
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 17 (2021), 049, 23 pages

Symmetry Breaking Differential Operators

for Tensor Products of Spinorial Representations

Jean-Louis CLERC and Khalid KOUFANY
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Abstract. Let S be a Clifford module for the complexified Clifford algebra C`(Rn), S′ its
dual, ρ and ρ′ be the corresponding representations of the spin group Spin(n). The group
G = Spin(1, n + 1) is a (twofold) covering of the conformal group of Rn. For λ, µ ∈ C, let
πρ,λ (resp. πρ′,µ) be the spinorial representation of G realized on a (subspace of) C∞(Rn,S)
(resp. C∞(Rn,S′)). For 0 ≤ k ≤ n and m ∈ N, we construct a symmetry breaking differential

operator B
(m)
k;λ,µ from C∞(Rn×Rn,S ⊗ S′) into C∞(Rn,Λ∗k(Rn)⊗C) which intertwines the

representations πρ,λ⊗πρ′,µ and πτ∗k ,λ+µ+2m, where τ∗k is the representation of Spin(n) on the
space Λ∗k(Rn)⊗ C of complex-valued alternating k-forms on Rn.
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1 Introduction

In the last years there had been a lot of work on symmetry breaking differential operators
(SBDO for short), initiated by a program designed by T. Kobayashi (see [12] and [13] for more
information on the subject). The present authors have already contributed to the construction
of some SBDO (see [1, 2, 3, 5]). In the present paper, we construct such operators in the context
of tensor product of two spinorial principal series representations of the conformal spin group
of Rn (a two-fold covering of the Lorentz group SO0(1, n+ 1)).

The method we follow has been named source operator method by the first author (see [5]
for a systematic presentation). An essential ingredient is the Knapp–Stein operator for the
spinorial series, which is presented along new lines in the ambient space approach (Section 3.3).
The construction of the source operator requires some Fourier analysis on Rn and in this paper
we develop an approach through an ad hoc symbolic calculus, which eases the computations
(Section 4.3). As a result, an explicit expression for the source operator (of degree 4 with
polynomial coefficients) is obtained (see (4.11)).

Once the source operator is computed, the sequel is standard and yields a family of constant
coefficients bi-differential operators which are covariant for the action of the conformal spinor
group. In complement, a recurrence formula on these operators is obtained. An explicit formula
is obtained for the “simplest” SBDO (scalar-valued and of degree 2).

When the dimension n is equal to 1, the operators thus constructed coincide with the classical
Rankin–Cohen brackets of even degree, see (5.3).

2 Clifford modules

This section contains what is necessary to know about Clifford algebras and their modules
in order to read this article, without any claim to originality. We use [7] and [4] as main
references.
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2.1 The Clifford algebra and the spin group

Let (E, 〈· , ·〉) be a Euclidean vector space of dimension n. The Clifford algebra C`(E) is the
algebra over R generated by the vector space E and the relations

xy + yx = −2〈x, y〉 for x, y ∈ E,

where −2〈x, y〉 is identified with −2〈x, y〉1 and 1 being the algebra identity element.
There is a natural action of the Clifford algebra C`(E) on the exterior algebra Λ(E). For

x ∈ E and ω ∈ Λ(E), let ε(x)ω be the exterior product of x with ω, and let ι(x)ω be the
contraction of ω with the covector 〈x, ·〉. The Clifford action of a vector x ∈ E on Λ(E)
is defined by

c(x)ω = ε(x)ω − ι(x)ω.

The classical formula

ε(x)ι(y) + ι(x)ε(y) = 〈x, y〉

implies that

c(x)c(y) + c(y)c(x) = −2〈x, y〉

and by the universal property of the Clifford algebra, the action c can be extended to C`(E).
Associated to this action is the symbol map σ : C`(E)→ Λ(E) given by

σ(a) = c(a)1 for a ∈ C`(E).

The symbol map can be shown to be an isomorphism, and its inverse γ : Λ(E)→ C`(E) is called
the quantization map, see [4] for more information. For I = {i1, i2, . . . , ik} where 1 ≤ i1 < i2 <
· · · < ik ≤ n, let eI = ei1 ∧ei2 ∧· · ·∧eik . Then the family {eI}, where I runs through all possible
subsets of {1, 2, . . . , n} form a basis of Λ(E). In this basis the quantization map is given by

γ(eI) = ei1ei2 · · · eik . (2.1)

The orthogonal group O(E) acts on E and there is a natural extension of this action both
to Λ(E) and to C`(E). Both σ and γ are isomorphisms of O(E)-modules.

The conjugation α is the unique anti-involution of C`(E) such that for x ∈ E, α(x) = −x.
Notice that

x ∈ E, |x| = 1 implies α(x) = x−1.

The pin group Pin(E) is defined as the multiplicative subset of C`(E) given by

Pin(E) = {g ∈ C`(E), g = x1x2 · · ·xk, |xj | = 1 for 1 ≤ j ≤ k},

the inverse of the element g = x1x2 · · ·xk being the element

g−1 = α(g).

The spin group Spin(E) is defined similarly as

Spin(E) = {g ∈ C`(E), g = x1x2 · · ·x2k, |xj | = 1 for 1 ≤ j ≤ 2k}.

Let x ∈ E such that |x| = 1. Then for any y ∈ E, xyx−1 belongs to E and

xyx−1 = −sxy,

where sx is the orthogonal symmetry with respect to the hyperplane perpendicular to x.
As a consequence, if g ∈ Pin(E), then for any x ∈ E, gxg−1 ∈ E and the map τg : x 7→ gxg−1

belongs to O(E). If moreover g ∈ Spin(E), then τg belongs to SO(E).
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Proposition 2.1. The map g 7→ τg induces homomorphisms

τ : Pin(E)→ O(E), τ : Spin(E)→ SO(E),

which are twofold coverings.

2.2 Clifford module and its dual

Let E be the complexification of E and extend the inner product on E to a symmetric C-bi-
linear form. Denote by C`(E) the complex Clifford algebra of E, which can be identified with
C`(E)⊗ C.

A Clifford module (S, ρ) is a complex vector space S together with a (left) action ρ of C`(E)
on S. By restriction, the action ρ yields representations of the groups Pin(E) or Spin(E), also
denoted by ρ. As Pin(E) is compact, there exists an inner product 〈 · , ·〉 on S for which the
action of the group Pin(E) is unitary. Now for any v ∈ E and for any s, t ∈ S

〈ρ(v)s, t〉 = −〈s, ρ(v)t〉.

In fact, it suffices to prove the formula for v ∈ E such that |v| = 1. But then ρ(v)2 = −1, so
that

〈ρ(v)s, t〉 = −〈ρ(v)s, ρ(v)ρ(v)t〉 = −〈s, ρ(v)t〉

using the unitarity of ρ(v) for v ∈ Pin(E).

The dual space S′ is also a Clifford module with the action ρ′ given by

x ∈ E, t′ ∈ S′, ρ′(x) t′ = − t′ ◦ ρ(x),

and then extended to a representation of C`(E). The restriction of ρ′ to Spin(E) (still denoted
by ρ′) coincides with the contragredient representation of ρ.

Denote the duality between S and S′ by (s, t′), for s ∈ S and t′ ∈ S′. Then

∀x ∈ E, s ∈ S, t′ ∈ S′, (ρ(x)s, t′) = −(s, ρ′(x)t′),

∀g ∈ Spin(E), s ∈ S, t′ ∈ S′, (ρ(g)s, ρ′(g)t′) = (s, t′). (2.2)

2.3 Decomposition of the tensor product S ⊗ S′

Let Λ∗(E) be the dual of Λ(E) and let Λ∗(E)⊗C be its complexification, which can be regarded
as the space of all complex multilinear alternating forms on E.

