X̃n = 1 + snX̃n−1.
In the full expansion there are (n+ 1)! terms and the coefficient of tk in [n+ 1]t! is the number
of terms with k factors. Claim that S̃(n) = X̃1X̃2 · · · X̃n =

∑
u∈Sn+1

u ∈ ZSn+1; proceeding

by induction the statement is true for n = 1, where X̃1 = 1 + s1 and now suppose it is true
for n and consider

∑
u∈Sn+1

u(1+sn+1 +sn+1sn+ · · ·+sN+1 · · · s1) acting on γ = (γ1, . . . , γn+2);
then sn+1 · · · sjγ = (γ1, . . . , γi−1, γi+1, . . . , γn+2, γi). Thus

∑
u∈Sn+1

usn+1 · · · sj is the sum of

all u(i) such that
(
u(i)γ

)
n+2

= γi. This shows S̃(n+1) =
∑

u∈Sn+2
u. Since the number of terms

with k factors in S̃(n) is the same as the number of u of length k each term is of minimum
length (the shortest expression of u as a product of {si}). Thus replacing each si by T i shows
that S(n) =

∑
u∈Sn+1

T (u).

Replacing T i by T n+1−i for 1 ≤ i ≤ n in S(n) does not affect the sum (implicitly the braid
relations are used). Given j ≤ n apply the map T i → T j+1−i in X1X2 · · ·Xj to obtain

S(n) =
(
1 + T j

)(
1 + T j−1 + T j−1T j

)
· · ·
(
1 + T 1 + · · ·+ T 1 · · ·T j

)
Xj+1 · · ·Xn

and it is now obvious that
(
T j − t

)
S(n) = 0. �

Corollary 4.12. Suppose f ∈ sPm then T j

(
S(N−1)f

)
= tS(N−1)f for 1 ≤ j < N .

Corollary 4.13. S(n)S(n) = [n+ 1]t!S
(n).

Proof. The effect of Xj on an invariant polynomial is to multiply by 1 + t+ t2 + · · ·+ tj . �

Corollary 4.14. Suppose f, g ∈ sPm then
〈
S(N−1)f, g

〉
=
〈
f, S(N−1)g

〉
.

Proof. Suppose u ∈ SN and u = si1 · · · si` is a shortest expression for u so that T (u) = T i1 · · ·
× T i` then 〈T (u)f, g〉 = 〈f,T i` · · ·T i1g〉 =

〈
f,T (u−1)g

〉
. Since

∑
u∈SNT (u) =

∑
u∈SNT (u−1)

this completes the proof. �

There is a summation-free formula for ‖pλ,E‖2, derived as follows:

Suppose bα, F c = bλ,Ec then S(N−1)Mα,F = cpλ,E for some constant c, because of the
uniqueness of pλ,E in M(λ,E). Then〈

pλ,E , S
(N−1)Mα,F

〉
= c〈pλ,E , pλ,E〉 =

〈
S(N−1)pλ,E ,Mα,F

〉
= [N ]t!〈pλ,E ,Mα,F 〉 = [N ]t!

C0

(
ES
)
R0(α, F )

C0(F )
‖Mα,F ‖2. (4.1)

The evaluation depends on determining c, which can be done by using Mλ−,ER , where λ− is the
nondecreasing rearrangement of λ. For each i ≤ λ1 let mi = #

{
j :
⌊
λ,ES

⌋
[1, j] = i

}
(the mul-

tiplicity of i in row 1 of
⌊
λ,ES

⌋
). We will show that the coefficient of Mλ,ES in S(N−1)Mλ−,ER

is [mi]t!. (This was shown in [9, Theorem 5.39]; we are outlining a proof here with simplifications
due to the simple hook shape (N −m, 1m), also to accommodate the different notation.) Here



22 C.F. Dunkl

is an illustration of the following theorem and the method of proof. Suppose λ = (3, 2, 2, 2, 1, 0)
and

YER =

[
6 5 3 2
· 4 1

]
,

⌊
λ,ES

⌋
=

[
0 1 2 2
· 2 3

]
, YES =

[
6 5 4 3
· 2 1

]
.

