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Abstract. Let Q be an acyclic quiver and k be an algebraically closed field. The inde-
composable exceptional modules of the path algebra kQ have been widely studied. The
real Schur roots of the root system associated to Q are the dimension vectors of the inde-
composable exceptional modules. It has been shown in [Nájera Chávez A., Int. Math. Res.
Not. 2015 (2015), 1590–1600] that for acyclic quivers, the set of positive c-vectors and the
set of real Schur roots coincide. To give a diagrammatic description of c-vectors, K-H. Lee
and K. Lee conjectured that for acyclic quivers, the set of c-vectors and the set of roots
corresponding to non-self-crossing admissible curves are equivalent as sets [Exp. Math., to
appear, arXiv:1703.09113.]. In [Adv. Math. 340 (2018), 855–882], A. Felikson and P. Tu-
markin proved this conjecture for 2-complete quivers. In this paper, we prove a revised
version of Lee-Lee conjecture for acyclic quivers of type A, D, and E6 and E7.
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1 Introduction

Let Q be an acyclic quiver and k be an algebraically closed field. The path algebra kQ is an
algebra generated by all oriented paths of Q. The category of kQ modules is equivalent to
the category of quiver representations. Kac has shown that the dimension vectors of indecom-
posable quiver representations are the positive roots of the root system corresponding to the
quiver Q [11]. One of the objects of interest in relation to kQ is the set of indecomposable ex-
ceptional representations of kQ. The dimension vectors of these representations are called real
Schur roots and the set of real Schur roots is a subset of positive roots. There are many different
ways to describe real Schur roots. In [17], Schofield showed a way to classify real Schur roots
using subrepresentations and in [10], Igusa and Schiffler used the Coxeter element to classify
real Schur roots. In [9], Hubery and Krause used non-crossing partitions to determine real Schur
roots. Another way to describe a real Schur root comes from the cluster algebra associated to Q.
A cluster algebra of Q is an algebra with generators, called cluster variables, obtained from the
quiver and exchange relations. Fomin and Zelevinksy showed that any cluster variables can be
expressed as Laurent polynomials in the initial cluster variables [7]. When a cluster variable is at
its most reduced form, the exponent vector of the denominator monomial gives the denominator
vector, d-vector, of that cluster variable. Caldero and Keller proved that for an acyclic quiver, the
set of real Schur roots and the set of d-vectors of non-initial cluster variables are equivalent [2].

Another description of a real Schur root comes from the framed quiver of Q. In the framed
quiver of Q, c-vectors describe the relations between the mutable vertices and the frozen vertices
(more precise definition is given in Section 2). One of the big questions about c-vectors was the
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sign coherence of c-vectors. In [3], Derksen, Weyman, and Zelevinsky proved the sign coherence
of c-vectors. Thus the set of c-vectors is the disjoint union of the set of positive c-vectors and the
set of negative c-vectors. Chavez showed that for an acyclic quiver, the set of positive c-vectors
and the set of real Schur roots coincide [14].

Although there are many ways to describe a real Schur root, none of the descriptions men-
tioned so far are diagrammatic. In cluster algebras, the diagrammatic descriptions of clusters
are useful. In [6], Fomin, Shapiro, and Thurston described clusters using tagged triangulations
and arcs. Also, Nakanishi and Stella gave diagrammatic descriptions of c-vectors and d-vectors
of quivers of finite type [15]. To give more general geometric description of c-vectors of acyclic
quivers, hence real Schur roots, K.-H. Lee and K. Lee formulated the following conjecture about
the set of real Schur roots and a set of certain paths on a Riemann surface called admissible
curves (defined in Section 2.2).

Conjecture 1.1 (Lee–Lee [13]). For an acyclic quiver, the set of roots associated to non-self-
crossing admissible curves and the set of real Schur roots coincide.

In [5], Felikson and Tumarkin gave an alternative but equivalent definition of non-self-crossing
admissible curves. Conjecture 1.1 follows from [1, Proposition 33] for the acyclic quivers of finite
type (see Corollary 3.2). Given a real Schur root, there are multiple non-self-crossing admissible
curves that correspond to the root. To categorify these curves, K. Lee defined positive, non-
decreasing, and strictly increasing curves which will be defined in Section 2. These descriptions
of curves led to the following conjecture.

Conjecture 1.2 (Lee [12]). For an acyclic quiver, the set of associated roots of non-decreasing
non-self-crossing admissible curves and the set of real Schur roots coincide.

More precise version of this conjecture is given in Conjecture 2.9. We note that Conjecture 1.2
implies Conjecture 1.1. Felikson and Tumerkin’s result [5] implies Conjecture 1.2 for acyclic 2-
complete quivers, i.e., quivers with at least two arrows between every pair of vertices. In this
paper we prove Conjecture 1.2 for the quivers type A, D, E6 and E7.

Theorem 1.3 (revised Lee–Lee conjecture for type A, D, E6 and E7). Given a quiver of type
A, D, E6 or E7, the set of roots associated to non-decreasing non-self-crossing admissible curves
is the same as the set of real Schur roots. In particular, if an acyclic quiver is of type A, then
the set of roots associated to strictly increasing non-self-crossing admissible curves is the same
as the set of real Schur roots.

We introduce the roots and admissible curves in Section 2 and introduce Coxeter transfor-
mation and state Theorem 1.3 more precisely in Section 3. In Sections 4–6, we describe the
non-decreasing non-self-crossing admissible curves for quivers of type A, D and E respectively
using Coxeter transformation and other methods. Appendix A.2 gives a supporting evidence to
Conjecture 1.2 by showing that it holds true for affine quiver of type A with single source and
single sink.

2 Background

In this section, we define some of the objects of interest including the admissible curve.

2.1 c-vectors and roots system

A quiver Q is a finite oriented graph without any oriented 2-cycles and loops. We denote
Q = (Q0, Q1) where Q0 = [n] = {1, . . . , n} is the set of vertices of Q and Q1 is the set of
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oriented edges, which we call arrows, of Q. Let h, t : Q1 → Q0 be maps given by h(i → j) = j
and t(i → j) = i. The exchange matrix of Q is B = (bij)1≤i,j≤n where bij is the number of
arrows from the vertex i to the vertex j (if there are r arrows from the vertex j to the vertex i,
then bij = −r). We mutate a quiver Q at a vertex i to obtain µi(Q) by the steps below:

1) for every path j → i→ k, create an arrow j → k,

2) reverse the orientations of all the arrows incident to i,

3) delete any 2-cycles.

Definition 2.1. Let Q = (Q0, Q1) be a quiver and Q̂0 be a duplicate of Q0. Then the framed
quiver of Q is Q̂ =

(
Q0 ∪ Q̂0, Q1 ∪ {i→ i′ | for all i ∈ [n]}

)
where mutation at a vertex i′ is not

allowed for all i′ ∈ Q̂0.

Definition 2.2. Given a quiver Q and a sequence of mutations w = µik · · ·µi1 , consider w
(
Q̂
)
.

A c-vector of Q is given by
ci,1′

ci,2′
...

ci,n′

 , where ci,j′ =

{
r if i

r arrows−−−−−→ j′,

−r if i
r arrows←−−−−− j′.

Example 2.3. Consider a framed quiver Q̂ and µ1µ2µ3
(
Q̂
)

below.

1 2 3

1′ 2′ 3′
µ1µ2µ3

1 2 3

1′ 2′ 3′

The c-vectors are−1
−1
−1

 ,
1

0
0

 ,
0

1
0

 .
As mentioned before, these c-vectors are sign coherent, meaning that all the entries of a c-

vector are either non-negative or non-positive.
For the rest of this paper, let Q be an acyclic quiver and B = (bij)1≤i,j≤n be the exchange

matrix of Q. Then the generalized Cartan matrix C(B) is (aij)1≤i,j≤n where aii = 2, aij = −|bij |
for i 6= j.

Let ∆Q be the root system of the Kac-Moody algebra associated to C(B). Let α1, . . . , αn
be the simple roots associated to the vertices 1, 2, . . . , n respectively. Any root can be viewed
as Z-linear combination of the simple roots, i.e., for any root α, there exist β1, . . . βn ∈ Z such
that α =

∑n
i=1 βiαi. Given a full subquiver Q′, the root system of Q′ is a subroot system

of ∆Q. All the roots are either positive or negative. Thus ∆Q = ∆+
Q ∪∆−Q where ∆+

Q is the set

of all positive roots and ∆−Q is the set of all negative roots. Of these roots, a real Schur root
is a positive root that corresponds to the dimension vector of an indecomposable exceptional
module of kQ. Chavez showed that the set of c-vectors coincides with the set of real Schur roots
and their opposites in the root system in [14]. Since real Schur roots are positive, the set of
positive c-vectors coincides with the set of real Schur roots.

