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Abstract. We consider Fredholm determinants of matrix Hankel operators associated to
matrix versions of the n-th Airy functions. Using the theory of integrable operators, we
relate them to a fully noncommutative Painlevé II hierarchy, defined through a matrix-
valued version of the Lenard operators. In particular, the Riemann–Hilbert techniques
used to study these integrable operators allows to find a Lax pair for each member of the
hierarchy. Finally, the coefficients of the Lax matrices are explicitly written in terms of the
matrix-valued Lenard operators and some solutions of the hierarchy are written in terms of
Fredholm determinants of the square of the matrix Airy Hankel operators.
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1 Introduction

The aim of this work is to relate a family of solutions of a noncommutative version of the
Painlevé II hierarchy to Fredholm determinants of a matrix version of the n-th Airy Hankel
operators. The scalar versions of these operators have been recently studied in [16], in relation
with determinantal point processes (we will discuss this relation later on).

In order to construct our matrix analogue, we first define a matrix-valued version of the n-th
Airy function, in the following way

Ai2n+1(x,~s) =
(
cj,kAi2n+1(x+ sj + sk)

)r
j,k=1

, cj,k ∈ C, x ∈ R, (1.1)

where Ai2n+1(x+ sj + sk) is a shift of the n-th scalar Airy function, for some real parameters sl,
l = 1, . . . , r. We recall that the n-th scalar Airy function, Ai2n+1(x), is defined as a particular
solution of the differential equation

d2nφ(x)

dx2n
= (−1)n+1xφ(x) (1.2)

for each n ≥ 1. We refer to [17] for details about the solutions of the generalized Airy equa-
tions (1.2). In this paper we will consider these functions Ai2n+1(x) as contour integrals

Ai2n+1(x) :=

∫
γn+

1

2π
exp

(
iµ2n+1

2n+ 1
+ ixµ

)
dµ, x ∈ R,

for γn+ an appropriate curve, which we will specify later on.
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With the matrix-valued Airy functions Ai2n+1(x,~s) defined in (1.1), the matrix Airy Hankel
operators Ai2n+1 are defined in the standard way

(Ai2n+1f) (x) :=

∫
R+

Ai2n+1(x+ y,~s)f(y) dy, (1.3)

for any f = (f1, . . . , fr)
T ∈ L2

(
R+,Cr

)
. It is actually on the square of this sequence of operators

that we focused our study, and in particular on the Fredholm determinants defined as

F (n)(s1, . . . , sr) := det
(
IdR+ −Ai22n+1

)
, (1.4)

that are well defined since the operators Ai2n+1 are trace-class on L2
(
R+,Cr

)
(as follows from

Proposition 2.1 in [4]).
The core of this work is devoted to establish a relation between the Fredholm determi-

nants (1.4) and some solution of a noncommutative Painlevé II hierarchy. In particular, the
results obtained in [4], where the authors extend the theory of integrable operators of Its–
Izergin–Korepin–Slavnov [12], can be directly applied to the matrix operators Ai2n+1 defined
in (1.3). As byproduct, an equality between the Fredholm determinants F (n)(s1, . . . , sr) and
those of certain integrable operators can be established. The study of these integrable operators
involves particular Riemann–Hilbert problems (defined in Riemann–Hilbert Problem 2.5), and
these are indeed the main tool used in the following. In particular: starting from them we con-
struct a solution for the isomonodromic Lax pair of the noncommutative Painlevé II hierarchy,
that we are going to define as follows.

To start with, we first define a sequence of matrix-valued differential polynomials, by using
a noncommutative version of the well known Lenard operators Ln, used to define the scalar
Painlevé II hierarchy. In the following, U , W are functions depending on all the parameters sl,
l = 1, . . . , r with values in Mat(r × r,R). The symbols [ , ] and [ , ]+ indicate respectively the
standard commutator and anti-commutator between two matrices, since differential polynomials
in U are noncommutative quantities.

Then each differential polynomial Ln[U ] is defined by the following recursive relation

L0[U ] =
1

2
Ir,

d

dS
Ln[U ] =

(
d3

dS3
+ [U, ·]+

d

dS
+

d

dS
[U, ·]+ + [U, ·] d

dS

−1

[U, ·]
)
Ln−1[U ], n ≥ 1, (1.5)

where the differential operator d
dS is defined as

d

dS
:=

r∑
k=1

∂

∂sk
, (1.6)

and d
dS

−1
in intended as the corresponding formal antiderivative. The recursive relation for

the noncommutative version of the Lenard operators Ln, n ≥ 1, is related to the recursion
operator for the noncommutative KdV equation, introduced in [18]. There the authors already
conjectured about the locality of these operators computed in U , but the formal proof of that
was done some years later in [19] (Theorem 6.2 in this last paper).

Finally we define our noncommutative Painlevé II hierarchy as follows

PII
(n)
NC :

(
d

dS
+ [W, ·]+

)
Ln[U ] = (−1)n+14n[S,W ]+, (1.7)

where U := d
dSW −W

2 is the Miura transform of W and the variable S is the diagonal matrix
S := diag(s1, . . . , sr) so that the anti-commutator in the right hand side is needed (also note
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that d
dSS = Ir). For this reason we refer to our hierarchy as a fully noncommutative one, since

in its definition (1.7) also the independent variable S is noncommutative. A matrix Painlevé II
hierarchy, constructed by using a noncommutative version of Lenard operators as in (1.5), was
recently studied in [9] but in this paper the independent variable is a scalar.