We demonstrate the effect on the significant terms by using the spectral vectors:(
λ−, ER

)
'
(
1, qt, q2t3, q2t2, q2t−1, q3t−2

)
,

X5 :
(
qt, q2t3, q2t2, q2t−1, q3t−2, 1

)
,

X4 :
(
q2t3, q2t2, q2t−1, q3t−2, qt, 1

)
,

X3 : (1 + t)×
(
q2t3, q2t−1, q3t−2, q2t2, qt, 1

)
,

X2 : (1 + t)×
(
q2t−1, q3t−2, q2t3, q2t2, qt, 1

)
,

X1 : (1 + t)×
(
q3t−2, q2t−1, q2t3, q2t2, qt, 1

)
,

and this is the spectral vector of
(
λ,ES

)
.

Theorem 4.15. For each Mβ,F ∈ M
(
λ,ES

)
with (β, F ) 6=

(
λ,ES

)
there is a constant cβ,F

such that

S(N−1)Mλ−,ER =

λ1∏
i=1

[mi]t!Mλ,ES +
∑

bβ,F c=bλ,ESc

{
cβ,FMβ,F : (β, F ) 6=

(
λ,ES

)}
.

Proof. The proof relies on identifying the intermediate steps in transforming xλ
−
Rλ−(τER)

to xλτES . Roughly the action of XN−1−i transforms Mα(i),E to Mα(i+1),E by means of TN−1−i
× · · ·T 1, where α(0) = λ− and for i ≥ 1

α(i) =
(
λN−i, λN−2, . . . , λ1, λN−i+1, . . . , λN

)
however the situation is not this simple because repeated values of λj have to taken into account.
Note that Xj does not affect the variables xk for k > j + 1. It (almost) suffices to consider the
coefficient of xα(1) in XN−1Mλ−,ER . (Throughout we use Σ to denote a linear combination
of terms Mβ,F which can not be transformed into Mλ,ES by the operators X1 · · ·Xj .) Suppose
that λN < λN−1 (that is, λ−1 < λ−2 ) then TN−1−i · · ·T 1Mλ−,ER = Mα(1),ER +Σ, and the process
is repeated with Mα(1),ER . The other possibility is that λN−k > λN−k+1 = · · · = λN for some
k ≥ 2. This implies rλ−(i) = N − k + i for 1 ≤ i ≤ k and c (rλ−(i), ER) = k − i, because the
entries N − k + 1, . . . , N are adjacent in row 1 of YER (by hypothesis bλ,Ec[2, 1] > λN and
so λN = λN−1 implies bλ,Ec[1, 2] = N − 1). Thus T iMλ−,ER = tMλ−,ER for 1 ≤ i ≤ k − 1 and

TN−1 · · ·T k(1 + T k−1 + T k−1T k−2 + · · ·+ T k−1 · · ·T 1)Mλ−,ER

=
(
1 + t+ t2 + · · ·+ tk−1

)
TN−1 · · ·T kMλ−,ER = [k]t

{
Mα(1),ER + Σ

}
.

Then α(1) =
(
λN−1, . . . , λN−k+1, λN−k, . . . , λ1, λN

)
and the previous argument applies with

k − 1 replacing k. The result of applying XN−k · · ·XN−1 is [k]tMα(k),Er + Σ. Now α(k) =(
λN−k, λN−k+1, · · ·

)
and the λN < λN−1 type process applies.

The last case to consider is λN−i−1−k > λN−i−k = · · · = λN−i > λN−i+1, where YER [`, 1] =
N − i and the entries N − i− 1, N − i− 2, . . . , N − i− k are adjacent in row 1 of YER . Then

α(i) =
(
λN−i, . . . , λN−i−k, λN−i−k−1

)
,
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and similarly to the previous case T iMα(i),E′ = tMα(i),E′ for 1 ≤ i ≤ k − 1. The set E′ is
an intermediate step in a series of transpositions transforming ER to ES , at this stage using
only sj with i > N − i. Similarly

TN−i−1 · · ·T k(1 + T k−1 + T k−1T k−2 + · · ·+ T k−1 · · ·T 1)Mα(i),E′

=
(
1 + t+ t2 + · · ·+ tk−1

)
TN−i−1 · · ·T kMα(i),E′ = [k]t

{
Mα(i+1),E” + Σ

}
.