Define Ψ: S⊗ S′ → Λ∗(E)⊗ C by the following formula, for s ∈ S, t′ ∈ S′ and ω ∈ Λ(E)

Ψ(s⊗ t′)(ω) = (ρ
(
γ(ω)

)
s, t′)

or more explicitly (see (2.1)), for ω = ei1 ∧ · · · ∧ eik ,

Ψ(s⊗ t′)
(
ei1 ∧ · · · ∧ eik

)
=
(
ρ(ei1) · · · ρ(eik) s, t′

)
,

where 1 ≤ i1 < i2 < · · · < ik ≤ n.

Proposition 2.2. The map Ψ: S ⊗ S′ → Λ∗(E) ⊗ C intertwines the representation ρ ⊗ ρ′ and
the natural representation τ∗ of Spin(E) on Λ∗(E)⊗ C.
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Proof. Let g ∈ Spin(E). Recall that for any x ∈ E, τ(g)x = gxg−1, so that

ρ(x)ρ(g) = ρ(g)ρ
(
g−1xg

)
= ρ(g)ρ

(
τ
(
g−1
)
x)
)

and hence, for 1 ≤ i1 < i2 < · · · < ik ≤ n

ρ(ei1) · · · ρ(eik)ρ(g) = ρ(g)ρ
(
τ
(
g−1
)
ei1
)
· · · ρ

(
τ
(
g−1
)
eik
)
.

so that for s ∈ S, t′ ∈ S′

Ψ(ρ(g)s⊗ ρ′(g)t′)
(
ei1 ∧ · · · ∧ eik

)
=
(
ρ(ei1) · · · ρ(eik)ρ(g)s, ρ′(g)t′

)
=
(
ρ(g)ρ

(
τ
(
g−1
)
ei1
)
· · · ρ

(
τ
(
g−1
)
eik
)
s, ρ′(g)t′

)
=
(
ρ
(
τ
(
g−1
)
ei1
)
· · · ρ

(
τ
(
g−1
)
eik
)
s, t′
)

= τ(g)∗Ψ(s⊗ t′)(ei1 ∧ · · · ∧ eik)

we thus get

Ψ(ρ(g)s⊗ ρ′(g)t′) = τ(g)∗
(
Ψ(s⊗ t′)

)
. �

The space Λ∗(E) ⊗ C decomposes further under the action of the group Spin(E) (which
reduces to an action of SO(E)) and in fact

Λ∗(E)⊗ C =
n⊕
k=0

Λ∗k(E)⊗ C,

where Λ∗k(E) is the space of alternating k-forms on E. For 0 ≤ k ≤ n let

Ψ(k) : S⊗ S′ → Λ∗k(E)⊗ C, Ψ(k) = projk ◦Ψ,

the operator projk being the projector from Λ∗(E)⊗ C onto Λ∗k(E)⊗ C.
The following lemma will be needed in the proof of the next proposition.

Lemma 2.3. Let J = {j1, . . . , jk} with 1 ≤ j1 < j2 < · · · < jk ≤ n and let eJ = ej1ej2 · · · ejk .
Then

n∑
i=1

eieJei = (−1)k−1(n− 2k)eJ . (2.3)

Proof. Let 1 ≤ i ≤ n. Assume first that i /∈ J . Then

eieJei = ei(ej1ej2 · · · ejk)ei = (−1)k(ej1ej2 · · · ejk)eiei = (−1)k−1eJ .

Assume on the contrary that i = j` for some `, 1 ≤ ` ≤ k. Then

ei(ej1ej2 · · · ej`−1
)ej`(ej`+1

· · · ejk)ei = (−1)`−1(−1)k−`(ej1ej2 · · · ej`−1
)eiej`ei(ej`+1

· · · ejk)

= (−1)keJ .

Hence

n∑
i=1

eieJei = (n− k)(−1)k−1eJ + k(−1)keJ = (n− 2k)(−1)k−1eJ . �

Let L be the operator on S⊗ S′ given by

L(v ⊗ w′) =
n∑
i=1

ρ(ei)v ⊗ ρ′(ei)w′.
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Proposition 2.4. Let 1 ≤ k ≤ n. Then

Ψ(k) ◦ L = (−1)k(n− 2k)Ψ(k). (2.4)

Proof. Fix v ∈ S and w′ ∈ S′. Let J = {j1, . . . , jk} with 1 ≤ j1 < j2 < · · · < jk ≤ n and let eJ
be the corresponding k-vector. Then

Ψ(k)
(
L(v ⊗ w′)

)
(eJ) =

n∑
i=1

(ρ(ej1)ρ(ej2) · · · ρ(ejk)ρ(ei)v, ρ
′(ei)w

′),

which by (2.2) is transformed to

Ψ(k)
(
L(v ⊗ w′)

)
(eJ) = −

n∑
i=1

(ρ(ei)ρ(ej1)ρ(ej2) · · · ρ(ejk)ρ(ei)v, w
′)

= −
(
ρ

( n∑
i=1

eiej1ej2 · · · ejkei
)
v, w′

)
,

and according to (2.3) we have

Ψ(k)
(
L(v ⊗ w′)

)
(eJ) = (−1)k(n− 2k)(ρ(ej1ej2 · · · ejk)v, w′)

= (−1)k(n− 2k)Ψ(k)(v ⊗ w′)(eJ),

hence, the conclusion follows. �

2.4 Spinors and irreducible representations of Spin(E)

For the sake of completeness, we now discuss the irreducible Clifford modules and the corre-
sponding representations of the spin group, known as spinor spaces, see, e.g., [7, 8, 11].

When n is even, say n = 2m, there exists, up to equivalence a unique irreducible Clifford
module S2m of dimension 2m. As a representation of Spin(2m), S2m splits into two irreducible
non-equivalent representations, the half spinors spaces S+2m and S−2m, each of dimension 2m−1.

When n is odd, say n = 2m+ 1, there exist two non-equivalent irreducible Clifford modules,
of dimension 2m. As representations of the spin group Spin(2m + 1), they are irreducible and
equivalent, thus leading to a unique spinor space S2m+1.

Whether n is even or odd, the dual of the Clifford module Sn is isomorphic to itself as
a representation of the spin group Spin(n). In the even case, the half spinor space is either
self dual or isomorphic to its opposite half spinor space, depending on m, but in any case,
S2m ⊗ S2m =

(
S+2m ⊗ S+2m

)
⊕
(
S+2m ⊗ S−2m

)
⊕
(
S−2m ⊗ S+2m

)
⊕
(
S−2m ⊗ S−2m

)
.

The representation of the spin group Spin(n) on Λ∗(Rn) goes down to a representation
of SO(n) and decomposes as

⊕n
k=0 Λ∗k(Rn). The Hodge operator yields an isomorphism

Λ∗k(Rn) ' Λ∗n−k(Rn). In the odd case Λ∗k(Rn) is irreducible for any k, whereas for n = 2m,
Λ∗k(Rn) is irreducible except for k = m, and in fact, Λ∗m

(
R2m

)
splits in two irreducible non-

equivalent representations.
In the present article we chose to work with Clifford modules. The latter considerations show

that it is clearly possible to deduce results for spinor or half spinor spaces, just by refining the
decomposition under the action of the spin group.

3 The conformal spin group and the spinorial representations

In this section, we present the construction of the conformal spin group G of the space E, its
conformal action on E and the representations of G associated by induction of the Clifford
modules. For convenience we identify E with Rn.
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3.1 The conformal spin group of Rn

Let E = R1,n+1 be the real vector space of dimension n+2 equipped with the symmetric bilinear
form given by

Q(x,y) = x0y0 − x1y1 − · · · − xn+1yn+1.

Denote by C`(E) the corresponding Clifford algebra, generated by E and subject to the relation

xy + yx = 2Q(x,y).

Let α be the conjugation of the Clifford algebra, i.e., the unique anti-involution of C`(E) such
that α(x) = −x for x ∈ E. Let G = Spin0(1, n+ 1) be defined by

G =
{
v1v2 · · ·v2k, k ∈ N, vj ∈ E, Q(vj) = ±1, #{j,Q(vj) = −1} even

}
.