In this work, first of all, we found out that the hierarchy (1.7) admits an isomonodromic Lax
pair with Lax matrices that are block-matrices of dimension 2r. Furthermore, they are explicitly
written in terms of the matrix-valued Lenard operators defined in (1.5). The result proved in
Section 4 is summarized in the following proposition.

Proposition 1.1. For each fixed n there exist two polynomial matrices in λ, namely L(n), M (n),
respectively of degree 1 and 2n, such that the following system

d

dS
Ψ(n)(λ,~s) = L(n)(λ,~s)Ψ(n)(λ,~s),

∂

∂λ
Ψ(n)(λ,~s) = M (n)(λ,~s)Ψ(n)(λ,~s) (1.8)

is an isomonodromic Lax pair for the n-th equation of the matrix Painlevé II hierarchy (1.7).

In particular the matrices L(n), M (n) have the following forms

L(n)(λ,~s) =

(
iλIr W (~s)
W (~s) −iλIr

)
,

and

M (n)(λ,~s) =

(
A(λ,~s) + iS iG(λ,~s)
−iG(λ,~s) −A(λ,~s)− iS

)
+

(
E(λ,~s) F (λ,~s)
F (λ,~s) E(λ,~s)

)
,

where

A(λ,~s) =
n∑
k=0

i

2
λ2n−2kA2n−2k(~s), with A2n = Ir,

G(λ,~s) =
n∑
k=1

i

2
λ2n−2kG2n−2k(~s),

E(λ,~s) =

n∑
k=1

i

2
λ2n−2k+1E2n−2k+1(~s),

F (λ,~s) =

n∑
k=1

i

2
λ2n−2k+1F2n−2k+1(~s).

All the coefficients A2n−2k, G2n−2k, E2n−2k+1, F2n−2k+1 are expressed in terms of the Lenard
operators through the formulae (4.4).

This result can be thought as the noncommutative analogue of the well known isomonodromic
Lax pair for the scalar Painlevé II hierarchy studied in [6], and resulting from a self-similarity
reduction of the Lax pair for the modified KdV hierarchy.

Finally, we construct a solution Ψ(n) for the Lax pair (1.8), by using the solution of the
Riemann–Hilbert Problem 2.5 involved in the study of the integrable operators associated to
the matrix operators squared Ai22n+1.

As byproduct, we obtain the following relation between some solutions of the hierarchy (1.7)
and the Fredholm determinants (1.4). This is indeed the final result of this work and it is proved
at the end of Section 4.
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Corollary 1.2. There exists a solution W of the n-th member of the matrix PII hierarchy (1.7),
that is connected to the Fredholm determinant of the n-th Airy matrix Hankel operator through
the following formula

−Tr
(
W 2(~s)

)
=

d2

dS2
ln
(
F (n)(s1, . . . , sr)

)
.

Defining s := 1
r

∑r
j=1 sj, and δj := sj − s, this solution W in the regime s→ +∞ with |δj | ≤ m

for every j, has asymptotic behavior (W )rk,l=1 ∼ −2(cklAi2n+1(sk + sl))
r
k,l=1.

We remark that in [4] the above result was actually proved for the first equation of the
hierarchy, i.e., for the case n = 1. In this paper we extend the result to the all hierarchy (1.7),
i.e., to every n ∈ N. This result is a generalization of well known results in the scalar case.
Indeed, in this case the n-th Airy kernels, defined as

KAi2n+1(x, y) :=

∫
R+

Ai2n+1(x+ z)Ai2n+1(z + y)dz, (1.9)

are known to be related to Painlevé trascendents. For n = 1, it was shown in [22] that the Airy
kernel (1.9) is related to the Hastings–McLeod solution of the Painlevé II equation (discussed for
example in [7, 8, 10]). This study turns out to be very interesting since it creates a connection
between integrable systems and determinantal point processes. Indeed, the Airy kernel defines
the so called Airy point process, that arises in many areas of mathematics, such as statistical
mechanics and random matrix theory (here some examples of literature [14, 22, 23]).

For Airy kernels (1.9) with n > 1, a generalization of this kind of results has been recently
studied in [16], and in [5].

In this work, we see that the matrix Airy Hankel operators squared Ai22n+1 can actually be
interpreted as kernels for determinantal point processes on the space of configuration {1, . . . , r}×
R (under certain assumptions on the matrix C = (cj,k)

r
j,k=1), and it would be interesting to study

whether they describe phenomena in random matrix theory or statistical mechanics.
Here is a more precise list of what it is done in this work.

� In Section 2 the general theory developed in [4] is applied to the operators Ai22n+1, in
order to associate the Fredholm determinants (1.4) to the ones of certain integrable opera-
tors. The most important consequence of this study is indeed Theorem 2.9, that establishes
a relation between Fredholm determinant (1.4) and the solution of Riemann–Hilbert Prob-
lem 2.5. Furthermore, in this section it is provided in which hypothesis the solution exists
(Theorem (2.11)), and so the relation for the Fredholm determinants found in Theorem 2.9
holds.