Here T k transforms Mα(i),E′ to Mα(i),E′′ , where E′′ = sN−i−1E
′ (since c(N − i, E′) < 0 <

c(N − i− 1, E′) and inv(E′′) = inv(E′) + 1. Eventually these steps transform ER to ES and λ−

to λ. Each set of mi (contiguous) λi values λj = i in row 1 of
⌊
λ,ES

⌋
contributes a factor

of [mi]t!. By beginning with ER the factors appearing in (T i + b)Mβ,F are always 1 (see (3.3)
and (3.2)). �

Lemma 4.16. Suppose

F (α,E) :=
∏

1≤i<j≤N
αi<αj ,

g
(
αj − αi, c(rα(j), E)− c(rα(i, E))

)
for some function g then

F (λ−, E) =
∏
λi>λj

g
(
λi − λj , c(i, E)− c(j, E)

)
.

Proof. It is clear that λi > λj if and only if λ−N+1−i > λ−N+1−j . If λa−1 > λa = · · · = λa+k−1 >

λa+k then [rλ−(b+ i)]ki=1 = [a, a+1, . . . , a+k−1] and λ−b+i = λa for b = N +1−a−k, 1 ≤ i ≤ k.

The corresponding contents [c(rλ−(b + i)), E]ki=1 are the same as [c(a + i − 1), E]ki=1. So each
term in Fλ−,E matches one in the stated λ-product. �

Theorem 4.17. Suppose bλ,ESc is column-strict and mi = #
{
j : bλ,ESc[1, j] = i

}
for 0 ≤ i

≤ λ1 then

‖pλ,ES‖
2 = t2(N−m−1)+k(λ)[m+ 1]t(1− q)−|λ|

N∏
i=1

(
qtc(i,ES); q

)
λi

×
∏

1≤i<j≤N

(
qtc(i,ES)−c(j,ES)−1; q

)
λi−λj

(
qtc(i,ES)−c(j,ES)+1; q

)
λi−λj−1(

1− qλi−λj tc(i,ES)−c(j,ES)
)(
qtc(i,ES)−c(j,ES); q

)2
λi−λj−1

× [N ]t!∏
i≥0

[mi]t!
C0

(
ES
)
C1

(
ER
)
.

Proof. By (4.1) and Theorem 4.15 c =
∏
i≥0[mi]t!,

‖pλ,ES‖
2 =

[N ]t!∏
i≥0

[mi]t!

C0

(
ES
)
R0

(
λ−, ER

)
C0

(
ER
) ∥∥Mλ−,ER

∥∥2

=
[N ]t!∏

i≥0
[mi]t!

C0

(
ES
)
R0

(
λ−, ER

)
C0

(
ER
)
E
(
λ−, ER

) ∥∥Mλ,ER

∥∥2

and ∥∥Mλ,ER

∥∥2
= t`(λ)‖τER‖

2(1− q)−|λ|
N∏
i=1

(
qtc(i,ER); q

)
λi

×
∏

1≤i<j≤N

(
qtc(i,ER)−c(j,ER)−1; q

)
λi−λj

(
qtc(i,ER)−c(j,ER)+1; q

)
λi−λj(

qtc(i,ER)−c(j,ER); q
)2
λi−λj

.
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Also ‖τER‖2 = t2(N−m−1)[m + 1]tC
(
[c(i, ER)]Ni=1

)
= t2(N−m−1)[m + 1]tC0

(
ER
)
C1

(
ER
)
. Since

E
(
λ−, ER

)
= R0

(
λ−, ER

)
R1

(
λ−, ER

)
the terms R0

(
λ−, ER

)
and C0

(
ER
)

cancel out. By the
lemma

R1

(
λ−, ES

)
=

∏
1≤i<j≤N

u1

(
qλi−λj tc(i,ER)−c(j,ER)

)
=

∏
1≤i<j≤N

1− qλi−λj tc(i,ER)−c(j,ER)+1

1− qλi−λj tc(i,ER)−c(j,ER)

and dividing by this product changes two of the (∗; q)λi−λj terms to (∗; q)λi−λj−1. �

Note that ER can be replaced by ES in the first two lines of the formula for ‖pλ,ES‖2. By using
the M map the formulas produce supersymmetric polynomials in Pm,1: consider the polynomials
M(pλ,ES ), where pλ,ES ∈ Pm−1,0. This is why we do not go into detail about the E ∈ E1 case.
The norm formula implies the identity∑

bα,F c=bλ,Ec

C1(F )R0(α, F )

C0(F )R1(α, F )
=

[N ]t!∏
i≥0

[mi]t!