Then G is a connected Lie group, the inverse of an element g is equal to g−1 = α(g). For
x ∈ E and g ∈ G, the element gxα(g) belongs to E and the map τ g : x 7→ gxα(g) defines
an isometry of (E,Q). Moreover, the map g 7→ τ g is a Lie group homomporphism from G onto
SO0(E) ' SO0(1, n+ 1) which turns out to be a twofold covering (see [7] for more details).

The Lie algebra g of G can be realized as the subspace C`2(E) of bivectors in C`(E) spanned
by {eiej , 0 ≤ i < j ≤ n+ 1}. The Lie algebra g is isomorphic to o(1, n+ 1). The isomorphism
of E given by

e0 7→ e0, ej 7→ −ej , 1 ≤ j ≤ n+ 1

can be extended as an involution of C`(E) which, when restricted to C`2(E) yields a Cartan
involution θ of g. The corresponding decomposition of g into eigenspaces of θ is given by g = k⊕s,
where

k =
⊕

1≤i<j≤n+1

R eiej , s =
n+1⊕
j=1

R e0ej .

A Cartan subspace a of s is given by

a = RH, where H = e0en+1.

Now let

m =
∑

1≤i<j≤n
R eiej , n =

n⊕
j=1

R ej(e0 − en+1), n =

n⊕
j=1

R ej(e0 + en+1),

and notice that

[H,m] = 0, adH|n = +2, adH|n = −2.

Then

g = n⊕m⊕ a⊕ n

is a Gelfand–Naimark decomposition of g. By elementary calculation, for t ∈ R

at := exp(te0en+1) = cosh t+ sinh t e0 en+1 = e0
(

cosh t e0 + sinh t en+1

)
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and for y ∈ Rn

ny := exp
y(e0 − en+1)

2
= 1 +

y(e0 − en+1)

2

and similarly, for z ∈ Rn

nz := exp
z(e0 + en+1)

2
= 1 +

z(e0 + en+1)

2
.

The analytic Lie subgroups of G associated to a, n, and n are isomorphic to their counterparts
in SO0(1, n+ 1) and hence are denoted respectively by A, N , N .

The Cartan involution of g can be lifted to a Cartan involution of G. The fixed point set
of this involution is a maximal compact subgroup

K =

{
v1v2 · · ·v2k, vj ∈

n+1⊕
i=1

Rei, Q(vj) = −1, 1 ≤ j ≤ 2k

}
,

isomorphic to Spin(n+ 1). Let M be the centralizer of A in K which is isomorphic to Spin(n).
Let M′ be the normalizer of A in K. Then the Weyl group M′/M has two elements. As a rep-
resentative of the non-trivial Weyl group element choose

w = e1en+1

and observe in fact that

wHw−1 =
1

2
e1en+1 e0en+1 en+1e1 = −1

2
e0en+1 = −H.

3.2 The Gelfand–Naimark decomposition

To the decomposition of g is associated a (partial) decomposition of the group G, often called
the Gelfand–Naimark decomposition. More precisely, the map

N ×M×A×N 3 (n,m, a, n) 7→ nman ∈ G

is injective and its image is a dense open subset of full measure in G. Conversely, let g ∈ G
and assume that g belongs to the image. Then there are unique elements n(g) ∈ N , m(g) ∈M,
a(g) ∈ A and n(g) ∈ N such that

g = n(g)m(g)a(g)n(g).

The following result will be needed in the sequel.

Proposition 3.1. Let x ∈ Rn, and assume that x 6= 0. Let x′ = e1xe1. Then the following
identity holds:

w−1nx = n x′
|x|2

(
−e1

x

|x|

)
aln |x| n x

|x|2
. (3.1)

In particular,

m
(
w−1nx

)
= −e1

x

|x|
, ln a

(
w−1nx

)
= ln |x|.
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Proof. First

w−1nx = en+1e1

(
1 +

1

2
x(e0 + en+1)

)
= −1

2
e1x−

1

2
e1xe0en+1 − e1en+1.

The right side of the identity (3.1) is equal to(
1 +

x′(e0 + en+1)

2|x|2

)(
−e1

x

|x|

)(
1

2

(
|x|+ 1

|x|

)
+

1

2

(
|x| − 1

|x|

)
e0en+1

)(
1 +

x(e0 − en+1)

2|x|2

)
whereas the left-hand side is obtained by a standard computation, using in particular the fact
that e1x commutes with e0en+1 and the relation x′e1x = |x|2e1. �

The left action of G on G/P can be transferred to a rational action (not everywhere defined)
on n ' Rn, more explicitly,

g(n̄x) = n̄(gn̄x),

when it is defined and we simply denote the action of G on Rn by g(x). In particular, the action
of M on Rn is given by

m ∈M, x ∈ Rn, x 7→ mxm−1,

the action of A is given by

at ∈ A, x ∈ Rn, x 7→ e−2tx,

and the action of N is given by

nv ∈ N, x ∈ Rn, x 7→ x+ v.

3.3 The representation induced from a Clifford module
and the associated Knapp–Stein operators

Let (S, ρ) be a Clifford module for the Clifford algebra C`(E). The restriction of ρ to the spin
group M yields a representation of M, still denoted by ρ.

For λ ∈ C, let χλ be the character of A given by

χλ(at) = e2tλ for t ∈ R.

Now consider the representation of P = MAN given by

ρ⊗ χλ ⊗ 1,

and let

πρ,λ = IndG
P ρ⊗ χλ ⊗ 1

be the associated induced representation from P to G. Let Sρ,λ be the associated bundle G×ρ,λS
over G/P and let Hρ,λ be the space of smooth sections of Sρ,λ. The natural action of G on Sρ,λ
gives a realization of πρ,λ on Hρ,λ.

Another realization of the representation πρ,λ, more fitted for calculations is the non-compact
picture, see [11, Chapter VII]. In this model, the representation is given by

πρ,λ(g)F (n) = χλ
(
a
(
g−1n

))−1
ρ
(
m
(
g−1n

))−1
F
(
g−1(n)

)
,

where F is a smooth S-valued function on N .
Consider now the representation wρ of M defined by

∀m ∈M, (wρ)(m) = ρ
(
w−1mw

)
.
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Proposition 3.2. The representation wρ is equivalent to ρ. More precisely, for all m ∈M

ρ(−e1) ◦ wρ(m) = ρ(m) ◦ ρ(−e1). (3.2)

Proof. Recall that w = e1en+1 so that for any m ∈M

wρ(m) = ρ(en+1e1me1en+1).

As en+1 anticommutes with e1 and commutes with m, this implies

wρ(m) = ρ(e1m(−e1)) = ρ(e1)ρ(m)ρ(−e1)

from which (3.2) follows by left multiplication by ρ(−e1) = ρ(e1)
−1. �

Now form the induced representation

πwρ,n−λ = IndG
P (wρ⊗ χn−λ ⊗ 1).

The Knapp–Stein operators Jρ,λ are intertwining operators between πρ,λ and πwρ,n−λ, see
again [11] for general information on these operators. Using the equivalence between wρ and ρ,
introduce the operators

Iρ,λ = ρ(−e1) ◦ Jρ,λ.

Proposition 3.3. For any g ∈ G,

Iρ,λ ◦ πρ,λ(g) = πρ,n−λ(g) ◦ Iρ,λ.

Proof. First, by induction, Proposition 3.2 implies for any µ ∈ C

ρ(−e1) ◦ πwρ,µ(g) = πρ,µ(g) ◦ ρ(−e1).