� In Section 3 the fully noncommutative Painlevé II hierarchy is introduced and the first
equations are explicitly written.

� In the first part of Section 4, the proof of Proposition 1.1 is given and the construction of the
solution Ψ(n) of the isomonodromic Lax pair (1.8) for the hierarchy (1.7) is implemented.
Finally in the end of Section 4, Corollary 1.2 is proved, by using Theorem 2.9 and the
properties of the solution Ψ(n) of the isomonodromic Lax pair (1.8).

2 Riemann Hilbert problems associated
to the matrix Airy operators

In this section we are going to study the Fredholm determinants of some matrix-valued Airy
Hankel operator. By using the theory developed in [4] we can associate to this sequence of matrix
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Airy operators a sequence of integrable operators with certain kernels, such that their Fredholm
determinants are equal. Properties of this kind of integral kernels are studied through Riemann–
Hilbert problems. As byproduct, this procedure allows to find the fundamental relation between
Fredholm determinants of the Airy matrix Hankel operators and the first asymptotic coefficient
of the solutions of these Riemann–Hilbert problems, as proved in Theorem 2.9.

To start with, we recall some basic fact about the scalar generalized Airy functions Ai2n+1.
For each n ∈ N, we consider these functions Ai2n+1 as the contour integrals

Ai2n+1(x) :=

∫
γn+

1

2π
exp

(
iµ2n+1

2n+ 1
+ ixµ

)
dµ, x ∈ R, (2.1)

where γn± are curves in the upper (lower) complex plane with asymptotic rays at ±∞ that are
φn± := π

2 ±
πn

2n+1 , and such that γn− = −γn+. An example of these curves for n = 1 is given in
Fig. 1.

Definition 2.1. The n-th matrix-valued Airy function is defined as

Ai2n+1(x,~s) :=
(
cj,kAi2n+1(x+ sj + sk)

)r
j,k=1

, x ∈ R.

Here C = (cj,k)
r
j,k=1 ∈ Mat(r × r,C) and the parameters sl ∈ R, l = 1, . . . , r.

With these functions we construct the matrix-valued operators we are going to study in the
following.

Definition 2.2. We consider {Ai2n+1}n∈N the sequence of matrix Hankel operators acting on
any f = (f1, . . . , fr)

T ∈ L2
(
R+,Cr

)
s.t.

(Ai2n+1f)(x) :=

∫
R+

Ai2n+1(x+ y,~s)f(y) dy. (2.2)

Component wise the n-th Hankel operator Ai2n+1, looks like

(Ai2n+1f)j (x) =

r∑
k=1

cj,k

∫
R+

Ai2n+1(x+ y + sj + sk)fk(y) dy, j = 1, . . . , r. (2.3)

Remark 2.3. One can equivalently define the matrix-valued generalized Airy functions as con-
tours integrals, in the following way. For each n ∈ N

� we take s1, . . . , sr real parameters and S := diag(s1, . . . , sr) and we define the matrix-
valued complex function

θ2n+1(µ,~s) :=
iµ2n+1

2(2n+ 1)
Ir + iµS, (2.4)

where Ir is the identity matrix of dimension r.

� Then, we take the matrix C = (cj,k)
r
j,k=1 ∈ Mat(r × r,C) we define the matrix-valued

function

r(n)(λ, µ,~s) :=
1

2πi
exp(θ2n+1(λ,~s))C exp(θ2n+1(µ,~s)). (2.5)

� Finally, we can define the generalized matrix Airy function as

Ai2n+1(x,~s) =

∫
γn+

ir(n)(µ, µ,~s) exp(ixµ) dµ,

where the integral is computed entry by entry.
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γ3
+

γ3
−

φ3
+

Figure 1. These are the contours γ3± for the integral representation (2.1) of the Airy function Ai3 (case

n = 1). Their asymptotics at ±∞ are φ3± := π
6 ,

5π
6 .

We are actually interested in the square of the matrix Airy operators defined above in (2.2).
Indeed, the Fredholm determinants of these squared operators will be related to the noncom-
mutative Painlevé II hierarchy (1.7).

We are now going to define a sequence of Riemann–Hilbert problems related to the matrix
Airy operators. These are indeed the building blocks necessary to find the relation between
Fredholm determinants of the matrix Airy operators and our noncommutative Painlevé II hier-
archy.

Remark 2.4. From now on, in order to simplify the notation, the dependence on ~s in the
quantities (2.4), (2.5) will be omitted and we will use the abbreviation r(n)(λ, λ,~s) = r(n)(λ).

Problem 2.5. Find a (λ−)analytic matrix-valued function

Ξ(n)(λ) : C \
(
γn+ ∪ γn−

)
→ GL(2r,C),

admitting continuous extension to the contour γn+∪γn− from either side and such that it satisfies
the following two conditions:

� the jump condition for each λ ∈ γn+ ∪ γn−

Ξ
(n)
+ (λ) = Ξ

(n)
− (λ)

(
Ir −2πir(n)(λ)χγn+(λ)

−2πir(n)(−λ)χγn−(λ) Ir

)
︸ ︷︷ ︸

:=J(n)(λ,~s)

, (2.6)

where we denote by Ξ
(n)
± the boundary values of Ξ(n) for λ ∈ γ(n)

+ ∪ γ(n)
− , approaching the

boundary from the left (+) and the right (−) nontangentially.