Given a quiver Q and the exchange matrix B, let α be a root in ∆Q. We can represent α
with the underlying graph of the quiver by labeling the vertex i with βi for i ∈ [n]. For example,
consider a quiver whose underlying graph is
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2 3 4 5 8 6 1

7

Let α = α1 + α2 + 2α3 + 3α4 + 4α5 + 3α6 + 2α7 + 5α8 be a root in ∆Q. Then we can also
represent α as

1 2 3 4 5 3 1

2

Definition 2.4. We define the standard partial order on ∆+
Q as follows. Let α =

∑n
i=1 βiαi and

α′ =
∑n

i=1 β
′
iαi be roots in ∆+

Q. Then α ≤D α′ if and only if βi ≤ β′i for all i ∈ [n] and α <D α′

if α ≤D α′ and βi < β′i for some i ∈ [n].

We can define reflections for any root in ∆Q; in particular, a simple reflection si is a reflection
in a simple root αi and is defined by

si(αj) = αj − aijαi, for all i, j ∈ [n].

2.2 Admissible curves

K.-H. Lee and K. Lee defined the admissible curves on some space in [13]. In [5], A. Felikson
and P. Tumarkin gave an equivalent definition of the admissible curves on a disc with n marked
interior points and a boundary point called a basepoint. We use this definition of admissible
curves in this paper.

Definition 2.5. Let H = R × R≥0 and for all i ∈ [n], pi = (i, 1) be a marked point and
ρi = {(i, y) | y ≥ 1} be a ray in H. Let b = (0, 0) be the base point and P = {pi | i ∈ [n]} be
the set of all marked points. An admissible curve is a smooth continuous function γ : [0, 1]→ H
such that

(a) γ(0) ∈ P and γ(1) = b,

(b) if γ(x) ∈ {b} ∪ P , then x ∈ {0, 1}, and

(c) if γ((0, 1]) ∩ ρi 6= ∅, then γ and ρi intersect transversely.

An admissible curve is non-self-crossing if for all x, y ∈ [0, 1] such that γ(x) = γ(y), x = y. See
Fig. 1a for an example of a non-self-crossing admissible curve.

(a) Example of an admissible curve (b) γ3 when n = 4

Figure 1
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Let γi be a curve defined as γi(x) = (i(1− x), 1− x), for all i ∈ [n]. For example, the curve
in Fig. 1b is γ3 when n = 4. We can easily see that γi is an admissible curve, as

(a) γi(0) = pi ∈ P and γi(1) = b,

(b) if γi(x) ∈ {b} ∪ P , then γi(x) = (i(1− x), 1− x) = (0, 0) or (k, 1) for some k ∈ [n], which
means that x = 0 or x = 1,

(c) γi((0, 1]) ∩ ρj = ∅ for all j.

Thus γi is an admissible curve and it does not cross itself.
In this paper, we express these curves using the description of the braid group as a mapping

class group of H as described in [4, Chapter 9]. See Fig. 2 for an example of the braid group
action on H.

(a) γ and σ2 (b) σ2(γ)

(c) γ and σ−12 (d) σ−12 (γ)

Figure 2

For i, j ∈ [n] such that i < j, define σ[i,j] = σj−1 · · ·σi+1σi and σ[j,i] = σiσi+1 · · ·σj−1. Then

σ−1[i,j] = σ−1i σ−1i+1 · · ·σ
−1
j−1 and σ−1[j,i] = σ−1j−1 · · ·σ

−1
i+1σ

−1
i . Consider γi and σ[i,j]γi in Fig. 3. Then

σ[i,j]γi(0) = pj and as x increases, σ[i,j]γi(x) crosses ρj−1, ρj−2, . . . , ρi in that order.

Definition 2.6. Let π be a permutation in Sn and γ be a non-self-crossing admissible curve.
Assume γ(x) crosses the rays ρk1 , ρk2 , . . . , ρkm as x increases. Let Iγ be the word ρk1ρk2 · · · ρkm
over {ρ1, . . . , ρn}. Then the associated root of γ with respect to π is

απ(γ) =


sπ(km)sπ(km−1) . . . sπ(k2)sπ(k1)απ(k0),

if sπ(km)sπ(km−1) . . . sπ(k2)sπ(k1)απ(k0) is positive,

−sπ(km)sπ(km−1) . . . sπ(k2)sπ(k1)απ(k0),

if sπ(km)sπ(km−1) . . . sπ(k2)sπ(k1)απ(k0) is negative,

where αi is a simple root associated to the vertex i and si is a simple reflection for the simple
root αi. Note that απ(γ) is always positive.

As sisi = id, if two curves are isotopic, then they have the same associated root.
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(a) γi (b) σ[i,j](γi) (c) σ[j,i]σ[i,j](γi)

Figure 3

Definition 2.7. Given a permutation π in Sn and a non-self-crossing admissible curve γ, assume
Iγ = k0k1 · · · km. Then let π(Iγ) be the word ρπ(k0)ρπ(k1) · · · ρπ(km) over {ρ1, . . . , ρn}. Let
a, j1, . . . , jm ∈ {1, . . . , n} so that π(k0) = a and π(ki) = ji for 1 ≤ i ≤ m. Then γ is said to be

� positive with respect to π if sji · · · sj1αa are positive for all i ∈ [m],

� non-decreasing with respect to π if sji · · · sj1αa ≥D sji−1 · · · sj1αa, for all i ∈ [m], and

� strictly increasing with respect to π if sji · · · sj1αa >D sji−1 · · · sj1αa, for all i ∈ [m].

If π is clear from the context, we just say positive, non-decreasing, and strictly increasing curves.
Let Γπ,p be the set of positive non-self-crossing curves with respect to π, Γπ,nd be the set of non-
decreasing non-self-crossing curves with respect to π, and Γπ,s be the set of strictly increasing
curves with respect to π.

Remark 2.8. Recall that Γ is the set of isotopy classes of non-self-crossing admissible curves.
Let π be a permutation in Sn and γ be a non-self-crossing admissible curve that is non-decreasing
with respect to π. Let π(Iγ) = ρaρj1 · · · ρjm . If γ is strictly increasing, then sji · · · sj1αa ≥D
sji−1 · · · sj1αa holds true for all i by definition of strictly increasing non-self-crossing curve. Also,
sji · · · sj1αa ≥D αa for all i. Since αa is positive, sji · · · sj1αa is positive for all i. Thus γ is positive
and we can see that Γπ,s ⊂ Γπ,nd ⊂ Γπ,p ⊂ Γ.

Conjecture 2.9 (Lee [12]). Let Q be an acyclic quiver with n vertices and Γπ,nd be the set of
non-decreasing non-self-crossing admissible curve. Let PQ be the set of permutations π such that
if a > b, then there is no arrow from π(a) to π(b). Then⋃

π∈PQ

{απ(γ)|γ ∈ Γπ,nd} = {real Schur roots of Q}.

Remark 2.10. For the acyclic quivers of type ADE, the set of real Schur roots coincide with
the set of positive roots. By definition of the associated root of a non-self-crossing admissible
curve, it is clear that απ(γ) is a positive root, hence real Schur root, for all γ ∈ Γ. Thus, for an
acyclic quiver Q of type ADE,⋃

π∈PQ

{απ(γ)|γ ∈ Γ} ⊆ {real Schur roots of Q}.

3 Coxeter transformation

From now on we consider finite types of ADE. In this section we consider a Coxeter transforma-
tion of the Weyl group W of a root system and develop some useful tools to prove Conjecture 2.9.
The Weyl group W of a root system is a Coxeter group with generators, s1, . . . , sn, and rela-
tions on them. Let cπ = sπ(1)sπ(2) · · · sπ(n) where π is a permutation of [n]. The element
cπ ∈ W is called a Coxeter transformation. As W is finite, the order of cπ is finite. Let h be
the order of cπ. This h does not depend on π, i.e., for any τ in Sn, h is the order of cτ . Let
θi = sπ(n)sπ(n−1) · · · sπ(i+1)απ(i). We can recognize θi as the associated root of a non-self-crossing
admissible curve. Let γ be a non-self-crossing curve as below:
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As Iγ = ri · · · rn, απ(γ) = θi. Let c : Γ→ Γ be defined by sending γ ∈ Γ to a non-self-crossing
admissible curve obtained from γ by wrapping around all marked points counter-clockwise at
the end. For example, γi and c(γi) are given below.

Note that I(c(γ)) is given by concatenating I(γ) and ρnρn−1 · · · ρ1; thus απ(c(γ)) = sπ(1)sπ(2)
· · · sπ(n)απ(γ) up to a sign where π is any permutation in Sn. Let

{
ckπθi | 0 ≤ k < h

}
+

be the

intersection of
{
ckπθi | 0 ≤ k < h

}
and the set of positive roots of Q. Note that

{
ckπθi | 0 ≤ k <

h
}
+

=
{
απ(ckγ) | 0 ≤ k < h

}
. Son Nguyen informed the author of the following observation.

Proposition 3.1 (Bourbaki [1]). Let ∆ be a root system and W be its Weyl group. Let π be
a permutation of [n], θi = sπ(n)sπ(n−1) · · · sπ(i+1)αi, and Ωi =

{
ckπθi | k = 0, . . . , h− 1

}
. Then

1) Ωi ∩ Ωj = ∅ for all i 6= j, and

2) ∆ =
⋃n
i=1 Ωi.