Hence

Iρ,λ ◦ πρ,λ(g) = ρ(−e1) ◦ Jρ,λ ◦ πρ,λ(g) = ρ(−e1) ◦ πwρ,n−λ(g) ◦ Jρ,λ
= πρ,n−λ(g) ◦ ρ(−e1) ◦ Jρ,λ = πρ,n−λ(g) ◦ Iρ,λ. �

The expression of the corresponding Knapp–Stein operator in the non-compact picture is
given by

Jρ,λF (nx) =

∫
Rn

e−(2n−2λ) ln a(w
−1ny)ρ

(
m
(
w−1ny

))
F (nx+y) dy,

which, using Proposition 3.1, can be rewritten more explicitly as

Jρ,λF (nx) =

∫
Rn
|y|−2n+2λρ

(
−e1

y

|y|

)
F (nx+y) dy.

In turn, the operator Iρ,λ = ρ(−e1) ◦ Jλ is given by

Iρ,λF (nx) =

∫
Rn
|y|−2n+2λρ

(
y

|y|

)
F (nx−y) dy,

after the change of variables y 7→ y′ = −y. The Knapp–Stein operator Iρ,λ is thus shown to
be a convolution operator on N , or otherwise said over Rn. Notice that these operators were
already introduced and studied in [6].
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Now consider simultaneously S and its dual S′. For λ, µ ∈ C the corresponding induced
representations are

πλ = IndG
P ρ⊗ χλ ⊗ 1, π′µ = IndG

P ρ′ ⊗ χµ ⊗ 1.

Simplifying the notation, the corresponding intertwining operators are

Iλf(x) =

∫
Rn
|y|−2n+2λρ

(
y

|y|

)
f(x− y) dy,

I ′µf(x) =

∫
Rn
|y|−2n+2µρ′

(
y

|y|

)
f(x− y) dy. (3.3)

Finally, consider the “outer” tensor product ρ ⊗ ρ′ as a representation of M × M and,
for λ, µ ∈ C form the tensor product representation

πλ ⊗ π′µ = IndG×G
P×P (ρ⊗ χλ ⊗ 1)⊗ (ρ′ ⊗ χµ ⊗ 1).

Proposition 3.4. The operator Iλ⊗I ′µ intertwines the representations πλ⊗π′µ and πn−λ⊗π′n−µ
of G×G.

The diagonal subgroup of G×G will be denoted simply by G, and viewed as acting diagonally
on Rn × Rn. Needless to say, the previous proposition implies that Iλ ⊗ I ′µ is an intertwining
operator for the action of G on C∞(Rn × Rn,S⊗ S′) by the “inner” tensor product πλ ⊗ π′µ.

4 The source operator

4.1 Definition of the source operator and the main theorem

Let M be the operator on C∞(Rn × Rn, S ⊗ S′) defined for F a smooth function on Rn × Rn
with values in S⊗ S′ by

MF (x, y) = |x− y|2F (x, y).

Proposition 4.1. Let λ, µ ∈ C. Then for any g ∈ G,

M◦
(
πλ(g)⊗ π′µ(g)

)
=
(
πλ−1(g)⊗ π′µ−1(g)

)
◦M.

Proof. The result is a consequence of the following covariance property of the function |x− y|2
under a conformal transformation g ∈ G

|g(x)− g(y)|2 = e−2 ln a(g, x)|x− y|2e−2 ln a(g, y), (4.1)

where a(g, x) = a(gn̄x). This is equivalent to the more classical formula

|g(x)− g(y)|2 = κ(g, x) |x− y|2 κ(g, y), (4.2)

where κ(g, x) stands for the conformal factor of g at x. The equivalence of (4.1) and (4.2) comes
from the relation

κ(g, x) = χ1

(
a(g, x)−1

)
= e−2 ln a(g,x).

The group G is generated by N , M, A and w. The equality is easy to verify for g ∈ N , M,
and A and follows for w from the Gelfand–Naimark decomposition obtained in Proposition 3.1.



Symmetry Breaking Differential Operators for Tensor Products 11

The proof of the intertwining property is then straightforward. In fact, let g ∈ G and F ∈
C∞(Rn × Rn,S⊗ S′). Then

M◦
(
πλ(g)⊗ π′µ(g)

)
F (x, y) = |x− y|2e−2λ ln a(g−1, x)e−2µ ln a(g−1, y)

× ρ
(
m
(
g−1nx

))
⊗ ρ
(
m
(
g−1ny

))
F
(
g−1(x), g−1(y)

)
and by using (4.1) this can be transformed as

M◦
(
πλ(g)⊗ π′µ(g)

)
F (x, y) =

∣∣g−1(x)− g−1(y)
∣∣2e−2(λ−1) ln a(g−1, x)e−2(µ−1) ln a(g

−1, y)

× ρ
(
m
(
g−1nx

))
⊗ ρ
(
m
(
g−1ny

))
F
(
g−1(x), g−1(y)

)
= (πλ−1(g)⊗ πµ−1(g))MF (x, y). �

There is a version of these results in the compact picture. As we are mostly interested
in the non-compact picture, we only sketch the argument and refer to [1, Proposition 1.1] for
more details. The space G/P can be identified with the Euclidean unit sphere Sn in Rn+1,
the classical stereographic projection from Sn into Rn corresponds to the map gP 7→ n(g).
The group G acts conformally on Sn, the function |x̃ − ỹ|2Rn+1 defined for (x̃, ỹ) ∈ Sn × Sn

satisfies a covariance relation under the action of G, similar to (4.2), where κ(g, x) is now
replaced by the conformal factor of g at x̃. For any λ, µ ∈ C, the multiplication by the function
|x̃− ỹ|2Rn+1 induces an operatorMλ,µ : Hλ⊗H′µ → Hλ−1⊗H′µ−1 which intertwines πλ⊗π′µ and

πλ−1 ⊗ π′µ−1 and is expressed in the local chart N → G/P by the operator M.

Now let us consider the operator Eλ,µ defined by the following diagram

Hλ ⊗Hµ
Eλ,µ−−−−→ Hλ+1 ⊗Hµ+1

Iλ⊗I′µ
y xIn−λ−1⊗I′n−µ−1

Hn−λ ⊗Hn−µ
Mλ,µ−−−−→ Hn−λ−1 ⊗Hn−µ−1

Theorem 4.2. The operator Eλ,µ is a differential operator on the bundle Sρ,λ × Sρ′,µ, which
satisfies, for any g ∈ G

Eλ,µ ◦
(
πλ(g)⊗ π′µ(g)

)
=
(
πλ+1(g)⊗ π′µ+1(g)

)
◦ Eλ,µ.

This is the main theorem of the article. The operator is named the source operator as it is the
key to the construction of the SBDO as we will show later. The fact that Eλ,µ is G-intertwining
is a consequence of the definition. The fact that it is a differential operator is much more subtle
and will be shown by working in the non-compact picture. There is however some difficulty
when using the non-compat picture, due to the fact that the space of C∞ vectors in the non-
compact picture is not very manageable, especially when using the Fourier transform on Rn.
Hence we have to use a slightly different path to construct and explicitly calculate the local
expression of the operator Eλ,µ. Coming back to the compact picture, for generic λ (resp. µ)
the Knapp–Stein operator Iλ is invertible, and up to a non-zero constant multiple, its inverse is
equal to In−λ. So that the operator Eλ,µ (up to constant multiple) satisfies the relation(

In−λ−1 ⊗ In−µ−1
)
◦M = Eλ,µ ◦

(
In−λ ⊗ In−µ

)
.

This is the way we will introduce and calculate the expression of the source operator in the
non-compact picture (cf. Section 4.4).
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4.2 Riesz distributions for Clifford modules

Up to this point, the intertwining operators are only formally defined and we need to look more
carefully to the convolution kernels of the Knapp–Stein operators.

First recall the classical Riesz distributions. For s ∈ C, the Riesz distribution rs on Rn is
given by

rs(x) = |x|s.