C1

(
ER
)

C0

(
ES
)
R1

(
λ−, ER

) .
This formula was checked by computer algebra for a “small” example, N = 5, m = 2, λ =
(2, 2, 1, 1, 0) with

⌊
λ,ES

⌋
=

[
0 1 2
· 1 2

]
, ER = {2, 4, 5}, ES = {1, 3, 5};

there are 120 labels (β, F ) with bβ, F c =
⌊
λ,ES

⌋
, that is dimM

(
λ,ES

)
= 120.

4.3 Special values

In the scalar Macdonald polynomial situation there are formulas for special values. There is one
such fairly simple formula here. Let F = {1, 2, . . . ,m,N}. (In the Y1-case use E1.) Refer to
Proposition 2.34 for useful facts about τF and ‖τF ‖2.

Proposition 4.18. Suppose p ∈ sPm is symmetric and

z :=
(
z1, z2, . . . , zm, t

N−m−1, . . . , t2, t, 1
)

then

p(z; θ) =
∏

1≤i<j≤m
(zi − tzj)

m∏
k=1

(
zk − tN−m

)
p0(z1, . . . , zm)τF ,

where p0 is Sm-symmetric.

Proof. First we show that if T ip(x; θ) = tp(x; θ) then Tip
(
x(i); θ

)
= tp

(
x(i); θ

)
, where x

(i)
i =

tx
(i)
i+1. By hypothesis

(1 + T i)p(x; θ) = (1 + t)p(x; θ) = p(x; θ) + (1− t)xi+1
p(x; θ)− p(xsi; θ)

xi − xi+1
+ Tip(xsi; θ).

Substitute xi = txi+1 in the equations:

(1 + t)p(x; θ) = p(x; θ)− (p(x; θ)− p(xsi; θ)) + Tip(xsi; θ) = (1 + Ti)p(xsi; θ)

and this shows (t− Ti)p(x; θ) = 0 at x = x(i). By hypothesis on z this shows Tip(z; θ) = tp(z; θ)
for m + 1 ≤ i < N and this implies ωip(z; θ) = tN−ip(z; θ) for m + 1 ≤ i ≤ N . There is only
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one τE which has these {ωi}-eigenvalues, namely τF . Thus p(z; θ) = p̃(z1, . . . , zm)τF for some
polynomial p̃ and T ip̃(z)τF = tp̃(z)τF for 1 ≤ i < m. In this range TiτF = −τF thus p̃ satisfies
the equation

tp̃(z)τE = (1− t)zi+1
p̃(z)− p̃(zsi)
zi − zi+1

τE − p̃(zsi)τE ,

p̃(zsi) =
zi+1 − tzi
zi − tzi+1

p̃(z).

Thus zi − tzi+1 is a factor of p̃(z) because p̃(zsi) is polynomial. Furthermore p̃(z)/(zi − tzi+1)
is si-invariant. We claim by induction that (zi− tzi+k) is a factor of p̃(z) for 1 ≤ i < i+ k ≤ m:
this is valid for k = 1 so consider that (zi − tzi+k) is a factor of p̃(z) and p̃(z)/(zi+k − tzi+k+1)
is si+k-invariant thus (zi − tzi+k+1) is a factor (where i+ k + 1 ≤ m).

Suppose z′m = tN−m = tz′N−m+1 then Tmp̃(z
′)τF = tp̃(z′)τF but this implies p̃(z′) = 0

or ωmτF = tN−mτF which is impossible. Thus
(
zm − tN−m

)
is a factor of p̃(z). The symmetry

properties imply
(
zi − tN−m

)
is a factor of p̃(z) for 1 ≤ i ≤ m. �

González and Lapointe [10] proved an evaluation formula for the version of supersymmetric
Macdonald polynomials constructed in [3], with

z =
(
tN−1q−m, tN−2q1−m, . . . , tN−mq−1, tN−m−1, . . . , t, 1

)
.

An example appears to show there is no such general result in our version. However there may
be one for the special case where bλ,ESc[1, j] = 0 for 1 ≤ j ≤ N −m. At this point we offer no
conjecture, but some very small examples with N = 3, 4 and |λ| ≤ 4 suggest there is something
to be found.