� the asymptotic condition for |λ| → ∞

Ξ(n)(λ) ∼ I2r +
∑
j≥1

Ξ
(n)
j

λj
. (2.7)

Remark 2.6. In the following we are going to use the Pauli’s tensorized matrices, that have the
same property as the ones in the usual Clifford algebra. In particular we denote the tensorized
matrices by

σ̂1 = σ1 ⊗ I2r, σ̂2 = σ2 ⊗ I2r, σ̂3 = σ3 ⊗ I2r,
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where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
.

Then the standard relations hold also in this case:

[σ̂1, σ̂2] = −2iσ̂3, [σ̂1, σ̂3] = 2iσ̂2, [σ̂2, σ̂3] = −2iσ̂1, σ̂2
i = I2r, ∀ i.

The following symmetry property will be useful in the next computations.

Corollary 2.7. The asymptotic coefficients appearing in equation (2.7) have the following form

Ξ
(n)
2j = α

(n)
2j ⊗ I2 + β

(n)
2j ⊗ σ1,

Ξ
(n)
2j−1 = α

(n)
2j−1 ⊗ σ3 + β

(n)
2j−1 ⊗ σ2, j ≥ 1. (2.8)

Here α
(n)
l , β

(n)
l for every l ≥ 1 correspond to the r × r matrices in the entries (1, 1) and (1, 2)

of the block matrix Ξ
(n)
l .

An analogue statement is true for the asymptotic coefficients of the inverse of the solution of
the Riemann–Hilbert Problem 2.5, namely Θ(n) :=

(
Ξ(n)

)−1
.

Proof. We first prove the symmetry condition for the asymptotic coefficients of Ξ(n). We start
observing that the jump matrix J (n) for λ ∈ γn+ ∪ γn− has the following symmetry

σ̂1J
(n)(λ,~s)σ̂1 = J (n)(−λ,~s),

just using the definition of γn− = −γn+. This directly implies that also the solution of the
Riemann–Hilbert Problem 2.5 has the same symmetry property. Thus for any λ we have that

Ξ(n)(−λ) = σ̂1Ξ(n)(λ)σ̂1.

Computing the asymptotic expansion at ∞ of both sides of this equation, we have that

(−1)kΞ
(n)
k = σ̂1Ξ

(n)
k (λ)σ̂1. This directly implies the two equations (2.8) for k = 2j or k = 2j−1.

Concerning the statement for the asymptotic coefficients of the inverse of Ξ(n), namely Θ(n),
the proof follows by the fact that Θ(n) solves another Riemann–Hilbert problem, with same
symmetry for the jump matrix. Indeed, consider the following problem for a function Θ(n):

� Θ(n) is a (λ−)analytic matrix-valued function on C \
(
γn+ ∪ γn−

)
admitting continuous

extension from either side to γn+ ∪ γn−;

� it has a jump condition for each λ ∈ γn+ ∪ γn−

Θ
(n)
+ (λ) =

(
Ir 2πir(n)(λ)χγn+(λ)

2πir(n)(−λ)χγn−(λ) Ir

)
︸ ︷︷ ︸

:=H(n)(λ,~s)

Θ
(n)
− (λ);

� it has the asymptotic condition for |λ| → ∞

Θ(n)(λ) ∼ I2r +
∑
j≥1

Θ
(n)
j

λj
.
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The function Θ(n) with these properties is the inverse of the solution of Problem 2.5. Indeed:
the functions Θ(n)Ξ(n)(λ), and Ξ(n)Θ(n) have no jumps along γn+ ∪ γn− and they both behave like
the identity matrix at∞. Thus by the generalized Liouville theorem, they both have to coincide
with the identity matrix.

We then observe that the jump matrix H(n) here has the same symmetry property of J (n),
i.e., σ̂1H

(n)(λ,~s)σ̂1 = H(n)(−λ,~s), for each λ ∈ γn+ ∪ γn−. Thus, exactly as before, even the
function Θ(n) has the same property:

σ̂1Θ(n)(λ,~s)σ̂1 = Θ(n)(−λ,~s).

We conclude then that the asymptotic coefficients of Θ(n) have the same form of the Ξk, i.e.,

Θ
(n)
2j = α̃

(n)
2j ⊗ I2r + β̃

(n)
2j ⊗ σ1,

Θ
(n)
2j−1 = α̃

(n)
2j−1 ⊗ σ3 + β̃

(n)
2j−1 ⊗ σ2, j ≥ 1, (2.9)

where, as before, α̃
(n)
l and β̃

(n)
l for every l ≥ 1 correspond to the r×r matrices in the entries (1, 1)

and (1, 2) of the block matrix Θ
(n)
l . �

We are now ready to state the fundamental result that connects the matrix Airy Hankel
operators to these Riemann–Hilbert problems.