Recall that PQ = {π ∈ Sn | if π(a)→ π(b) ∈ Q1, then a < b}.

Corollary 3.2 (Lee–Lee conjecture for finite acyclic case). For an acyclic quiver Q of type
ADE, ⋃

π∈PQ

{απ(γ)|γ ∈ Γ} = {real Schur roots of Q} = ∆+
Q.

Proof. By Remark 2.10, we know that
⋃
π∈PQ{απ(γ) | γ ∈ Γ} ⊆ ∆+

Q. Note that by Proposi-

tion 3.1,
{
ckπθi | 0 ≤ k < h

}
is the set of all roots. Thus the subset of positive roots, denoted by{

ckπθi | 0 ≤ k < h
}
+

, is the same as ∆+
Q.

∆+
Q =

{
ckπθi | 0 ≤ k < h

}
+

=
{
απ
(
ckγ
)
| 0 ≤ k < h

}
⊆
⋃
π∈PQ

{απ(γ) | γ ∈ Γ} ⊆ ∆+
Q.

Therefore
⋃
π∈PQ{απ(γ) | γ ∈ Γ} = ∆+

Q. �

Example 3.3. Consider the quiver below. Note that α2 ∈ ∆+
Q.

1 2 3

As there is an arrow from vertex 1 to 2 and an arrow from 2 to 3, the only permutation in PQ
is the identity. Then π ∈ PQ is the identity. Consider the following non-self-crossing admissible
curves below.
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Note that απ(τ1) = α2, απ(τ2) = s3s2α3 = α2, and απ(τ3) = s3s1s3s1α2 = α2. The associated
roots for all three curves are α2. Note that τ1 is strictly increasing and thus non-decreasing
whereas τ2 and τ3 are positive but are not non-decreasing. By Corollary 3.2, given a quiver Q
and a root α ∈ ∆+

Q, there exists a non-self-crossing admissible curve whose associated root is α.
However, we do not know that whether that curve is non-decreasing.

Given a positive root, there could be many non-self-crossing admissible curves in Γ that
correspond to that root. It is a natural question to see if there are non-decreasing non-self-
crossing admissible curves among those non-self-crossing admissible curves. The following is our
main theorem.

Theorem 3.4. Let Q be an acyclic quiver of type A, D, E6 and E7. Then⋃
π∈PQ

{απ(γ) | γ ∈ Γπ,nd} = ∆+
Q.

Furthermore, if Q is an acyclic quiver of type A, then
⋃
π∈PQ{απ(γ) | γ ∈ Γπ,s} = ∆+

Q.

Remark 3.5. We have a supporting evidence that Theorem 3.4 holds for quivers of type E8 as
well as affine quivers of type A. We will discuss those two cases in Appendix A.

Note that Proposition 3.1 does not imply this theorem. To prove this theorem, we first observe
a relationship between the root system of a quiver and the root system of a full subquiver. Let
Q = (Q0, Q1) be a quiver and Q′ be a full subquiver induced by V ⊂ Q0. Recall that PQ is the set
of all permutations in S|Q0| such that if i > j, then there is no arrow π(i)→ π(j) in Q1. As π(i)
represents a vertex of Q, we can think of π as a map π : {1, . . . , |Q0|} → Q0. Thus PQ′ can be
thought of as the set of bijective maps π′ : {1, . . . , |V |} → V such that if i > j, then there is no
arrow π′(i) → π′(j) in Q′. Let π ∈ PQ and {a1, . . . , ak} be a subset of {1, . . . , |Q0|} such that
ai < aj for i < j and {a1, . . . , ak} = π−1(V ). Define ϕ(π) to be the map ϕ(π) : {1, . . . , k} → V
given by i 7→ π(ai). Note that if i > j, then ai > aj . Thus there is no arrow from π(ai)→ π(aj).
Thus we may think of ϕ(π) as of an element of PQ′ . Abusing notation, we will write ϕ(π) ∈ PQ′ .

Lemma 3.6. Let Q = (Q0, Q1) be an acyclic quiver and Q′ be a connected full subquiver induced
by V ⊂ Q0. For π′ ∈ PQ′ such that ϕ−1(π′) is not empty,

� {απ′(γ) | γ ∈ Γπ′,s} ⊆ {απ(γ) | γ ∈ Γπ,s},
� {απ′(γ) | γ ∈ Γπ′,nd} ⊆ {απ(γ) | γ ∈ Γπ,nd},
� {απ′(γ) | γ ∈ Γπ′,p} ⊆ {απ(γ) | γ ∈ Γπ,p},

where π is any permutation in ϕ−1(π′), where ϕ is given above.

Proof. Let α = απ′(γ
′) for π′ ∈ PQ′ and some non-self-crossing curve γ′. Let a, j1, . . . , jm be

vertices in V such that π′(I(γ′)) = ρaρj1 · · · ρjm . Let π ∈ ϕ−1(π′). Then π−1(ji) − π−1(ji+1)
and π′−1(ji)− π′−1(ji+1) are both positive or both negative. Let γ be a non-self-crossing curve
such that γ(0) = pπ−1(a), crosses ρπ−1(ji) in the order that γ′ crosses, and goes under the marked
points pπ−1(k) for all k 6∈ V . Then π(I(γ)) = ρaρj1 · · · ρjm .

If γ′ ∈ Γπ′,s, then sji · · · sj1αa >D sji−1 · · · sj1αa for all i ∈ [m]. Thus γ ∈ Γπ,s. Similarly, if
γ′ ∈ Γπ,nd, then γ ∈ Γπ,nd and if γ′ ∈ Γπ,p, then γ ∈ Γπ,p. �
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Remark 3.7. If Q = (Q0, Q1) is an acyclic quiver of finite type and Q′ is a connected full
subquiver of Q = (V,E) such that Q0 \V = {v}, then v is a sink or source of Q. Without loss of
generality, assume that v is a sink. Then given any π′ ∈ PQ′ , define π be given by π(i) = π′(i)
for i < |Q0| and π(|Q0|) = v. Note that π ∈ PQ and ϕ(π) = π′. We can iterate this process
to see that given any quiver Q of finite type and a connected full subquiver Q′, if π′ ∈ PQ′ ,
then ϕ−1(π′) is not empty.

Remark 3.8. In Lemma 3.6, a vertex i is “ignored” if βi = 0. This method of removing unused
vertices is a common approach. For example, a maximal green sequence of a full subquiver of
a quiver can be obtained from a maximal green sequence of the quiver by this approach; see in
[8, Theorem 3.3].

If γ is a non-self-crossing admissible curve, then so is cγ. Furthermore, as I(cγ) = I(γ)ρnρn−1
· · · ρ1 we can compare α and cπα to say more about cγ.

Lemma 3.9. Let Q be an acyclic quiver, π ∈ PQ, and cπ be a Coxeter transformation of the
Weyl group of ∆Q. If α ∈ {απ(γ) | γ ∈ Γπ,nd} and α <D cπα, then cπα ∈ {απ(γ) | γ ∈ Γπ,nd}.
Similarly, if α ∈ {απ(γ) | γ ∈ Γπ,nd} and α <D c−1π α, then c−1π α ∈ {απ(γ) | γ ∈ Γπ,nd}.

Proof. Given π ∈ PQ and γ ∈ Γπ,nd, let α = απ(γ). Assume that α <D cπα. As c : Γ→ Γ, cγ
is a non-self-crossing admissible curve. To show that cγ is non-decreasing, note that Icγ = Iγ ⊕
(n, . . . , 2, 1). As γ ∈ Γπ,nd, it suffices to show that α ≤D sπ(n)α and sπ(k+1)sπ(k+2) · · · sπ(n)α ≤D
sπ(k)sπ(k+1) · · · sπ(n)α for all k ∈ [n − 1]. Let a = α or a = sπ(k+1)sπ(k+2) · · · sπ(n)α. Given any
root, a simple reflection affects the coefficient of the corresponding simple root only. Thus a
and sπ(k)a differ only by the coefficient of απ(k). As each simple reflections appears only once
in cπ, the coefficient of απ(k) in a matches the coefficient of απ(k) in α. Similarly, the coefficient
of απ(k) in sπ(k)a matches the coefficient of απ(k) in cπα. As α <D cπα, we know that a ≤D sπ(k)a.
Therefore cγ is non-decreasing.

If α <D c−1π α, then c−1γ is a non-self-crossing admissible curve and c−1π α = sπ(n)sπ(n−1) · · ·
sπ(1)α. Using a similar argument as above, we can see that c−1γ ∈ Γπ,nd and c−1π α ∈ {απ(γ) | γ ∈
Γπ,nd}. �

4 Type A

In this section, we focus on quivers of type A, i.e., quivers whose underlying undirected graph is

n n− 1 . . . 2 1
en−1 en−2 e2 e1

Let An be the set of such quivers. As mentioned before, all positive roots of type A are real
Schur roots. It is known that all the positive roots of type A are of the form

m∑
k=`

αk, where 1 ≤ ` ≤ m ≤ n.