More precisely, for <(s) > −n, the function rs is locally integrable and has moderate growth
at infinity, so that rs is a well-defined tempered distribution. The family of distributions thus
defined can be extended analytically in the parameter s ∈ C, with poles at −n− 2k, k ∈ N.

Let (S, ρ) be a Clifford module and for s ∈ C define the associated Clifford–Riesz distribu-
tion by

/rs(x) = |x|sρ
(
x

|x|

)
= |x|s−1ρ(x). (4.3)

Let Ej = ρ(ej), 1 ≤ j ≤ n. Then, for x =
∑n

j=1 xjej , ρ(x) =
∑n

j=1 xjEj . Use the identity

xj |x|s−1 =
1

s+ 1

∂

∂xj

(
|x|s+1

)
,

to conclude that

/rs(x) =
1

s+ 1

n∑
j=1

∂ rs+1

∂xj
(x)Ej .

From this expression it is easy to deduce the next statement.

Proposition 4.3. The family /rs defined by (4.3) is a meromorphic family of End(S)-valued
tempered distributions with poles at s = −n− 1− 2k, k ∈ N.

Further properties of these distributions will be needed in the sequel. Parts of the present
results were already obtained in [6] and in [9].

Proposition 4.4.

∂j /rs(x) =
(
(s− 1)xj − ρ(ejx)

)
/rs−2(x), (4.4)

∆/rs(x) = (s− 1)(s+ n− 1) /rs−2(x). (4.5)

Proof. First

∂j
(
|x|s−1ρ(x)

)
=
(
(s− 1)xj |x|s−3

)
ρ(x) + |x|s−1ρ(ej)

=
(
(s− 1)xj |x|s−3

)
ρ(x)− |x|s−3ρ(ej)ρ(x)ρ(x)

=
(
(s− 1)xj − ρ(ejx))|x|s−3ρ(x),

and (4.4) follows.

Next, using (4.4)

∂2j /rs(x) =
(
(s− 1)− ρ(ejej)

)
|x|s−3ρ(x)+

(
(s− 1)xj− ρ(ejx)

)(
(s− 3)xj− ρ(ejx)

)
|x|s−5ρ(x)

= s|x|s−3ρ(x) +
(
(s− 1)(s− 3)x2j − (2s− 4)xjρ(ejx) + ρ(ejxejx)

)
|x|s−5ρ(x).
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Now sum over j from j = 1 to j = n and use that

n∑
j=1

x2j = |x|2,
n∑
j=1

xjej = x,

n∑
j=1

ejxej = (n− 2)x

to get

∆/rs(x) =
(
ns|x|2 + (s− 1)(s− 3)|x|2 + (2s− 4)|x|2 − (n− 2)|x|2

)
|x|s−5ρ(x)

=
(
s2 + (n− 2)s− n+ 1

)
|x|s−3ρ(x),

and (4.5) follows. �

We will also need the Fourier transform of the Riesz distributions. The Fourier transform of
a function f on E is defined by the formula

Ff(ξ) = f̂(ξ) =

∫
E

e−i〈x,ξ〉f(x) dx.

The Fourier transform is an isomorphism of S(E) onto S(E), the definition of the Fourier
transform can be extended by duality to the space of tempered distributions S ′(E). For V
a finite-dimensional vector space, denote by S(E, V ) (resp. S ′(E, V )) the space of V –valued
Schwartz functions (resp. tempered distributions). The Fourier transform can also be extended
to these spaces.

Recall the following classical result for the usual Riesz distributions, see, e.g., [10].

Proposition 4.5. The Fourier transform of the Riesz distribution rs is given by

F(rs)(ξ) = csr−s−n(ξ),

where cs = 2s+nπ
n
2

Γ
(
s+n
2

)
Γ
(
− s

2

) .

Proposition 4.6. The Fourier transform of /rs is given by

F/rs = /cs/r−s−n, (4.6)

where /cs = −i2s+nπ
n
2

Γ
(
s+n+1

2

)
Γ
(
− s−1

2

) .
Proof. For any j, 1 ≤ j ≤ n, a basic formula for the Fourier transform yields

F
(
xj |x|s−1

)
(ξ) = i

∂

∂ξj

(
F|x|s−1

)
(ξ) = ics−1

∂

∂ξj

(
|ξ|−s+1−n)

= i(−s+ 1− n)cs−1ξj |ξ|−s−1−n = /csξj |ξ|
−s−n−1

and (4.6) follows easily by using the linearity of x 7→ ρ(x). �

4.3 A symbolic calculus

This section describes in a general context a symbolic calculus, inspired by the calculus for
the Weyl algebra or of the pseudo-differential calculus, but designed for our specific problems
to be treated in the next section. In particular, classical pseudo-differential calculus requires
regularity of the symbol in the cotangent variable ξ, whereas we have to handle symbols which
are homogeneous in ξ, and hence not necessarily smooth (even singular) at 0.
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Let E be a Euclidean vector space of dimension n, and V be a finite-dimensional vector space.

Let k ∈ S ′(E,End(V )). Then, for f ∈ S(E, V ), the formula

Kf(x) =

∫
E
k(x− y)f(y) dy

defines a convolution operator K which maps S(E, V ) into S ′(E, V ).

As in the scalar case, these operators have a nice version through the Fourier transform,
namely

K̂f(ξ) = k̂(ξ)f̂(ξ), ξ ∈ E,

where k̂ ∈ S ′(E′, V ) is the Fourier transform of the distribution k.

Let p(x) be an End(V )-valued polynomial function on E. Then, for f ∈ S(E, V ) the formula

f 7→
(
x 7→ p(x)f(x)

)
defines an operator on S(E, V ) denoted by f 7→ pf and referred to as the multiplication operator
by p. A multiplication operator can be extended to S ′(E, V ).

We will have to deal with operators from S(E, V ) into S ′(E, V ) which are obtained by
composing a convolution operator (say K) followed by a multiplication operator by an End(V )-
valued polynomial function (say p) on E. Such an operator will be denoted by pK. By definition,
its symbol is given by

symb(pK)(x, ξ) = p(x) ◦ k̂(ξ), x ∈ E, ξ ∈ E′

viewed as the polynomial function on E with values in S ′(E,End(V ))

x 7→ p(x) ◦ k̂(ξ).

We let Op(E, V ) be the family of finite linear combinations of such operators. In other words,
an element of Op(E, V ) can be written in a unique way as∑

α

xαAαKα,

where α = (α1, α2, . . . , αn) denotes an n-multi-index, Aα in End(V ) and Kα is a convolution
operator by a tempered End(V )-valued distribution on E, with the tacit convention that only
a finite number of terms in the sum are non-zero. Then the symbol of such an operator is
given by∑

α

xαAαk̂α(ξ).

A constant coefficient End(V )-valued differential operator on E is an example of a convolution
operator with a tempered distribution, namely a combination of derivatives of the Dirac distribu-
tion at 0 ∈ E. In particular Op(E, V ) contains the End(V )-valued Weyl algebra on E, denoted
by W(E, V ), consisting of the differential operators on E with End(V )-valued polynomial coef-
ficients. Notice that these operators map S(E, V ) into S(E, V ) and S ′(E, V ) into S ′(E, V ).
Recall the usual definition of the symbol of a differential operator, namely the End(V )-valued
polynomial function σD on E × E′ is given

Dei〈x,ξ〉 = σD(x, ξ)ei〈x,ξ〉.
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Then an elementary computation shows that σD coincides with symb(D) (see [5] for the scalar
case). More explicitly, let D =

∑
α pα(x)∂αx be in W(E, V ), where pα is an End(V )-valued

polynomial. Then its symbol is given by

symb(D)(x, ξ) =
∑
α

pα(x)(iξ)α.

Although Op(E, V ) is not an algebra of operators, some compositions are possible. Although
a more general result could be stated, we consider only two cases, which will be enough for the
present paper.