4.4 Minimal symmetric polynomial

For given N,m, isotype (N −m, 1m) there is a unique column-strict tableau with minimum sum
of entries, namely

bλ,Ec =

[
0 0 0 · · · 0
· 1 2 · · · m

]
,

thus λ = (m,m − 1, . . . , 2, 1, 0, . . . , 0) and ER = ES = {1, 2, . . . ,m,N}. There is non-trivial
multiplicity m0 = N −m. Thus pλ,E is the symmetric polynomial in Pm,0 of minimum bosonic

degree m(m+1)
2 There is a concise formula for ‖pλ,E‖2.

Theorem 4.19. Suppose λ = (m,m− 1, . . . , 1, 0, . . . , 0) ∈ NN,+0 and E = {1, 2, . . . ,m,N} then
bλ,Ec is column-strict and

‖pλ,E‖2 =
[N ]t![N ]tt

γ

[N −m]t![N −m]t

(
qt−N ; q

)
m

m∏
j=2

(
qt−j ; q

)
j−1

,

with γ = (N −m− 1)
(
1 + (m+1)(m+2)

2

)
+ m(m+1)(m+2)

6 .

Proof. The exponent on t is

γ = 2(N −m− 1) + k(λ) +m(N −m− 1)

= (m+ 2)(N −m− 1) +
m∑
i=1

(N − 2i+ 1)(m+ 1− i).
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The spectral vector is ζλ,E =
[
qmt−m, qm−1t1−m, . . . , qt−1, tN−m−1, . . . , t, 1

]
. Consider the con-

tent product (part of C) Πk for the pairs (m + 1 − k,m + j) with 1 ≤ k ≤ m and j =
1, . . . , N −m− 1:

Πk =
N−m−1∏
j=1

u
(
t−k−j

)
=
N−m−1∏
j=1

1−t−k−j+1

1− t−k−j
t− t−k−j

1− t−k−j
= tN−m−1 1−t−k

1− t−k−N+m+1

1−t−k−N+m

1− t−k−1
,

by telescoping the products (and t− t−k−j = t(1− t−k−j−1)) then

m∏
k=1

Πk = tm(N−m−1) 1− t−1

1− t−m−1

1− t−N

1− t−N+m
= tm(N−m−1) [N ]t

[m+ 1]t[N −m]t
.

Consider the q-factors for the pairs (m+ 1−k,m+ j) with 1 ≤ k ≤ m and j = 1, . . . , N −m− 1
(use telescoping)

P1,k =

N−m−1∏
j=1

(qt−k−j−1; q)k
(
qt−k−j+1; q

)
k−1(

qt−k−j ; q
)
k

(
qt−k−j ; q

)
k−1

=

(
qt−k−N+m; q

)
k

(
qt−k; q

)
k−1

(qt−m−1; q)m
(
qt−k−N+m+1; q

)
k−1

,

then

P1 :=

m∏
k=1

P1,k =

(
qt−N ; q

)
m(

qt−m−1; q
)
m

.

Next consider (m+ 1− k,m+ 1− i) with k > i ≥ 1 together with (m+ 1− k,N):

P2,k =
k−1∏
i=0

(
qt−k+i−1; q

)
k−i
(
qt−k+i+1; q

)
k−i−1(

qt−k+i; q
)
k−i
(
qt−k+i; q

)
k−i−1

=

(
qt−k−1; q

)
k(

qt−k; q
)
k

.

Combine

N∏
i=1

(
qtc(i,E); q

)
λi
P1

m∏
k=1

P2,k =

(
qt−N ; q

)
m(

qt−m−1; q
)
m

m∏
k=1

(
qt−k; q

)
k

(
qt−k−1; q

)
k(

qt−k; q
)
k

=
(
qt−N ; q

)
m

m−1∏
k=1

(
qt−k−1; q

)
k
.

This concludes the proof. �

The formula has a hook length interpretation:
∏

(i,j)∈YE
(
qt−hook(i,j); q

)
leg(i,j)

; here leg(1, j)=0

for 2 ≤ j ≤ N−m; hook(i, 1) = m+2−i, leg(i, 1) = m+1−i, 2 ≤ i ≤ m+1 and hook(1, 1) = N ,
leg(1, 1) = m (see [9, Theorem 6.22]).