Supposing that the solutions of the Riemann–Hilbert Problem 2.5 and its inverse exist, we
have the following result.

Remark 2.8. Existence conditions for Ξ(n) (and thus Θ(n)) are given at the end of the section
(see Theorem 2.11).

Theorem 2.9. For each n ∈ N, consider Ξ(n) the solution of the Riemann–Hilbert Problem 2.5
and its inverse Θ(n) :=

(
Ξ(n)

)−1
. Then the following identities hold

d

dS
ln
(
F (n)(s1, . . . , sr)

)
=

∫
γn+∪γn−

Tr

(
Θ

(n)
−
(
Ξ

(n)
−
)′ d

dS
J (n)

(
J (n)

)−1
)

dλ

2πi

= −2i Tr
(
α

(n)
1

)
, (2.10)

where in the integral in the middle we indicate with ′ the derivation w.r.t. the spectral parameter λ
and the differential operator d

dS is defined as in (1.6).

Proof. The proof follows as an application to this very specific case of some general result
obtained in [4]. We split the proof in two parts, one for each equality in (2.10).

In order to obtain the first equality we need essentially two results. The first one establishes
the relation between Fredholm determinant of the Airy matrix operator and Fredholm determi-
nant of certain integral kernel operator [4, Corollary 2.1]). In particular, we first get that the
Fredholm determinants of {Ai2n+1}n∈N are equal to the ones of the integral operators acting on

L2
(
γ

(n)
+ ,Cr

)
with kernels

K(n)(λ, µ) =
r(n)(λ, µ)

λ+ µ
, (2.11)

with r(n)(λ, µ) defined as in (2.5).
As by product we then have that

F (n)(s1, . . . , sr) = det
(
Id
γ
(n)
+

−
(
K(n)

)2)
.
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The second result needed comes from the study of matrix integral kernels of type (2.11), through
Riemann–Hilbert problems. Indeed, it allows to compute the Fredholm determinants of these
integrable operators in terms of the solution of Riemann–Hilbert Problem 2.5. In particular, by
applying [4, Theorem 4.1], we have that∫

γn+∪γn−
Tr

(
Θ

(n)
−
(
Ξ

(n)
−
)′ d

dS
J (n)

(
J (n)

)−1
)

dλ

2πi
=

d

dS
ln det

(
I
γ
(n)
+

−
(
K(n)

)2)
.

Thus the first identity in the statement holds.
For what concerns the second identity of the statement, we proceed by direct computation

of the integral∫
γn+∪γn−

Tr
(
Θ

(n)
−
(
Ξ

(n)
−
)′ d

dS
J (n)

(
J (n)

)−1) dλ

2πi
. (2.12)

First of all, we observe that the jump matrix J (n)(λ,~s) that appears in the jump condition (2.6),
admits the factorization

J (n)(λ,~s) = exp
(
θ(n)(λ,~s)⊗ σ3

)
J

(n)
0 exp

(
−θ(n)(λ,~s)⊗ σ3

)
,

with J
(n)
0 the constant matrix given by

J
(n)
0 =

(
Ir C
C Ir

)
.

Thus we can easily compute the second factor appearing under the trace in the integral (2.12):(
d

dS
J (n)

)(
J (n)

)−1
= iλσ̂3 − J (n)

(
iλσ̂3

)(
J (n)

)−1
. (2.13)

We are now going to show that the integral in (2.12) is actually just the formal residue at ∞ of
a certain function. Furthermore in this particular case, due to the form of the matrix J (n), the
residue can be explicitly computed using equation (2.13).

To start with, we consider the following function

Tr

(
Θ(n)

(
Ξ(n)

)′ d

dS

(
θ(n) ⊗ σ3

))
= Tr

(
Θ(n)

(
Ξ(n)

)′
iλσ̂3

)
. (2.14)

Its formal residue at ∞ can be computed as

−Resλ=∞Tr
(
Θ(n)

(
Ξ(n)

)′
iλσ̂3

)
= lim

R→∞

∫
|λ|=R

Tr
(
Θ(n)

(
Ξ(n)

)′
iλσ̂3

) dλ

2πi
.

Now, this counterclockwise circle for R → ∞, can be deformed like γ
(n)
+ ∪ γ(n)

− . As byproduct,

the formal residue of (2.14) can be rewritten, taking into account the boundary values of Θ(n)

and
(
Ξ(n)

)′
along the curves γ

(n)
± , as follows∫

γn+∪γn−
Tr
((
−Θ

(n)
+

(
Ξ

(n)
+

)′
+ Θ

(n)
−
(
Ξ

(n)
−
)′)

iλσ̂3

) dλ

2πi
.