Proposition 4.7. Let D be an End(V )-valued differential operator on E, and let K be a con-
volution operator with a tempered distribution. Then D ◦K belongs to Op(E, V ), and its symbol
is given by

symb(D ◦K)(x, ξ) = symb(D)(x, ξ) ◦ symb(K)(ξ). (4.7)

Proof. Let α be an n-multi-index and let k be the kernel of the convolution operator K. Then
∂αx ◦K is the convolution operator with kernel ∂αx k(x). Hence

symb(∂αx ◦K)(ξ) = (iξ)αk̂(ξ),

which coincides with formula (4.7) for this particular case. The general formula follows easily. �

Proposition 4.8. Let p be an scalar-valued polynomial on E, and let L be in Op(E, V ). Then
L ◦ p belongs to Op(E, V ) and its symbol is given by

symb(L ◦ p)(x, ξ) =
∑
α

1

α!
∂αx p (x)

(
1

i
∂ξ

)α
symb(L)(x, ξ). (4.8)

Proof. Assume first that L = K is a convolution operator by a tempered distribution k. Then
the symbol of the composition K ◦ p can be computed exactly as in the scalar case (see [5,
Proposition 1.2]) and the result coincides with (4.8), due to the fact that we assume that p is
a scalar-valued polynomial. The general case follows easily. �

4.4 The main formula

We now apply the symbolic calculus developed in the previous section to the construction of
the source operator in the non-compact picture. In particular, we come back to the context and
notation of Section 4.2.

For s, t ∈ C, consider the normalized Clifford–Riesz convolution operators

/Rs : S(Rn, S)→ S ′(Rn,S), /Rsf = /c−1s /rs ? f,

/R′t : S(Rn, S′)→ S ′(Rn, S′), /R′tf = /c−1t /r′t ? f. (4.9)

The technical reason for this normalization is that

symb( /Rs)(ξ) = /r−n−s(ξ) , symb( /R′t)(ζ) = /r′−n−t(ζ),

see (4.6).
The family /Rs depends meromorphically on the parameter s. Poles and residues were studied

in [6]. An example of the residues is the Dirac operators, which in our context comes in two
versions, given by

/D =
∑
j=1

ρ(ej)
∂

∂xj
, /D

′
=
∑
j=1

ρ′(ej)
∂

∂xj
.
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As a consequence, they satisfy an intertwining property under the action of the conformal group,
and similar results are valid for their powers, see [6].

Further, consider the operator

/Ms,t : S(Rn × Rn, S⊗ S′)→ S ′(Rn × Rn, S⊗ S′), /Ms,t =
(
/Rs ⊗ /R′t

)
◦M.

which clearly belongs to Op
(
Rn × Rn,End(S ⊗ S′)

)
as considered in Section 4.3.

Proposition 4.9. We have,

symb ( /Ms,t)(x, y, ξ, ζ) = fs,t(x, y, ξ, ζ) ◦
(
/r−s−n−2(ξ)⊗ /r

′
−t−n−2(ζ)

)
,

where

fs,t(x, y, ξ, ζ) = |x− y|2|ξ|2 ⊗ |ζ|2 + 2i(s+ n+ 1)
n∑
j=1

(xj − yj)ξj ⊗ |ζ|2

+ 2i(t+ n+ 1)
n∑
j=1

(yj − xj)|ξ|2 ⊗ ζj + 2i
(
ρ(x− y)ρ(ξ)⊗ |ζ|2

)
+ 2i

(
|ξ|2 ⊗ ρ′(y − x)ρ′(ζ)

)
− (s+ 1)(s+ n+ 1) id⊗|ζ|2

− (t+ 1)(t+ n+ 1)|ξ|2 ⊗ id +2(s+ n+ 1)(t+ n+ 1)
n∑
j=1

ξj ⊗ ζj

+ 2(s+ n+ 1)
n∑
j=1

ξj ⊗ ρ′(ej)ρ′(ζ) + 2(t+ n+ 1)
n∑
j=1

ρ(ej)ρ(ξ)⊗ ζj

+ 2
n∑
j=1

ρ(ej)ρ(ξ)⊗ ρ′(ej)ρ′(ζ).

Proof. First,

symb( /Rs ⊗ /R′t)(ξ, ζ) = /r−s−n(ξ)⊗ /r′−t−n(ζ).

Following (4.8) the composition formula for the symbols yields

symb
(
/Rs ⊗ /R′t ◦ |x− y|2

)
= |x− y|2/r−s−n(ξ)⊗ /r′−t−n(ζ)

+ 2

n∑
j=1

(xj − yj)
(

1

i

∂

∂ξj

)
/r−s−n(ξ)⊗ /r′−t−n(ζ)

+ 2
n∑
j=1

(yj − xj)/r−s−n(ξ)⊗
(

1

i

∂

∂ζj

)
/r′−t−n(ζ)

−∆/r−s−n(ξ)⊗ /r′−t−n(ζ)

+ 2
n∑
j=1

∂j/r−s−n(ξ)⊗ ∂j/r′−t−n(ζ)− /r−s−n(ξ)⊗∆/r′−t−n(ζ).

Now use formulas (4.4) and (4.5) applied to /r and /r′ to get the result. �

Notice that fs,t is the symbol of a differential operator on Rn × Rn. In the next proposition
we give an explicit expression of this differential operator.
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Proposition 4.10. For s, t ∈ C, let

Fs,t := |x− y|2∆x ⊗∆y − 2(s+ n+ 1)
n∑
j=1

(xj − yj)
∂

∂xj
⊗∆y

− 2(t+ n+ 1)
n∑
j=1

(yj − xj)∆x ⊗
∂

∂yj
− 2ρ(x− y) /Dx ⊗∆y − 2∆x ⊗ ρ′(y − x) /Dy

+ (t+ 1)(t+ n+ 1)∆x ⊗ id + (s+ 1)(s+ n+ 1) id⊗∆y

− 2(s+ n+ 1)(t+ n+ 1)
n∑
j=1

∂

∂xj
⊗ ∂

∂yj
− 2(s+ n+ 1)

n∑
j=1

∂

∂xj
⊗ ρ′(ej) /D

′
y

− 2(t+ n+ 1)
n∑
j=1

ρ(ej) /Dx ⊗
∂

∂yj
− 2

( n∑
j=1

ρ(ej) /Dx ⊗ ρ′(ej) /D
′
y

)
.

Then, the symbol of the differential operator Fs,t is equal to fs,t given in Proposition 4.9.

The symbol calculus yields also the following theorem, which is the main formula leading to
the proof of Theorem 4.2.

Theorem 4.11. The following identity holds for s, t ∈ C(
/Rs ⊗ /R′t

)
◦M = c(s, t) Fs,t ◦

(
/Rs+2 ⊗ /R′t+2

)
, (4.10)

where

c(s, t) =
1

(s+ 1)(s+ n+ 1)(t+ 1)(t+ n+ 1)
.

Proof. The identity for the symbols obtained in Proposition 4.9 is translated as

/c−1s /c−1t
(
/Rs ⊗ /R′t

)
◦M = /c−1s+2 /c

−1
t+2 Fs,t ◦

(
/Rs+2 ⊗ /R′t+2

)
.

An elementary computation gives

/cs+2

/cs
= −(s+ 1)(s+ n+ 1)

and the theorem follows. �

4.5 The proof of the main theorem

We now study the behaviour of the operators involved in the previous construction under the
action of the conformal group G.

The main observation is that up to a shift in the parameters, and up to a constant multiple,
the operators /Rs and /R′t are essentially the Knapp–Stein operators considered in Section 3.3.

For λ, µ ∈ C generic, compare (3.3) and (4.9) to get

Iλ = /c2λ−2n /R2λ−2n, I ′µ = /c2µ−2n /R
′
2µ−2n.