We will prove that for certain π ∈ PQ, any positive root is the associated root of a strictly
increasing non-self-crossing admissible curve. We show this by providing an algorithm to con-
struct such curves. Furthermore, for any permutation π ∈ PQ, any root is the associated root
of a non-decreasing non-self-crossing admissible curve.
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4.1 Strictly increasing curves

Let Q ∈ An in this section. To show that for a certain permutation π ∈ PQ, {απ(γ) | γ ∈ Γπ,s} =
∆+
Q, we first define a unimodal permutation.

Definition 4.1. A permutation π ∈ Sn is said to be unimodal if there exists k ∈ [n] such that
for all i < j ≤ k, π(i) < π(j) and for all k ≤ i < j, π(i) > π(j). In particular, π(k) = n. Let Un
be the set of all unimodal permutations in Sn.

For a permutation π ∈ Un, we define a quiver Qπ in An by giving an orientation of the
edges ei. If π−1(i) < π−1(n), then t(ei) = i and if π−1(i) > π−1(n), then h(ei) = i. Define
ω : Un → An by ω(π) = Qπ.

For example, ω (( 1 2 3 4 5
1 3 5 4 2 )) is

5 4 3 2 1
e4 e3 e2 e1

For any quiver Q ∈ An, let Eu = {i ∈ [n − 1] | t(ei) = i} and Ed = {i ∈ [n − 1] |h(ei) = i}.
We define a unimodal permutation using the elements of Eu to form the increasing sequence
and the elements of Ed to form the decreasing sequence. Define a1 = minEu and ai = min(Eu \
{a1, . . . , ai−1}) for 2 ≤ i ≤ |Eu|. Let b1 = maxEd, and bi = max(Ed \ {b1, . . . , bi−1}) for
2 ≤ i ≤ n− |Eu| − 1. Then define a unimodal permutation πQ as below

πQ =
(

1 2 ··· |Eu| |Eu|+1 |Eu|+2 ··· n
a1 a2 ··· a|Eu| n b1 ··· bn−|Eu|−1

)
.

Let ψ : An → Un be a map defined by ψ : Q 7→ πQ. For example, given Q below,

4 3 2 1

the unimodal permutation given by ψ is ψ(Q) = ( 1 2 3 4
1 2 4 3 ).

Lemma 4.2. There exists a bijection between An and Un.

Proof. We claim that ω : Un → An given above is a bijection. It suffices to show that ω and ψ
are inverses. To show that ω(ψ(Q)) = Q, it suffices to show that the arrows, ei, have the same
orientations in both Q and ω(ψ(Q)). Let πQ = ψ(Q). Let c = π−1Q (n) and a = π−1Q (i) for some
i ∈ [n − 1]. If t(ei) = i, then a < c. Thus in ω(πQ), t(eπQ(a)) = i. Similarly, if h(ei) = i,
then h(eπQ(a)) = i in ω(πQ). Thus ω(πQ) and Q have the same orientations for all edges, which
means ω(ψ(Q)) = Q.

To see that ψ(ω(π)) = π, let Qπ = ω(π) and k = π−1(n). Then

Eu = {i ∈ [n− 1] | t(ei) = i} =
{
i ∈ [n− 1] |π−1(i) < π−1(n)

}
= {π(i) | i < k}.

As π is unimodal, π(1) < π(2) < · · · < π(k−1). Thus a1 = minEu = π(1), a2 = π(2), . . ., and
ak−1 = π(k−1). Similarly, we can see that Ed = {π(i) | i > k} and b1 = π(k+1), . . . , bn−k = π(n).
Thus ψ(ω(π)) = π. Therefore ψ and ω are inverses. �

Remark 4.3. Note that given Q ∈ An and πQ = ψ(Q), there are no arrows from the ver-
tex πQ(a) to the vertex πQ(b) in Q if a > b. Thus πQ ∈ PQ. By Lemma 4.2, each quiver Q has
a unimodal permutation in PQ as PQ ∩ Un = {πQ}.
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We will describe non-self-crossing admissible curves using the braid group action on {γ1,
. . . , γn}. Recall σ[i,j] = σj−1 · · ·σi+1σi and σ[j,i] = σiσi+1 · · ·σj−1 for i < j. Given π ∈ Un, let

Σi =

{
σ−1
[π−1(i)+1,π−1(i+1)]

σπ−1(i) if π−1(i) < π−1(i+ 1),

σ[π−1(i)−1,π−1(i+1)]σ
−1
π−1(i)−1 if π−1(i) > π−1(i+ 1).

From here on, let i = pπ(i). To depict Σi, consider π = ( 1 2 3 4 5 6
3 6 5 4 2 1 ) . Then Σ2γπ−1(2) =

σ[4,1]σ
−1
4 γ5 is

Note that Σ2γπ−1(2) loops around 2, go below all the points between 2 and 3, and end at 3.
Then αψ(Q)(Σ2γπ−1(2)) = σ2(α3) = α2 + α3. Also there exists a sufficiently small neighborhood
around 3 so that σ2γπ−1(2) is homotopy equivalent to γπ−1(3) in that neighborhood also the both
curves do not intersect ρπ−1(3); see Fig. 4. Thus Σ3Σ2γπ−1(2) loops around 3 and going under
all the other points and end at 4.

Proposition 4.4. Let Q be an acyclic quiver of type A and π ∈ PQ ∩ Un. Let α =
∑m

i=` αi be
a positive root of type A and let γ = Σm−1Σm−2 · · ·Σ`γπ−1(`). Then γ ∈ Γπ,s and απ(γ) = α.
Furthermore,

{απ(γ) | γ ∈ Γπ,s} = ∆+
Q.

See Example 4.5 for an illustration of this Proposition.

(a) Σ2γ5 (b) γ3

Figure 4: In the neighborhood around 3, Σ2γ5 homotopy equivalent to γ3.

Proof. Let α = α` + α`+1 + · · · + αm and γ = Σm−1 · · ·Σ`γπ−1(`). We claim that π(Iγ) =
ρmρm−1 · · · ρ`. To prove this, we induct on m − `. If m − ` = 0, then γ = γπ−1(`). Thus
π(Iγ) = ρ`.

Let γ′ = Σm−2 · · ·Σ`γπ−1(`). By the induction hypothesis, π(Iγ′) = ρm−1ρm−2 · · · ρ`. There
are two possible cases: π−1(m) < π−1(m−1) and π−1(m) > π−1(m−1). As they are symmetric,
we can assume that π−1(m) > π−1(m− 1) without loss of generality.

Let a = π−1(m − 1) and b = π−1(m). Then γ = Σm−1γ
′ = σ−1b−1σ

−1
b−2 · · ·σ

−1
a+1σaγ

′. By
the induction hypothesis, γ′(0) = m− 1, which means that σa(γ

′)(0) = π(a+ 1). There are
two possibilities for π(Iσa(γ′)): ρπ(a+1)ρm−1ρm−2 . . . ρ` or ρπ(a+1)ρm−2 · · · ρ`. Refer to Fig. 5 for
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illustrations of these two cases. We claim that the second case is not possible. By way of
contradiction, assume π(Iσa(γ′)) = ρπ(a+1)ρm−2 · · · ρ`. Apply σ−1a to σa(γ

′) to obtain γ′. Note
that in this case γ′ crosses ρa+1. Since γ′ crosses ρa+1, ` ≤ π(a + 1) ≤ m − 2. However, π is
unimodal and π(a) = m − 1 and π(b) = m. Then a is part of an increasing sequence of this
unimodal permutation π. Thus, π(a+1) > π(a) = m−1, which contradicts that π(a+1) ≤ m−2.
Thus the second case does not happen and σa(γ

′) crosses ρa transversally.

(a) Case 1: σa(γ′) crosses ρa (b) Case 2: σa(γ′) does not cross ρa

(c) Case 1: σ−1a (σa(γ′)) (d) Case 2: σ−1a (σa(γ′))

Figure 5: Two cases.

Now consider σ−1a+1σa(γ
′). The curve goes below pa+1 since σa(γ

′) crosses ρa. Thus the

curve does not cross ρa+1. Also σ−1a+1σa(γ
′) ends at pa+2. Similarly, σ−1b−1σ

−1
b−2 · · ·σ

−1
a+1σa(γ

′)
does not cross ρi for all a < i ≤ b. Thus γ ends at pb = m and crosses ρπ−1(m−1). Therefore
π(Iγ) = ρmρm−1 · · · ρ`.

For a quiver in An,

si(αj) =

{
αj + αi if j = i− 1, i+ 1,

αj otherwise.

Thus, sm−1αm = αm−1 + αm and sm−2(αm−1 + αm) = sm−2(αm−1) + sm−2(αm) = αm−2 +
αm−1 + αm. By continuing this process, we can see that sjsj−1 · · · sm−1αm =

∑m
k=j αk. Note

that
∑m

k=j−1 αk <D
∑m

k=j αk for all ` ≤ j < m. Therefore γ ∈ Γπ,s and απ(γ) = α.