Now, from the jump condition (2.6) we deduce that all along the curves γ
(n)
± we have the relation(

Ξ
(n)
+

)′
=
(
Ξ

(n)
−
)′
J (n) +

(
Ξ

(n)
−
)(
J (n)

)′
.
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Thus replacing it in the first integral above we get∫
γn+∪γn−

Tr
((
−Θ

(n)
+

(
Ξ

(n)
+

)′
+ Θ

(n)
−
(
Ξ

(n)
−
)′)

iλσ̂3

) dλ

2πi

= −
∫
γn+∪γn−

Tr
(((

J (n)
)−1

Θ
(n)
−
((

Ξ
(n)
−
)′
J (n) + Ξ

(n)
−
(
J (n)

)′)
−Θ

(n)
−
(
Ξ

(n)
−
)′

iλσ̂3

)) dλ

2πi

= −
∫
γn+∪γn−

Tr
(((

J (n)
)−1

Θ
(n)
−
(
Ξ

(n)
−
)′
J (n) +

(
J (n)

)−1
J ′ −Θ

(n)
−
(
Ξ

(n)
−
)′)

iλσ̂3

) dλ

2πi

= −
∫
γn+∪γn−

Tr
(
Θ

(n)
−
(
Ξ

(n)
−
)′(
J (n)iλσ̂3

(
J (n)

)−1 − iλσ̂3

)) dλ

2πi

=

∫
γn+∪γn−

Tr

(
Θ

(n)
−
(
Ξ

(n)
−
)′ d

dS
J (n)

(
J (n)

)−1
)

dλ

2πi
,

where in the last passages we used the invariance of the trace by conjugation and the fact that

the quantity
(
J (n)

)−1(
J (n)

)′
iλσ̂3 is trace free.

Finally, using the asymptotic expansion at ∞ given in (2.7), we get that

Resλ=∞Tr
(
Θ(n)

(
Ξ(n)

)′
iλσ̂3

)
= −2i Tr

(
α

(n)
1

)
,

and this concludes the proof. �

Remark 2.10. In the study of isomonodromy deformations, the quantity∫
γn+∪γn−

Tr

(
Θ−Ξ′−

d

dS
J (n)

(
J (n)

)−1
)

dλ

2πi

is associated to the isomonodromic tau function τΞ(n) related to the Riemann–Hilbert Prob-
lem 2.5 depending on the parameters {sk}rk=1, through the formula

d

dS
ln τΞ(n) =

∫
γn+∪γn−

Tr

(
Θ−Ξ′−

d

dS
J (n)

(
J (n)

)−1
)

dλ

2πi
.

This notion was first introduced in [13], and then generalized for example in [3]. With Theo-
rem 2.9 we recover for any Airy matrix Hankel operator (2.2) the relation between the Fredholm
determinant F (n)(s1, . . . , sr) and the isomonodromic tau function associated to the Riemann–
Hilbert Problem 2.5, that was proved in Theorem 4.1 of [4] for Fredholm determinants of generic
matrix Hankel operators.

Finally, in order to use the formula (2.10) for the logarithmic derivative of F (n)(s1, . . . , sr),
we need to find out whether the solution Ξ(n) of the Riemann–Hilbert Problem 2.5 exists or not.
In particular, we are going to see that under certain assumptions on the constant matrix C, the
existence of Ξ(n) is assured. The following result is indeed a generalization of Theorem 5.1 in [4],
for the generalized Airy matrix operators defined in (2.2).

Theorem 2.11. Let the matrix C be Hermitian, then the solution Ξ(n) of the Riemann–Hilbert
Problem 2.5 exists if and only if the eigenvalues of C lay in the interval [−1, 1].

Before starting the proof of Theorem 2.11, we state the following lemma. For n = 1 the result
is known from [2, 10]. In the following we adapted the proof to the case of generic n. For finite
z ∈ R, we introduce the operator(

Φz
Ai2n+1

f
)
(x) =

∫ +∞

z
Ai2n+1(x+ y)f(y) dy, f ∈ L2(R).
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Lemma 2.12. For any n ∈ N we consider the Airy transform ΦAi2n+1 acting on f ∈ L2(R) ∩
L1(R) as

(ΦAi2n+1f)(x) = lim
z→−∞

(
Φz

Ai2n+1
f
)
(x) = lim

z→−∞

(∫ +∞

z
Ai2n+1(x+ y)f(y) dy

)
. (2.15)

Then lim
z→−∞

∣∣∣∣Φz
Ai2n+1

f
∣∣∣∣ = ||f || for the L2(R)-norm, and thus for any finite z the inequality∣∣∣∣∣∣Φz

Ai2n+1

∣∣∣∣∣∣ ≤ 1 holds for the L2((z,+∞)) operator norm.

Proof. We consider ΦAi2n+1 the Airy transform acting as defined in (2.15), where inside the
integral we have the scalar Airy function Ai2n+1 defined in (2.1), without any shift and for real
values of x. We introduce the Fourier transform F and its inverse F−1 defined on L2(R)∩L1(R)
(and extended to L2(R) by continuity and density argument), in the standard way as

(Fh)(x) :=
1√
2π

∫
R
h(λ) exp(−ixλ) dλ, F−1 := FI = IF,

where (Ih)(x) = h(−x), and the multiplication operator by exp
(

ix2n+1

2n+1

)
, denoted byMn. Then

we observe that the Airy transform ΦAi2n+1 can be rewritten as the composition of these oper-
ators, in such a way that

ΦAi2n+1 = F−1MnF
−1 = FIMnIF = FM−1

n F = Φ−1
Ai2n+1

.