4.5 Antisymmetric superpolynomials

Consider pa =
∑
bβ,F c=bλ,ERcA(β, F )Mβ,F , where bλ,Ec is row-strict and T ipa = −pa for

1 ≤ i < N . Recall the action of T i on the sum, which decomposes into pairs and singletons.
Suppose bβ, F c = bλ,ERc for some β with βi < βi+1, some i. Let z = ζβ,F (i + 1)/ζβ,F (i) then
by (3.3)

(T i + 1)
(
A(β, F )Mβ,F +A(siβ, F )Msiβ,F

)
= 0

implies A(β, F ) = −1−zt
1−z A(siβ, F ). Recall σ(n) = (−1)n (Definition 2.9).
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Lemma 4.20. If T ipa = −pa for 1 ≤ i < N then

A(β, F ) = σ(inv(β))R1(β, F )A(β+, F ).

Proof. Suppose βi > βi+1 then

R1(siβ, F )

R1(β, F )
= u1

(
ζβ,F (i)

ζβ,F (i+ 1)

)
. �

Consider the possibilities when βi = βi+1 and j = rβ(i): (i) if c(j, F ) = c(j + 1, F ) − 1,
that is, j and j + 1 are in adjacent cells of column 1 of YF then T iMβ,F = −Mβ,F , imposing
no conditions on A(β, F ); (ii) if c(j, F ) = c(j + 1, F ) + 1 then T iMβ,F = tMβ,F but this
occurs only if there are adjacent equal values (βi) in row 1 of bλ,ERc, ruled out by hypothesis;
(iii) c(j, F ) < 0 < c(j+1, F ). In this case we relateMβ,F toMβ,sjF , where inv(sjF ) = inv(F )−1:

the formulas similar to (3.2) with z = ζβ,F (i)/ζβ,F (i+ 1) = tc(j,F )−c(j+1,F ) appear here: then

(T i + 1)
(
A(β, F )Mβ,F +A(β, sjF )Mβ,sjF

)
= 0

implies A
(
β, sjF

)
= −1−tz

1−z A(β, F ).

Lemma 4.21. σ(inv(F ))
A(β, F )

C1(F )
= σ

(
inv(ES)

)A(β,ES)
C1

(
ES
) .

Thus

A(β, F ) = σ(inv(β))R1(β, F )A(β+, F )

= σ
(

inv(β) + inv(F ) + inv
(
ES
))
A
(
λ,ES

)R1(β, F )C1

(
ES
)

C1(F )
.

Theorem 4.22. Suppose λ ∈ NN,+0 , E ∈ Y0, and bλ,Ec is row-strict then

paλ,E =
∑

bα,F c∈T (λ,E)

σ
(

inv(β) + inv(F ) + inv
(
ES
))C1

(
ES
)
R1(α, F )

C1(F )
Mα,F

is the antisymmetric polynomial in M(λ,E), unique when the coefficient of Mλ,ES is 1.

The antisymmetrizing operator is defined analogously to S.

Definition 4.23. For n ≥ 1 let Xa
0 = 1 and Xa

n = 1− 1
tT nXn−1, and A(n) = Xa

1X
a
2 · · ·Xa

n.

Equivalently Xa
n = 1− 1

tT n + 1
t2
T nT n−1 + · · ·+ (−1)n

tn T n · · ·T 2T 1.

Theorem 4.24. If 1 ≤ j ≤ n then (T j + 1)A(n) = 0.

Proof. The operators
{
−1
tT i

}
satisfy the braid relations so the same approach as in Theo-

rem 4.11 works here, and the proof then follows from (T i + 1)
(
1− 1

tT i

)
= 0. �

Similarly to Corollary 4.13 one can show that

A(N−1)A(N−1) = t−N(N−1)/2[N ]t!A
(N−1).

There is a result analogous to Proposition 4.18.

Lemma 4.25. Suppose for some i that T ip(x; θ) = −p(x; θ) then Tip
(
x(i); θ

)
= −p

(
x(i); θ

)
,

where x
(i)
i+1 = tx

(i)
i .
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Proof. By hypothesis

(t− T i)p(x; θ) = (t+ 1)p(x; θ) = tp(x; θ)− (1− t)xi+1
p(x; θ)− p(xsi; θ)

xi − xi+1
Tip(xsi; θ).