Furthermore, {απ(γ) | γ ∈ Γπ,s} ⊆ ∆+
Q as mentioned before. Since απ(γ) = α for any positive

root α of type A, ∆+
Q = {απ(γ) | γ ∈ Γπ,s}. �

Example 4.5. Consider the following quiver Q:

6 5 4 3 2 1

Then πQ = ( 1 2 3 4 5 6
1 2 4 5 6 3 ) and γ = Σ5Σ4Σ3Σ2Σ1γ1 is shown below.
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Thus πQ(Iγ) = ρ6ρ5ρ4ρ3ρ2ρ1 and απQ(γ) = s1s2s3s4s5α6 =
∑6

i=1 αi. Note that this curve is

not given by ckπθi for any i and k. Thus Proposition 3.1 does not cover this curve.

4.2 Non-decreasing curve

Not every permutation in PQ has a strictly increasing non-self-crossing admissible curve for every
positive root. However, for any permutation in PQ, there is a non-decreasing non-self-crossing
admissible curve for every positive root.

Proposition 4.6. Let Q ∈ An. For any π ∈ PQ, {απ(γ) | γ ∈ Γπ,nd} = ∆+
Q.

Proof. As {απ(γ) | γ ∈ Γπ,nd} ⊆ ∆+
Q for any Q and π ∈ PQ, we just need to show the other

inclusion. The positive roots of type A are of the form
∑`

i=k αi, which is the highest root of the
full subquiver induced by the vertices k, . . . , `. By Lemma 3.6 and Remark 3.7, if Q′ is a full
subquiver of Q, then {απ′(γ) | γ ∈ Γπ′,nd} ⊆ {απ(γ) | γ ∈ Γπ,nd} for π′ ∈ PQ′ and π ∈ ϕ−1(π′).
Thus it suffices to show that the highest root is in {απ(γ) | γ ∈ Γπ,nd} for any Q ∈ An and
π ∈ PQ.

Let us proceed by induction on |Q0|. If |Q0| = 1, it is trivial. Assume that for a quiver
in An with less than n vertices, the highest root is in {απ(γ) | γ ∈ Γπ,nd} for any π. Let Q ∈ An
be a quiver with n vertices and α be the highest root. For any π ∈ PQ, cπα <D α. If cπα is

positive, then it is of the form
∑`

i=k αk where `− k < n− 1. So cπα is the highest root of a full
subquiver of Q and by the induction hypothesis, cπα is in {απ′(γ) | γ ∈ Γπ′,nd} where π′ = ϕ(π).
Thus cπα ∈ {απ(γ) | γ ∈ Γπ,nd} by Lemma 3.6 and Remark 3.7 and α ∈ {απ(γ) | γ ∈ Γπ,nd} by
Lemma 3.9.

If cπα is negative, then cπα = −απ(1) as α is the highest root ofQ. Thus α=sπ(n)· · · sπ(2)απ(1).
In this case, let γ be the curve shown below

Then απ(γ) = sπ(n) · · · sπ(2)α2 = α and γ ∈ Γπ,s ⊂ Γπ,nd. �

5 Type D

In this section, we prove that for an acyclic quiver of type D and any permutation respecting
the orientations, there exists a non-decreasing non-self-crossing admissible curve for every root.
Let Dn be the set of type D quivers with n vertices, i.e., quivers whose underlying graph is

n n− 1

n− 2

n− 3n− 4. . .21

It is known that the positive roots of a quiver of type D are either type A or one of the
following:

0 ··· 0 1 ··· 1 1
1 , 0 ··· 0 1 ··· 1 2 ··· 2 1

1

Unlike the type A case, if Q is an acyclic quiver of type D, not all positive roots are the
associated roots of strictly increasing non-self-crossing curves.
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Example 5.1. Consider the quiver Q below. Then PQ = {( 1 2 3 4 5
4 1 2 5 3 ) , ( 1 2 3 4 5

1 4 2 5 3 ) , ( 1 2 3 4 5
1 2 4 5 3 )}.

5 4

3

21

Let α = 1 2 2 1
1 . If α = απ(γ) for some π ∈ PQ and γ ∈ Γπ,s, then π(Iγ) = ρk1ρk2ρk3ρk4ρk5ρ5ρ2

where ki’s are distinct and the full subquiver induced by {k1, . . . , ki} is connected for all i ≤ 5.
However, this is not possible for any π ∈ PQ.

If α =
∑n

i=1 βiαi and βi = 0 for some i, then it suffices to view α as a root of a full subquiver
by Lemma 3.6 and Remark 3.7. Thus we only consider the roots of the form:

1 ··· 1 1
1 , 1 ··· 1 2 ··· 2 1

1

Lemma 5.2. Let Q be an acyclic quiver of type ADE with n vertices. Let α be a positive root
of Q with a unique index k ∈ [n] such that sk(α) >D α. If there is a vertex j that is adjacent to
the vertex k such that sj(α) <D α, then cπα <D α or c−1π α <D α for any π ∈ PQ.

Proof. Let Q be an acyclic quiver of type ADE. Let α =
∑n

i=1 βiαi be a positive root of Q
such that there exist two adjacent vertices j, k such that skα >D α, sjα <D, and siα ≤D α for
all other i. Note that as α is a positive root of finite type, siα = α ± αi or α for any i. As j
and k are adjacent, sksj(α) = sk(α− αj) = sk(α)− sk(αj) = α+ αk − (αj + αk) = α− αj .

If i 6= k, j, then si(α − αj) = siα − siαj ≤D α − αj as siα ≤D α and siαj ≥D αj . Thus
si(α−αj) ≤D α−αj . If π(k) < π(j), then cπα = sπ(1) · · · sπ(n)α ≤D sksjα <D α. If π(k) > π(j),
then c−1π α = sπ(n) · · · sπ(1)α ≤D sksjα <D α. �

Proposition 5.3. Let Q ∈ Dn. Then {απ(γ) | γ ∈ Γπ,nd} = ∆+
Q for any π ∈ PQ.

Proof. Let Q ∈ Dn and π be any permutation in PQ. It is known that {απ(γ) | γ ∈ Γπ,nd} ⊆
∆+
Q. The positive roots of Q are type A, 0 ··· 0 1 ··· 1 1

1 , or 0 ··· 0 1 ··· 1 2 ··· 2 1
1 . By Lemma 3.6,

Remark 3.7, and Proposition 4.6 all the type A positive roots are in {απ(γ) | γ ∈ Γπ,nd}.
If α = 0 ··· 0 1 ··· 1 1

1 , then it suffices to view α as a root of full subquiver induced by vertices
whose corresponding simple roots have non-zero coefficients by Lemma 3.6 and Remark 3.7. So
α = 1 ··· 1 1

1 and snα >D α, sn−1α <D α, and si ≤D α for all other i. Thus by Lemma 5.2,
cπα or c−1π α is smaller than α. Without loss of generality, assume that cπα <D α. Moreover
cπα <D α− αn−1. If cπα is positive, cπα is of type A as α− αn−1 is type A. Thus by Proposi-
tion 4.6, Lemma 3.6, and Remark 3.7, cπα ∈ {απ(γ) | γ ∈ Γπ,nd}. Then α ∈ {απ(γ) | γ ∈ Γπ,nd} by
Lemma 3.9. If cπα is negative, then cπα = −απ(1) as h(α) = n. Then α = sπ(n) · · · sπ(2)α2. Just
as we have seen in the proof of Proposition 4.6, there is γ such that απ(γ) = sπ(n) · · · sπ(2)α2 = α
and γ ∈ Γπ,s ⊂ Γπ,nd.

Let α be a root of the form 0 ··· 0 1 ··· 1 2 ··· 2 1
1 . Let us proceed by induction on the height

of α, h(α) =
∑n

i=1 βi, to show that α ∈ {απ(γ) | γ ∈ Γπ,nd}. The smallest h(α) is 5, i.e.,
α = 0 ··· 0 1 2 1

1 . By Lemma 3.6 and Remark 3.7, it suffices to view α as the highest root of a
quiver in Dn with four vertices. Then cπα is type A or 1 1 1

1 . By Proposition 4.6 and the above
argument, cπα ∈ {απ(γ) | γ ∈ Γπ,nd} for any π ∈ PQ. Then α ∈ {απ(γ) | γ ∈ Γπ,nd} for any
π ∈ PQ by Lemma 3.9.

If h(α) > 5, assume that for all α′ such that h(α′) < h(α), α′ ∈ {απ(γ) | γ ∈ Γπ,nd}. Let
α =

∑n
i=1 βiαi. By Lemma 3.6 and Remark 3.7, we can assume that βi > 0 for all i. Let j be the

smallest index so that βj = 2. Note that sj+1α = α+ αj+1, sjα = α− αj , and siα <D α for all
other i. Thus by Lemma 5.2, cπα <D α or c−1π α <D α. As h(α) > n and each simple reflections
decrease the coefficient by at most 1, cπα and c−1π α cannot be negative. By Lemma 3.9 and the
induction hypothesis, α ∈ {απ(γ) | γ ∈ Γπ,nd}. �
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Example 5.4. Let Q be the quiver below, π = ( 1 2 3 4 5 6
1 2 3 6 5 4 ) ∈ PQ and α = 1 1 2 2 1

1 .