This implies that

lim
z→−∞

∣∣∣∣Φz
Ai2n+1

f
∣∣∣∣ = lim

z→−∞

(∫
R

∣∣Φz
Ai2n+1

f(y)
∣∣2dy

) 1
2

=

(∫
R

∣∣∣∣∫
R

Ai2n+1(y + u)f(u)du

∣∣∣∣2 dy

) 1
2

= ||f ||, (2.16)

the norms being in L2(R).
Now we prove by contradiction the last inequality

∣∣∣∣∣∣Φz
Ai2n+1

∣∣∣∣∣∣ ≤ 1 for the L2((z,+∞))

operator norm. Suppose that there exist a scalar µ and an eigenfunction gz ∈ L2((z,+∞)) such
that Φz

Ai2n+1
gz = µgz and |µ| > 1. Then we can define g ∈ L2(R) as

g(y) =

{
gz(y), for y ≥ z,
0, for y < z,

and we obtain for z̃ ≤ z that Φz̃
Ai2n+1

g(y) = Φz
Ai2n+1

gz(y) = µgz(y) = µg(y) for y ≥ z. Finally,
since |µ| > 1, we have∣∣∣∣Φz̃

Ai2n+1
g
∣∣∣∣
L2(R)

≥
∣∣∣∣Φz̃

Ai2n+1
g
∣∣∣∣
L2((z,+∞))

= |µ|||g||L2((z,+∞)) > ||g||L2(R)

and this is in contradiction with equation (2.16). �

We can finally provide a complete proof of Theorem 2.11.

Proof. By applying Theorem 3.1 of [4] (which generalizes the fundamental result obtained first

in [12]) to the sequence of operators
(
K(n)

)2
, we have that the solutions Ξ(n) of the Riemann–

Hilbert Problem 2.5 exist if and only if the operator Id−
(
K(n)

)2
is invertible. This is guaranteed

by the non vanishing condition of the quantity det
(
Id−

(
K(n)

)2)
= det

(
Id−Ai22n+1

)
(the equality
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follows as before from Corollary 2.1 of [4]) that is verified if the operators Ai2n+1 are such that
|||Ai2n+1||| < 1. Here and in the following, ||| · ||| stands for the operator norm induced from the
L2-norms on the domain and codomain of the relevant operator.

Supposing that the eigenvalues of C are in the interval [−1, 1], we are going to show that the
inequality for the operator norm of Ai2n+1 holds. Since the operators Ai2n+1 defined in (2.2),
are constructed by shifting by some component of ~s the Airy function, we first observe that:

|||Ai2n+1||| =
∣∣∣∣∣∣PsAi

~0
2n+1Ps

∣∣∣∣∣∣,
where Ai

~0
2n+1 is the operator without any shift, namely

Ai
~0
2n+1f(x) :=

∫
R+

Ai2n+1(x+ y,~0)f(y) dy.

considered from and to the space
⊕r

k=1 L
2([sk,+∞),C) and Ps is the orthogonal projection

Ps : L2
(
R,Cr

)
−→

r⊕
k=1

L2([sk,+∞),C)

acting diagonally as Ps := diag(χ[sk,+∞))
r
k=1. From equation (2.3), we can see the matrix

operators Ai2n+1 written in terms of the scalar operators Φz
Ai2n+1

through tensor product. In
particular, when there is no shift we simply have

Ai
~0
2n+1 = C ⊗ Φ0

Ai2n+1
.

Finally, using the property of the scalar operator Φz
Ai2n+1

proved in Lemma 2.12, we conclude
that ∣∣∣∣∣∣Ai

~0
2n+1

∣∣∣∣∣∣ = |||C|||
∣∣∣∣∣∣Φ0

Ai2n+1

∣∣∣∣∣∣ ≤ |||C|||,
where the matrix norm of C above is induced by the 2-norm on Cr, i.e., it corresponds to the
spectral radius of C. Then we have

|||Ai2n+1||| ≤ |||Ps|||
∣∣∣∣∣∣Ai

~0
2n+1

∣∣∣∣∣∣|||Ps||| < |||C||| ≤ 1,

and this concludes the proof of one of the implications in the statement.

In order to prove the other implication, we suppose that there exist λ0 eigenvalue of C such
that |λ0| > 1, with corresponding eigenvector v0 ∈ Cr. In this case, we will be able to construct
a nonzero function fs(x) such that there exist a value s0 for which

Ai22n+1fs0(x) = fs0(x),

so we have that the operator Id−Ai22n+1 is not invertible and thus the solution of the Riemann–
Hilbert Problem 2.5 does not exist.

Indeed, consider f(x) := v0f(x), for any scalar function f ∈ L2(R). Then applying the
operator Ai22n+1 with a shift ~s = (s, . . . , s) for a certain s ∈ R we have

Ai22n+1f(x) = λ2
0v0

∫
R+

KAi2n+1(x+ s, y + s)f(y) dy,

where KAi2n+1 is the n-th generalized scalar Airy kernel. The corresponding kernel operator
is self-adjoint, trace-class and in particular compact, acting on L2([s,∞)). We consider its
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maximum eigenvalue µ(s) and the corresponding eigenfunction fs(x). Finally by taking fs(x) =
v0fs(x) we get

Ai22n+1fs(x) = λ2
0µ(s)fs(x).