Substitute xi+1 = txi in the equations:

(t+ 1)p(x; θ) = tp(x; θ)− t(p(x; θ)− p(xsi; θ))− Tip(xsi; θ) = (t− Ti)p(xsi; θ)

and this shows (1 + Ti)p(x; θ) = 0 at x = x(i). �

Suppose paλ,E is antisymmetric and E0 = {N −m,N −m + 1, . . . , N} and consider paλ,E(z),

where z =
(
z1, z2, . . . , zN−m−1, t

−m, . . . , t−2, t−1, 1
)
, then by the lemma Tip(z; θ) = −p(z; θ) for

N−m ≤ i < N which ωip(z; θ) = ti−Np(z; θ) for N−m ≤ i ≤ N . The eigenvalues determine τE0

and thus p(z; θ) = p̃(z)τE0(θ). If range 1 ≤ i ≤ N −m− 2 then TiτF = tτF thus p̃ satisfies the
equation

−p̃(z)τE0 = (1− t)zi+1
p̃(z)− p̃(zsi)
zi − zi+1

τE0 + tp̃(zsi)τE0 ,

p̃(zsi) =
zi − tzi+1

zi+1 − tzi
p̃(z).

This implies (zi+1 − tzi) is a factor of p̃(z) and p̃(z)
zi+1−tzi is si-invariant. Furthermore (tzi − zj)

is a factor of p̃(z) for 1 ≤ i < j ≤ N −m − 1. Also zN−m−1 = t−m−1 implies p̃(z) = 0 (or else
ωN−m−1τE0 = t−m−1τE0 , contra) and so

(
tm+1zN−m−1 − 1

)
is a factor of p̃(z). Thus

pa(z; θ) =
∏

1≤i<j≤N−m−1

(tzi − zj)
N−m−1∏
k=1

(
tm+1zk − 1

)
p0(z1, . . . , zN−m−1)τE0

and p0 is SN−m−1-symmetric. With methods similar to those of Theorem 4.19 and by use of
the antisymmetrizing operator A(N−1) one can derive a formula for ‖paλ,E‖2.

5 Conclusion

We constructed a representation of the Hecke algebra HN (t) on superpolynomials and applied
the theory of vector-valued nonsymmetric Macdonald polynomials to this situation. The basic
facts such as orthogonal bases for irreducible representations on fermionic variables, the partial
order on compositions used in expressions for the Macdonald polynomials, and a sketch of the
Yang–Baxter graph technique for constructing the polynomials starting from degree zero were
presented. The polynomials are mutually orthogonal with respect to a bilinear form in which
the generators of the Hecke algebra are self-adjoint. The ideas of Baker and Forrester were used
to construct symmetric polynomials and to determine their squared norms.

There are some topics which deserve further investigation. What can be proven about values
of the nonsymmetric Macdonald polynomials at special points such as

(
tN−1, tN−2, . . . , t, 1

)
(see Remark 3.14)? Are there special values of the symmetric and anti-symmetric polynomials?
A minimal factorization was proven in Proposition 4.18.

Characterizing singular values of the parameters q, t and the corresponding polynomials is
another important problem: this means that for a specific value of (q, t) there is a polynomial
annihilated by Di for 1 ≤ i ≤ N (see Definition 3.12). This problem is connected with the
existence of maps between different modules. Also there should be interesting factorizations.
Here are two examples with N = 5.
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Let α = (2, 0, 0, 0, 0), m = 2, E = {3, 4, 5} ∈ Y0 then DiMα,E = 0 for 1 ≤ i ≤ 5 when
q2t5 = 1 or qt = −1 (that is q2t2 = 1, qt 6= 1), and

Mα,E

(
x1, x2, tx2, t

2x2, t
3x2

)
= t10(tx1 − x2)(qtx1 − x2)τE ,

τE = t4θ3θ4 − t3θ3θ5 + t2θ4θ5,

when (q, t) takes on a singular value (note if q = −1/t then qtx1 − x2 = −(x1 + x2)).
Let α = (2, 0, 0, 0, 0), m = 3, E = {1, 2} ∈ Y1 then DiMα,E = 0 for 1 ≤ i ≤ 5 when q2t−5 = 1

or q = −t (that is q2t−2 = 1 and qt−1 6= 1), and

Mα,E

(
x1, x2, t

−1x2, t
−2x2, t

−3x2

)
= t6

(
t−1x1 − x2

)(
qt−1x1 − x2

)
τE ,

τE = θ1θ2(θ3 + θ4 + θ5),

when q2 = t5 (set q = u5, t = u2) or q = −t.
Obviously there are delicate interactions among α, E, q, t, x for such factorizations to hold.
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