6 5

4

321

Note that cπα = 0 1 1 2 1
1 . The set of indices with nonzero coefficient is {2, 3, 4, 5, 6}. Note

that s2s3s6s5s4cπα = 0 0 1 1 1
1 and s3s6s5s4s2s3s6s5s4cπα = α3. Thus let γ be the curve below.

Then π(Iγ) = ρ3ρ6ρ5ρ4ρ2ρ3ρ6ρ5ρ4ρ1ρ2ρ3ρ6ρ5ρ4, απ(γ) = α, and γ ∈ Γπ,nd.

6 Type E

In this section, we consider the quivers of type E6 and E7. For n ∈ {6, 7}, let En be a set of
quivers whose underlying graph is

2 · · · n− 3 n n− 2 1

n− 1

The roots of type E are well-known; we refer to [16] for the list of positive roots of type E.
Some of the positive roots of type E are of the form α+α1 or α+α2 where α is a positive root
of a full subquiver of E. If there is a curve γ such that the associated root is α, then γ can be
extended a curve whose associated root is α+ α1 or α+ α2.

Lemma 6.1. Let Q be a quiver in En and α be a positive root of Q. Let Q′ be the full subquiver
induced by the vertices 2, . . . , n. If α − α1 ∈ {απ′(γ) | γ ∈ Γπ′,nd} where π′ ∈ PQ′, then α ∈
{απ(γ) | γ ∈ Γπ,nd} for some π ∈ PQ. Similarly, if Q′ is a full subquiver induced by the vertices
1, 3, . . . , n and α − α2 ∈ {απ′(γ) | γ ∈ Γπ′,nd} where π′ ∈ PQ′, then α is in {απ(γ) | γ ∈ Γπ,nd}
for some π ∈ PQ.

Proof. First note that the vertices 1 and 2 are always either source or sink. If α − α1 ∈
{απ′(γ) | γ ∈ Γπ′,nd} where π′ ∈ PQ′ , then α − α1 ∈ {απ(γ) | γ ∈ Γπ,nd} for any π ∈ ϕ−1(π′) by
Lemma 3.6 and Remark 3.7. As the vertex 1 is either source or sink, there are permutations
in ϕ−1(π′) so that π−1(1) is either 1 or n. Let γ′ ∈ Γπ,nd such that απ(γ) = α − α1 and γ′

does not cross ρ1. Consider γ obtained from γ′ by looping around 1 at the end. Then απ(γ) =
s1(απ(γ′)) = s1(α− α1) = α and as γ′ is non-decreasing, γ is also non-decreasing.

Similarly, there exists a permutation π ∈ PQ such that π−1(2) is either 1 or n and γ ∈ Γπ,nd
such that απ(γ) = α − α2. We can extend γ to γ′ by looping around 2 to obtain γ′. Then
απ(γ′) = s2(α− α2) = α. �
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6.1 Type E6

All roots of type E are known. Let Q ∈ E6 in this subsection. Any full subquiver of Q is either
type A or type D. By Lemma 3.6 and Remark 3.7, we only need to consider the following roots:

1 2 2 2 1
1 , 1 2 3 2 1

1 , 1 2 3 2 1
2

Lemma 6.2. Let Q ∈ E6. If α is one of the roots above, then for any π ∈ PQ, cπ(α) and cπ(α)
are positive. Furthermore, either cπ(α) <D α or c−1π (α) <D α.

Proof. The height of all three roots are greater than 6. As cπ is a composition of 6 simple
reflections, for any root α above, h(cπα) > 0 and h(c−1π α) > 0 for all π. If α = 1 2 2 2 1

1 , then
s6α >D α, s4α <D α, and siα ≤D α for all other i. If α = 1 2 3 2 1

1 , then s5α >D α, s6α <D α,
and siα ≤D α for all other i. Thus in either case, cπα <D α or c−1π α <D α by Lemma 5.2.

If α = 1 2 3 2 1
2 , then α is the largest positive root of type E6. As cπα is a positive root that

is different from α, cπα <D α and c−1π α <D α for any π ∈ PQ. �

Proposition 6.3. Let Q ∈ E6. Then
⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd} = ∆+

Q.

Proof. The full subquivers of Q are type A or D. By Lemma 3.6, and Remark 3.7, and
Propositions 4.6 and 5.3, the positive roots of these full subquivers are in {απ(γ) | γ ∈ Γπ,nd}
for any π ∈ PQ. Any root that is smaller than 1 2 2 2 1

1 is type A, type D, or satisfies the
assumptions of Lemma 6.1. Thus by Lemmas 3.6, 6.1, Remark 3.7, Propositions 4.6 and 5.3,
such root is in {απ(γ) | γ ∈ Γπ,nd} for some π ∈ PQ. We just need to show that 1 2 2 2 1

1 , 1 2 3 2 1
1 ,

and 1 2 3 2 1
2 are in

⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd}.

Let π ∈ PQ such that
{
π−1(1), π−1(2)

}
= {1, 2}, {5, 6}, or {1, 6}. Such permutation exists as

each of the vertices 1 and 2 is always either source or sink. By Lemma 6.2, cπα or c−1π α is smaller
than α where α = 1 2 2 2 1

1 . If
{
π−1(1), π−1(2)

}
= {1, 6}, then by the proof of Lemma 6.1, every

root that is smaller than α is in {απ(γ) | γ ∈ Γπ,nd}. As cπα or c−1π α <D α, the root α is
in {απ(γ) | γ ∈ Γπ,nd} by Lemmas 3.9 and 6.1. Similarly, the roots 1 2 3 2 1

1 , 1 2 3 2 1
2 are in

{απ(γ)|γ ∈ Γπ,nd}.
If
{
π−1(1), π−1(2)

}
= {1, 2} or {5, 6}, then cπα = c(1 2)πα as s1 and s2 commute. Note that

every root that is smaller than α is in {απ(γ) | γ ∈ Γπ,nd} or {α(1 2)π(γ) | γ ∈ Γ(1 2)π,nd}. Thus
cπα = c(1 2)πα is in either {απ(γ) | γ ∈ Γπ,nd} or {α(1 2)π(γ) | γ ∈ Γ(1 2)π,nd}. Therefore α is in
{απ(γ) | γ ∈ Γπ,nd} ∪ {α(1 2)π(γ) | γ ∈ Γ(1 2)π,nd} and so are the roots 1 2 3 2 1

1 and 1 2 3 2 1
2 . �

6.2 Type E7

Of the positive roots of E7, many of them are either type A, D, or E6. Also by Lemma 6.1,
many of the roots of type E7 are known to be in

⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd} if the roots below

are in
⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd}.

1 2 2 2 2 1

1

1 2 2 3 2 1

1

1 2 3 3 2 1

1

1 2 2 3 2 1

2

1 2 3 3 2 1

2

1 2 3 4 2 1

2

1 2 3 4 3 1

2

1 2 3 4 3 2

2

Lemma 6.4. Let Q ∈ E7 and π ∈ PQ. If

α ∈ { 1 2 2 2 2 1
1 , 1 2 2 3 2 1

2 , 1 2 3 3 2 1
2 , 1 2 3 4 2 1

2 , 1 2 3 4 3 1
2 , 1 2 3 4 3 2

2 } ,

then cπα and c−1π α are positive and cπα <D α or c−1π α <D α.
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Proof. As the height of each roots is greater than 7, cπα and c−1π α are positive. The root
α = 1 2 3 4 3 2

2 is the largest root of type E7. Thus cπα <D α for any π ∈ PQ. For other roots, it
suffices to show that for each root there is a unique k ∈ [7] such that skα >D α and an adjacent
vertex ` such that s`α <D α due to Lemma 5.2.

For instance, let α = 1 2 3 3 2 1
2 . Note that s7α = α + α7, s6α = α − α6, s4α = α − α4, and

siα = α for other i. Similarly, all the other roots have a unique index such that skα = α + αk
and an adjacent vertex j such that sjα = α− αj . �

Note that the roots 1 2 2 2 2 1
1 and 1 2 2 3 2 1

2 reduce to a root that we know to be in
⋃
π∈PQ{απ(γ)

| γ ∈ Γπ,nd}. To show the others, we first need to look at the roots 1 2 3 3 2 1
1 and 1 2 2 3 2 1

1 .

Lemma 6.5. Let Q ∈ E7 and α = 1 2 3 3 2 1
1 . Then α ∈

⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd}.

Proof. Note that s4α = α− α4, s6α = α+ α6, and siα = α for i 6= 4, 6. As the vertex 4 is not
adjacent to the vertex 6, we cannot apply Lemma 5.2. To show that α is the associated root of
a non-decreasing non-self-crossing admissible curve for some π ∈ PQ, we divide the quivers into
different cases. First, consider any quiver Q of the form below:

2 3 4 7 5 1

6

Due to the orientation of Q, for every π ∈ PQ, π−1(4) < π−1(7) < π−1(6). Thus cπα ≤D
s4s7s6α = 1 2 2 2 2 1

1 . This root and all the smaller roots are in {απ(γ) | γ ∈ Γπ,nd} or {α(1 2)π(γ) |
γ ∈ Γ(1 2)π,nd} for π ∈ PQ such that

{
π−1(1), π−1(2)

}
= {1, 2}, {1, 7}, or {6, 7}, just like 1 2 2 2 1

1

in type E6 case. Thus by Lemma 3.9, α ∈
⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd}.