Change the normalization of the Knapp–Stein operator, that is, redefine the Knapp–Stein ope-
rators by setting

Ĩλ = /R2λ−2n, Ĩ ′µ = /R′2µ−2n.
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Moreover, set

s = −2λ− 2, t = −2µ− 2

and

Eλ,µ = Fs,t = F−2λ−2,−2µ−2.

Notice that

s+ n+ 1 = −2λ+ n− 1, s+ 1 = −2λ− 1,

so that

Eλ,µ = |x− y|2∆x ⊗∆y + 2(2λ− n+ 1)
n∑
j=1

(xj − yj)
∂

∂xj
⊗∆y

+ 2(2µ− n+ 1)

n∑
j=1

(yj − xj)∆x ⊗
∂

∂yj
− 2ρ(x− y) /Dx ⊗∆y − 2∆x ⊗ ρ′(x− y) /Dy

+ (2µ− n+ 1)(2µ+ 1)∆x ⊗ id +(2λ− n+ 1)(2λ+ 1) id⊗∆y

− 2(2λ− n+ 1)(2µ− n+ 1)

n∑
j=1

∂

∂xj
⊗ ∂

∂yj
+ 2(2λ− n+ 1)

n∑
j=1

∂

∂xj
⊗ ρ′(ej) /D

′
y

+ 2(2µ− n+ 1)

n∑
j=1

ρ(ej) /Dx ⊗
∂

∂yj
− 2

( n∑
j=1

ρ(ej) /Dx ⊗ ρ′(ej) /D
′
y

)
. (4.11)

Now (4.10) can be rewritten as(
Ĩn−λ−1 ⊗ Ĩ ′n−µ−1

)
◦M = d(λ, µ)Eλ,µ ◦

(
Ĩn−λ ⊗ Ĩ ′n−µ

)
,

where

d(λ, µ) =
1

(2λ− n+ 1)(2λ+ 1)(2µ− n+ 1)(2µ+ 1)
.

Theorem 4.12. The differential operator Eλ,µ satisfies, for any g ∈ G

Eλ,µ ◦
(
πλ(g)⊗ π′µ(g)

)
=
(
πλ+1(g)⊗ π′µ+1(g)

)
◦ Eλ,µ.

The equality holds when applied to functions f ∈ C∞(Rn×Rn,S⊗S′) with compact support and
such that the action of g is defined on the support of f .

Proof. As G is connected, Theorem 4.12 is equivalent to its infinitesimal version, which we
now formulate.

Theorem 4.13. For any X ∈ g,

Eλ,µ ◦
(
dπλ(X)⊗ id + id⊗dπ′µ(X)

)
=
(
dπλ+1(X)⊗ id + id⊗dπ′µ+1(X)

)
◦ Eλ,µ. (4.12)

A well-known and easy-to-prove result is that dπλ(X) is a differential operator with End(S)-
valued polynomial coefficients, hence preserves the space S(Rn,S), so that both sides of (4.12)
are well defined and are differential operators on Rn × Rn with End(S⊗ S′)-valued polynomial
coefficients.

In order to prove Theorem 4.13, let for X ∈ g

Aλ,µ(X) = Eλ,µ ◦
(
dπλ(X)⊗ id+ id⊗dπ′µ(X)

)
−
(
dπλ+1(X)⊗ id+ id⊗dπ′µ+1(X)

)
◦ Eλ,µ.

We want to prove that Aλ,µ(X) = 0 for any X ∈ g, and in order to do it, we first prove the
following weaker statement.
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Lemma 4.14. For any X ∈ g

Aλ,µ(X) ◦
(
Ĩn−λ ⊗ Ĩ ′n−µ

)
= 0. (4.13)

Proof. It is sufficient to prove the results for (λ, µ) generic, so that we the may assume that λ,
λ+ 1, n− λ, n− λ− 1 are not poles of Ĩλ and same conditions on µ. Also assume that (λ, µ) is
not a pole of the rational function d(λ, µ). Thus for any X ∈ g(

dπλ+1(X)⊗ id + id⊗dπ′µ+1(X)
)
◦ d(λ, µ)Eλ,µ ◦

(
Ĩn−λ ⊗ Ĩ ′n−µ

)
=
(
dπλ+1(X)⊗ id + id⊗dπ′µ+1(X)

)
◦
(
Ĩn−λ−1 ⊗ Ĩ ′n−µ−1

)
◦M

=
(
Ĩn−λ−1 ⊗ Ĩ ′n−µ−1

)
◦
(
dπn−λ−1(X)⊗ id + id⊗dπ′n−µ−1(X)

)
◦M

=
(
Ĩn−λ−1 ⊗ Ĩ ′n−µ−1

)
◦M ◦

(
dπn−λ(X)⊗ id + id⊗dπ′n−µ(X)

)
= d(λ, µ)Eλ,µ ◦

(
Ĩn−λ ⊗ Ĩ ′n−µ

)
◦
(
dπn−λ(X)⊗ id + id⊗dπ′n−µ(X)

))
= d(λ, µ)Eλ,µ ◦

(
dπλ(X)⊗ id + id⊗dπ′µ(X)

)
◦
(
Ĩn−λ ⊗ Ĩ ′n−µ

)
,

and (4.13) follows. �

The proof of Theorem 4.13 is achieved through the following lemma, valid in a more general
context.

Lemma 4.15. Let V be a finite-dimensional vector space. Let D be a differential operator
acting on C∞(Rp, V ) with End(V )-valued polynomial coefficients. Let K be a convolution oper-
ator on Rp by an End(V )-valued tempered distribution k. Assume that its Fourier transform k̂
coincides on a dense open subset O ⊂ Rp with an End(V )-valued smooth function and satisfies

for any ξ ∈ O k̂(ξ) ∈ GL(V ).

Assume further that D ◦K = 0. Then D = 0.

Proof. Under the Fourier transform, the operator K corresponds to the multiplication operator
by k̂, and the operator D corresponds to a differential operator

D̂ =
∑
I

aI(ξ)∂
I
ξ

on Rp with End(V )-valued polynomial coefficients. The assumption D◦K = 0 implies D̂◦K̂ = 0,
or in other words D̂

(
k̂ψ
)

= 0 for any function ψ ∈ S(Rp, V ).
Let ξ0 ∈ O, v0 ∈ V and I0 a p-multi-index. There exists a smooth V -valued function ϕ0 with

compact support included in O and such that in a neighbourhood of ξ0

ϕ0(ξ) =
1

I0!
(ξ − ξ0)I0v0,

so that ∂I0ϕ0(ξ0) = v0. Now let ψ0 be defined on O by

ψ0(ξ) = k̂(ξ)−1ϕ0(ξ)

and equal to 0 outside of O. The function ψ is a smooth function with compact support on Rp
and

0 = D̂
(
k̂ψ0

)
(ξ0) = D̂(ϕ0)(ξ0) = aI0(ξ0)v0.

This being valid for any v0 ∈ V , it follows that aI0(ξ0) = 0. As ξ0 was arbitrary in O and aI0
is a polynomial, this implies aI0 ≡ 0 and finally, as I0 was arbitrary D̂ = 0. This finishes the
proof of the lemma. �

For generic λ, µ, the operator K = Ĩn−λ ⊗ Ĩ ′n−µ satisfies the conditions of the lemma.
Hence (4.12) holds true and Theorem 4.12 follows. �
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5 The symmetry breaking differential operators
for the tensor product of two spinorial representations

5.1 The projections Ψ̃(k)

Recall the study of the tensor product S⊗S′ under the action of M = Spin(n) and in particular
for k, 1 ≤ k ≤ n, there is an M-intertwining map Ψ(k) : S⊗ S′ → Λ∗k(Rn)⊗ C. Recall that τ∗k is
the representation of M on Λ∗k(Rn)⊗ C.