Similarly, if Q is a quiver with the following orientations

2 3 4 7 5 1

6

then π−1(4) > π−1(7) > π−1(6) and c−1π α <D α.
Now consider a quiver of the orientation

2 3 4 7 5 1

6

Here cπα and c−1π α are not comparable to α. Thus to find π ∈ PQ and γ ∈ Γπ,nd such that
απ(γ) = α, we use Sage to find a permutation π and non-decreasing non-self-crossing admissible
curve γ such that απ(γ) = α. Refer to Tables 1 and 2. The quivers of following orientation

2 3 4 7 5 1

6

are obtained from the quivers of orientation above by reversing all arrows. Then the associated
root of the mirror images of the curves in the tables would be α. �
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Quiver, Q π ∈ PQ γ ∈ Γπ,nd

· · · · · ·

· ( 1 2 3 4 5 6 7
2 3 7 6 5 4 1 )

·· · ····

· · · · · ·

· ( 1 2 3 4 5 6 7
3 7 6 5 4 2 1 )

··· ····

· · · · · ·

· ( 1 2 3 4 5 6 7
2 7 6 5 4 3 1 )

·· ·····

· · · · · ·

· ( 1 2 3 4 5 6 7
2 3 5 7 6 4 1 )

·· · ·· ··

· · · · · ·

· ( 1 2 3 4 5 6 7
7 6 5 4 3 2 1 )

·······

· · · · · ·

· ( 1 2 3 4 5 6 7
3 7 6 5 4 2 1 )

··· ·· ··

· · · · · ·

· ( 1 2 3 4 5 6 7
2 5 7 6 4 3 1 )

·· ··· ··

· · · · · ·

· ( 1 2 3 4 5 6 7
5 7 6 4 3 2 1 )

····· ··

Table 1: Given a quiver and a permutation in PQ, the given non-self-crossing admissible curve γ

is non-decreasing and απ(γ)=1 2 3 3 2 1
1 .

Lemma 6.6. Let Q ∈ E7 and α = 1 2 2 3 2 1
1 . Then α ∈

⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd}.

Proof. Similarly as the proof of Lemma 6.5, we look at different cases of quivers. Note that
s7α = α − α7, s3α = α − α3, s6α = α + α6, s4α = α + α4, and siα = α for other i. As
s6s4s7α = s4s6s7α = α− α7, if π−1(7) < π−1(4) and π−1(7) < π−1(6), then cπα ≤D 1 2 2 2 2 1

1 .
Similarly, if π−1(7) > π−1(4) and π−1(7) > π−1(6), then c−1π α ≤D 1 2 2 2 2 1

1 .
Note that s4s3α = α−α3 and s6s7α = α−α7. Thus if π−1(3) < π−1(4) and π−1(7) < π−1(6),

then cπα ≤D 1 1 2 2 2 1
1 . Similarly, if π−1(3) > π−1(4) and π−1(7) > π−1(6), c−1π α ≤D 1 1 2 2 2 1

1 .
Now consider quivers of the form:

2 3 4 7 5 1

6

Quivers of this form do not fit the descriptions above. Also cπα 6<D α and c−1π α 6<D α.
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Quiver, Q π ∈ PQ γ ∈ Γπ,nd

· · · · · ·

· ( 1 2 3 4 5 6 7
1 2 3 7 6 5 4 )

· · · ····

· · · · · ·

· ( 1 2 3 4 5 6 7
1 3 7 6 5 4 2 )

· ·· ····

· · · · · ·

· ( 1 2 3 4 5 6 7
1 2 7 6 5 4 3 )

· · ···· ·

· · · · · ·

· ( 1 2 3 4 5 6 7
1 2 3 5 7 6 4 )

· · · ·· ··

· · · · · ·

· ( 1 2 3 4 5 6 7
1 7 6 5 4 3 2 )

· ······

· · · · · ·

· ( 1 2 3 4 5 6 7
1 3 5 7 6 4 2 )

· ·· ·· ··

· · · · · ·

· ( 1 2 3 4 5 6 7
1 2 5 7 6 4 3 )

· · ··· ··

· · · · · ·

· ( 1 2 3 4 5 6 7
1 5 7 4 6 3 2 )

· ···· ··

Table 2: Given a quiver and a permutation in PQ, the given non-self-crossing admissible curve γ

is non-decreasing and απ(γ)=1 2 3 3 2 1
1 .

We use Sage to find non-decreasing non-self-crossing admissible curves whose associated root is
1 2 2 3 2 1

1 . Refer to Table 3 for these curves. �

Proposition 6.7. If Q ∈ E7, then ∆+
Q =

⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd}.

Proof. Let Q ∈ E7 and π be a permutation in PQ such that π−1(1) = 1 or 7, π−1(2) is the
maximum or minimum value of {1, . . . , 7} \

{
π−1(1)

}
, and π−1(3) is the maximum or minimum

value of {1, . . . , 7} \
{
π−1(1), π−1(2)

}
. Such permutation exists as π ∈ PQ ∩ Un satisfies such

condition. Note that (1 2)π ∈ PQ if and only if
∣∣π−1(1) − π−1(2)

∣∣ = 1 and (1 3)π ∈ PQ if and
only if

∣∣π−1(1) − π−1(3)
∣∣ = 1. Let R = {(1 2)π, (1 3)π, (1 3)(1 2)π, π} ∩ PQ. For all p ∈ R,

cpα is constant as s1 commutes with s2 and s3.
By Lemma 3.6, Remark 3.7, and Propositions 4.6, 5.3 and 6.3, the positive roots of type A, D,

and E6 are in
⋃
p∈PQ{αp(γ) | γ ∈ Γp,nd}. Also by Lemma 6.1, any root of the form α1+α where α

is a positive root of type D or of the form α2 + α where α is a positive root of type E6 is in⋃
p∈PQ{αp(γ) | γ ∈ Γp,nd}. In particular, a root of the form α1 + α where α is type D is in

{αp(γ) | γ ∈ Γp,nd} for p ∈ PQ so that p−1(1) = 1 or 7. Also a root of the form α2 + α where α
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Quiver, Q π ∈ PQ γ ∈ Γπ,nd

· · · · · ·

· ( 1 2 3 4 5 6 7
2 4 7 6 5 3 1 )

·· ·· ···

· · · · · ·

· ( 1 2 3 4 5 6 7
4 7 6 5 3 2 1 )

···· ···

· · · · · ·

· ( 1 2 3 4 5 6 7
2 4 5 7 6 3 1 )

·· ·· · ··

· · · · · ·

· ( 1 2 3 4 5 6 7
4 5 7 6 3 2 1 )

···· · ··

· · · · · ·

· ( 1 2 3 4 5 6 7
1 2 4 7 6 5 3 )

· · ·· ···

· · · · · ·

· ( 1 2 3 4 5 6 7
1 4 7 6 5 3 2 )

· ··· ···

· · · · · ·

· ( 1 2 3 4 5 6 7
1 2 4 5 7 6 3 )

· · ·· · ··

· · · · · ·

· ( 1 2 3 4 5 6 7
1 4 5 7 6 3 2 )

· ··· · ··

Table 3: Given a quiver and a permutation in PQ, the given non-self-crossing admissible curve γ

is non-decreasing and απ(γ)=1 2 2 3 2 1
1 .

is type E6 is in {αp(γ) | γ ∈ Γp,nd} for p ∈ PQ so that p−1(2) = 1 or 7 and p|p−1({1,3,...,7}) fits
the condition of the permutation given in the proof of Proposition 6.3. At least one of the
permutations in R satisfies such conditions; thus any root of type A, D, and E6 and the roots of
the form α1+α where α is type D and α2+α where α is type E6 are in

⋃
p∈R{αp(γ) | γ ∈ Γp,nd}.

By Lemma 6.5 and Lemma 6.6, 1 2 2 3 2 1
1 , 1 2 3 3 2 1

1 ∈
⋃
p∈PQ{αp(γ) | γ ∈ Γp,nd}. In par-

ticular, they are in
⋃
p∈R{αp(γ) | γ ∈ Γp,nd}. To show that the roots in Lemma 6.4 are in⋃

p∈PQ{αp(γ) | γ ∈ Γp,nd}, we induct on the height of the roots.