For ν ∈ C and k, 0 ≤ k ≤ n, let

πk;ν = IndG
P τ∗k ⊗ χν ⊗ 1

which is realized on (a subspace of) the space C∞(Rn,Λ∗k(Rn)⊗C) in the non-compact picture.
Further let

Ψ̃(k) : C∞(Rn × Rn,S⊗ S′)→ C∞(Rn,Λ∗k
(
Rn)⊗ C

)
, F 7→

(
Ψ(k)F (x, y)

)
|x=y.

Let λ, µ ∈ C. Form the spinorial representations

πλ = IndG
P ρ⊗ χλ ⊗ 1, π′µ = IndG

P ρ′ ⊗ χµ ⊗ 1

and the tensor product πλ⊗π′µ. The following result is a consequence of the functoriality of the
induction process.

Proposition 5.1. The map Ψ̃(k) satisfies

Ψ̃(k) ◦ (πλ(g)⊗ π′µ(g)) = πk;λ+µ(g) ◦ Ψ̃(k).

5.2 Definition of the SBDO

For m ∈ N, define the operator E
(m)
λ,µ : C∞(Rn × Rn, S⊗ S′)→ C∞(Rn × Rn, S⊗ S′) by

E
(m)
λ,µ = Eλ+m−1,µ+m−1 ◦ · · · ◦ Eλ,µ.

The operator E
(m)
λ,µ satisfies, for any g ∈ G

E
(m)
λ,µ ◦

(
πλ(g)⊗ π′µ(g)

)
=
(
πλ+m(g)⊗ π′µ+m(g)

)
◦ E(m)

λ,µ . (5.1)

Let

B
(m)
k;λ,µ = Ψ̃(k) ◦ E(m)

λ,µ .

Proposition 5.2.

(i) The operators B
(m)
k;λ,µ : C∞

(
Rn×Rn, S⊗S′

)
→ C∞(Rn,Λ∗k(Rn)⊗C) are constant coefficient

bi-differential operators and homogeneous of degree 2m.

(ii) For any g ∈ G

B
(m)
k;λ,µ ◦

(
πλ(g)⊗ π′µ(g)

)
= πk;λ+µ+2m(g) ◦B(m)

k;λ,µ.

Proof. (ii) is a direct consequence of the covariance property of the source operators and of
the map Ψ̃(k).

Next apply (ii) to the case where g is a translation by an element of Rn. This implies

that B
(m)
k;λ,µ commutes with (diagonal) translations and hence has constant coefficients. Apply

then to the case where g belongs to A acting by dilations of Rn to get the homogeneity of

degree 2m for the operator B
(m)
k;λ,µ. This completes the proof of (i). �
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The definition of the SBDO B
(m)
k;λ,µ yields a recurrence formula for these operators. Use the

covariance relation (5.1) applied to diagonal translations on Rn×Rn to see that the coefficients

of E
(m)
λ,µ are (operators valued)-functions of (x − y). Let

o
E

(m)

λ,µ be the constant coefficients part

of E
(m)
λ,µ .

Proposition 5.3. The SBDO B
(m)
k;λ,µ satisfies the recurrence relation

B
(m)
k;λ,µ = B

(m−1)
k;λ+1,µ+1 ◦ Eλ,µ.

Proof. All coefficients of the difference E
(m)
λ,µ −

o
E

(m)

λ,µ vanish on the diagonal of Rn×Rn. Hence

Ψ̃(k) ◦ E(m)
λ,µ = Ψ̃(k) ◦

o
E

(m)

λ,µ .

Now

E
(m)
λ,µ = (Eλ+m−1,µ+m−1 ◦ · · · ◦ Eλ+1,µ+1) ◦ Eλ,µ = E

(m−1)
λ+1,µ+1 ◦ Eλ,µ.

Hence

B
(m)
k;λ,µ = Ψ̃(k) ◦ E(m−1)

λ+1,µ+1 ◦ Eλ,µ = B
(m−1)
k;λ+1,µ+1 ◦ Eλ,µ. �

5.3 An example

Let us write explicitly the SBDO for the case k = 0 and m = 1.

Theorem 5.4. The operator

B
(1)
0;λ,µ : C∞(Rn × Rn, S⊗ S′)→ C∞(Rn)

is given by

B
(1)
0;λ,µ

(
v(·)⊗ w′(·)

)
(x) = (2µ− n+ 1)(2µ+ 1)

(
∆v(x), w′(x)

)
+ (2λ− n+ 1)(2λ+ 1)

(
v(x),∆w′(x)

)
− 2(2λ− n+ 1)(2µ− n+ 1) +

n∑
j=1

(
∂

∂xj
v(x),

∂

∂yj
w′(x)

)
− 2(2λ+ 2µ− n+ 2)

(
/Dv(x), /D

′
w′(x)

)
. (5.2)

The operator B
(1)
0;λ,µ satisfies, for any g ∈ G

B
(1)
0;λ,µ ◦

(
πλ(g)⊗ π′µ(g)

)
= π0;λ+µ+2(g) ◦B(1)

0;λ,µ.

Proof. First notice that Ψ(0) : S⊗ S′ → C is given by

Ψ(0)(v ⊗ w′) = (v, w′),

so that Ψ̃(0) : C∞(Rn × Rn,S⊗ S′)→ C∞(Rn), is given by

Ψ̃(0)
(
v(·)⊗ w′(·)

)
(x) =

(
v(x), w′(x)

)
.
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Now use (4.11) and observe that by (2.2)(
∂

∂xj
v(x), ρ′(ej) /D

′
w′(x)

)
= −

(
ρ(ej)

∂

∂xj
v(x), /D

′
w′(x)

)
so that

n∑
j=1

(
∂

∂xj
v(x), ρ′(ej) /D

′
w′(x)

)
= −

(
/Dv(x), /D

′
w′(x)

)
,

and a similar result holds for
∑n

j=1

(
ρ(ej) /Dv(x), ∂

∂yj
w′(x)

)
. Also use (2.4) for k = 0 to get

Ψ(0)

( n∑
j=1

(
ρ(ej) /Dxv(·)⊗ ρ′(ej) /D

′
yw
′(·)
))

(x) = n
(
/Dxv(x), /D

′
yw
′(x)

)
.

The final expression for B
(1)
0;λ,µ is obtained by putting together the partial computations. �

5.4 The dimension n = 1 and the classical Rankin–Cohen brackets

Let E = R be the standard Euclidean space of dimension n = 1 and denote by e be the vector
1 (to distinguish it from the scalar 1). Let C`(E) the corresponding Clifford algebra which is
isomorphic to the complex plane. Let C` (E) be its complexification. The spin group Spin(E)
is equal to {1,−1}.

Let S = C and define for v ∈ S and x ∈ R

ρ(xe)v = ixv

and extend it as an action of C`(E) on S, still denoted by ρ. Similarly, let S′ = C and define for
w′ ∈ S′ and x ∈ S′

ρ′(xe)w′ = −ixw′.

Through the duality on (S,S′) given by (v, w′) 7→ vw′, (ρ′, S′) is the dual Clifford module of (ρ, S),
i.e., for x ∈ R and v ∈ S, w′ ∈ S′

(ρ(x)v, w′) = −(v, ρ′(x)w′).

The corresponding Dirac operators are

/D = i
d

dx
, /D′ = −i

d

dx
.

For a smooth S-valued (resp. S′-valued) function v(x) (resp. w′(x)),

(
/Dv(x), /D′w′(y)

)
=

dv

dx
(x)

dw′

dy
(y).

By substituting these results in (5.2), one obtains

B
(1)
0;λ,µ = 2µ(2µ+ 1)

∂2

∂x2
+ 2λ(2λ+ 1)

∂2

∂y2
− 2(2λ+ 1)(2µ+ 1)

∂2

∂x∂y
(5.3)

and this coincides (up to a constant multiple) to the degree two Rankin–Cohen operator for
the group SL(2,R) which is isomorphic to Spin0(1, 2). See [3, Theorem 10.7] and [13] for more
general results in this direction.
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