The root with smallest height of the roots in Lemma 6.4 is 1 2 2 2 2 1
1 . Either cπα or c−1π α is

smaller than 1 2 2 2 1 1
1 which is in {απ(γ) | γ ∈ Γπ,nd} as π−1(1) = 1 or 7. Thus α ∈ {απ(γ) | γ ∈

Γ(1 2)π,nd}.
Let α be a root in Lemma 6.4. Assume that for any root with height less than h(α) is

in
⋃
p∈R{αp(γ) | γ ∈ Γp,nd}. By Lemma 6.4, cpα or c−1p α is smaller than α. Assume without loss

of generality, cpα <D α. As cpα is same for all p ∈ R, there is p ∈ R such that cpα ∈ {αp(γ) |
γ ∈ Γp,nd} and by Lemma 3.9, α ∈ {αp(γ) | γ ∈ Γp,nd}. Therefore ∆+

Q =
⋃
π∈PQ{απ(γ) |

γ ∈ Γπ,nd}. �

Proof of Theorem 3.4. This theorem follows from Propositions 4.4, 4.6, 5.3, 6.3, and 6.7. �
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A Other cases

A.1 Type E8

Let Q be a quiver of type E8 and α be a positive root of ∆Q. By Lemmas 3.6 and 3.9, Remark 3.7,
and Theorem 3.4, if cπα is of type A, D, E6, or E7 and cπα <D α, then α ∈

⋃
π∈PQ{απ(γ) | γ ∈

Γπ,nd}. We could proceed by induction on the height of the roots to prove that the real Schur
roots are associated roots of non-decreasing non-self-crossing admissible curves. However, there
are positive roots α and quivers Q of type E8 such that cπα and c−1π α are not comparable with α
for any π ∈ PQ. For example, let α be the root 1 2 2 3 3 2 1

1 and Q be the quiver below:

2 3 4 5 8 6 1

7

Note that π = ( 1 2 3 4 5 6 7 8
1 2 3 8 7 6 5 4 ) is a permutation in PQ; then cπα = 1 2 3 3 4 2 1

2 and c−1π α =
1 1 1 2 3 2 1

2 . Neither are comparable with α. Similarly, cpα and c−1p α are not comparable with α
for all other p ∈ PQ. As Lemma 6.1 does not apply to α, we would need to construct a non-
decreasing admissible curve such that the associated root is α. Below is a list of such roots, i.e.,
roots such that Lemma 6.1 does not apply and are not comparable to the resulting root after
applying cπ or the resulting root after applying c−1π .

1 2 2 2 3 2 1

1

1 2 2 2 3 2 1

2

1 2 2 3 3 2 1

1

1 2 2 3 3 2 1

2

1 2 3 3 3 2 1

1

1 2 2 3 4 2 1

2

1 2 2 3 4 3 1

2

1 2 3 3 4 2 1

2

1 2 3 3 4 3 1

2

1 2 3 4 4 2 1

2

1 2 3 3 4 3 2

2

1 2 3 4 4 3 1

2

1 2 3 4 5 3 1

2

1 2 3 4 5 3 1

3

1 2 3 4 5 3 2

2

1 2 3 4 5 4 2

2

The Sage code used in Section 6.2 to identify a non-decreasing non-self-crossing admissible
curve for a positive root of type E7 has limitations to be used to a non-decreasing non-self-
crossing admissible curve for a positive root of type E8. Let ` be the line through every marked
points. For example, see the diagram below.

The curve intersects ` at 6 points. The Sage code used in Section 6.2 identifies all non-self-
crossing admissible curves given an intersection number. For a quiver of type E8, this intersection
number must be very large compared to a quiver of type E7. This code is too slow to run for
quivers of type E8.

A.2 Affine quivers of type A with unique sink and source

Recall that Conjecture 2.9 assumes that Q is any acyclic quiver. In this section we discuss
an example of non-finite quiver that satisfies Conjecture 2.9. Let Q be an acyclic quiver of
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type A with a unique source and a unique sink. Let P = s → p1 → · · · → pk → t and
R = s→ r1 → · · · → r` → t be the two paths in Q, i.e., Q is

s

p1 p2 p3 · · · pk

t
r1 r2 · · · r`

Let T be a triangulation of an annulusX with k+1 marked points on the one of the boundaries
and `+1 marked points on the other boundary. Then consider the following triangulation on X.

Remark A.1. Given a triangulation, let QT be the quiver arising from T as described in [6].
Then, QT = Q.

In [6], it was shown that each cluster variable corresponds to an arc on A up to isotopy
and the denominator vector of the cluster variable is given by the intersection of the curve and
the arcs in T . As Q is an acyclic quiver, the set of positive c-vectors coincides with the set of
non-initial d-vectors.

Proposition A.2. Let Q be an affine quiver of type A with unique source and sink. Then the
c-vectors have one of the forms below:

g

(
αs +

u∑
i=1

αpi +
v∑
i=1

αqi

)
+ (g − 1)

(
k∑

i=u+1

αpi +
∑̀
i=v+1

αqi + αt

)
, or

(g − 1)

(
αs +

u∑
i=1

αpi +
v∑
i=1

αqi

)
+ g

(
k∑

i=u+1

αpi +
∑̀
i=v+1

αqi + αt

)
,

where g is any positive integer, 0 ≤ u ≤ k, and 0 ≤ v ≤ `.

Proof. Let τ be an arc on X with endpoints z and y such that τ is not in T and it is not
boundary parallel. Then z and y are on different boundaries. Let IntT (p) be the number of arcs
in T such that one of the boundary points is p. Note that if τ circles around the inner boundary
g−1 times then each arc in T is intersected at least g−1 times. Thus we just need to look at the
case where τ circles around once. There are three possible cases: IntT (z) > 1 and IntT (y) > 1,
IntT (z) = 1 and IntT (y) > 1, and IntT (z) = 1 and IntT (y) = 1.

If IntT (z) > 1 and IntT (y) > 1, then τ is isopotic to either curves:
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where the red arcs are corresponding to the path P and green correspond to the path R.
If IntT (z) = 1 and IntT (y) > 1, then it is isopotic to either curves:

If IntT (z) = 1 and IntT (y) = 1, then it is isopotic to either curves:

�

Remark A.3. Let Q be an affine quiver of type A. Any connected full subquiver Q′ such that Q′

is not equivalent to Q is a quiver of type A. Given π ∈ PQ, let π′ = ϕ(π). By Proposition 4.6,
{απ′(γ) | γ ∈ Γπ′,nd} = ∆+

Q′ . Then by Lemma 3.6, ∆+
Q′ ⊆ {απ(γ) | γ ∈ Γπ,nd}.

Proposition A.4. Let Q be an affine quiver of type A with a unique source and a unique sink.
Let α be a positive root of the form

g

(
αs +

u∑
i=1

αpi +

v∑
i=1

αqi

)
+ (g − 1)

(
k∑

i=u+1

αpi +
∑̀
i=v+1

αqi + αt

)
or

(g − 1)

(
αs +

u∑
i=1

αpi +
v∑
i=1

αqi

)
+ g

(
k∑

i=u+1

αpi +
∑̀
i=v+1

αqi + αt

)
,

where g ∈ Z≥1. Then α ∈ {απ(γ) | γ ∈ Γπ,nd}.
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Proof. We proceed by induction on g. If g = 1, then α is of a real Schur root of type A. Thus
α ∈ {απ(γ) | γ ∈ Γπ,nd} by Remark A.3. Assume for all a < g, the roots of the forms

a

(
αs +

u∑
i=1

αpi +
v∑
i=1

αqi

)
+ (a− 1)

(
k∑

i=u+1

αpi +
∑̀
i=v+1

αqi + αt

)

and

(a− 1)

(
αs +

u∑
i=1

αpi +

v∑
i=1

αqi

)
+ a

(
k∑

i=u+1

αpi +
∑̀
i=v+1

αqi + αt

)

are in {απ(γ) | γ ∈ Γπ,nd}.
Let π =

(
1 2 ··· k+1 k+2 ··· k+`+1 k+`+2
s p1 ··· pk q1 ··· q` t

)
. Note that π ∈ PQ. Then

c−1π

(
(g − 1)

(
αs +

u∑
i=1

αpi +

v∑
i=1

αqi

)
+ g

(
k∑

i=u+1

αpi +
∑̀
i=v+1

αqi + αt

))

= (g − 1)

(
αs +

k∑
i=1

αpi +
∑̀
i=1

αqi

)
+ (g − 2)αt

and

cπ

(
g

(
αs +

u∑
i=1

αpi +

v∑
i=1

αqi

)
+ (g − 1)

(
k∑

i=u+1

αpi +
∑̀
i=v+1

αqi + αt

))

= (g − 2)αs + (g − 1)

(
k∑
i=1

αpi +
∑̀
i=1

αqi + αt

)
.

As c−1π α <D α and c−1π α ∈ {απ(γ) | γ ∈ Γπ,nd} or cπα <D α and cπα ∈ {απ(γ) | γ ∈ Γπ,nd},
by Lemma 3.9, the root α is {απ(γ) | γ ∈ Γπ,nd}. �

Proposition A.5. Let Q be an affine quiver of type A with a unique source and a unique sink.
Then

⋃
π∈PQ{απ(γ) | γ ∈ Γπ,nd} coincides with the set of real Schur roots.

Proof. By Propositions A.2 and A.4, this proposition holds. �
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