Since λ2
0 > 1 and µ(s) is a continuous function such that µ(s) → 1 for s → −∞ and µ(s) → 0

for s→ +∞, there exist a value s0 ∈ R for which the above equation reads as

Ai22n+1fs0(x, ~s0) = fs0(x).

And this completes the proof. �

Remark 2.13. As byproduct of the theorem above, we have that the operators Ai22n+1 are
bounded from above by the identity. We can actually show that any of the operators Ai22n+1 is
also limited from below: indeed they are all totally positive on C := {1, . . . , r} × R. The main
idea to show this is to interpret Ai22n+1 as a scalar function on C ×C, in this way: for any couple
(ξ1, ξ2) = ((j1, x1), (j2, x2)) ∈ C × C we have

Ai22n+1(ξ1, ξ2) =

r∑
k=1

cj1,kck,j2

∫
R+

Ai2n+1(x1 + z + sj1 + sk)Ai2n+1(x2 + z + sj2 + sk) dz.

In this way the claim is proved if we prove that for any natural L, the quantity

det
(
Ai22n+1(ξa, ξb)

)
a,b≤L

is positive.
In order to do this, we first rewrite Ai22n+1(ξ1, ξ2) using the product measure dµ(ξ) on C given

by the product of the counting measure on {1, . . . , r} and the Lebesgue measure on R. Thus

Ai22n+1(ξa, ξb) =

∫
C+
F2n+1(ξa, ζ)F2n+1(ζ, ξb) dµ(ξ), (2.17)

where we defined the function F2n+1(ξa, ζ) = cja,kAi2n+1(x1 + z + sja + sk). In this way we can
determine the sign of the determinant, indeed

det
(
Ai22n+1(ξa, ξb)

)
a,b≤L = det

(∫
C+
F2n+1(ξa, ζ)F2n+1(ζ, ξb) dµ(ξ)

)
a,b≤L

=
1

L!

∫
CL+

det(F2n+1(ξa, ξc)) det(F2n+1(ξc, ξa))

L∏
c=1

dµ(ξc)

=
1

L!

∫
CL+
|det(F2n+1(ξa, ξc))|2

L∏
c=1

dµ(ξc) > 0,

where in the first passage we used a general property in measure theory, the Andreief identity
(see here [1] for details), and in the last one we used the fact that C is hermitian.

In conclusion, by taking C an hermitian matrix with eigenvalues laying in the interval [−1, 1],
any Ai22n+1 is hermitian and thanks to Theorem 2.11 and the previous remark, we can say that
any Ai22n+1 defines a determinantal point processes on that space of configuration C (directly
by applying Theorem 3 of [21]). In particular this implies that the Fredholm determinants
F (n)(s1, . . . , sr) are the joint probability of the last points for some multi-process on R (see for
instance Proposition 2.9 of [15]), namely

F (n)(s1, . . . , sr) = P
(
xmax
i < si, i = 1, . . . , r

)
.
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3 Matrix Painlevé II hierarchy

In this section, we are finally going to define our noncommutative Painlevé II hierarchy. In the
following, we will consider U(~s), W (~s) as functions depending on the parameters s1, . . . , sr with
values in Mat(r × r,C).

In this context we will use the standard notation for the commutator and anticommutator
between two matrices:

[A, ·] = A · − ·A and [A, ·]+ = A ·+ ·A.

In order to define a fully noncommutative version of the PII hierarchy, we first define a sequence
of differential polynomials Ln[U ] through a matrix version of the Lenard operators. Following [9]:

L0[U ] =
1

2
Ir,

d

dS
Ln[U ] =

(
d3

dS3
+ [U, ·]+

d

dS
+

d

dS
[U, ·]+ + [U, ·] d

dS

−1

[U, ·]
)
Ln−1[U ], n ≥ 1. (3.1)

Here Ir denotes the identity matrix, d
dS denotes the differential operator defined in (1.6) and

d
dS

−1
denotes the corresponding formal antiderivative. The locality of these operators computed

in U follows from Theorem 6.2 in [19].

Example 3.1. The first of the differential polynomials in U given by the recursive formula (3.1)
read as follows:

L1[U ] = U,

L2[U ] = U2S + 3U2,

L3[U ] = U4S + 5[U,U2S ]+ + 5U2
S + 10U3.

From n ≥ 3 the “noncommutative” character of these operators appears in form of anticommu-
tators.

Remark 3.2. In the example above and in the following we use the shorter notation
(

d
dS

)n
U =

UnS for any n ∈ N.

Definition 3.3. We define a matrix PII hierarchy as follows

PII
(n)
NC [αn] :

(
d

dS
+ [W, ·]+

)
Ln[U ] = (−1)n+14n[S,W ]+ + anIr, (3.2)

where U is as in the scalar case, the Miura transform of the function W , i.e., U := d
dSW −W

2,
and an are scalar constants.

In particular we will study the homogeneous hierarchy, setting an = 0 for each n.

Remark 3.4. It is also possible to define a more general hierarchy, in the following way

PII
(n)
NC[αn] :

(
d

dS
+ [W, ·]+

)
Ln[U ] +

n−1∑
l=1

tl

(
d

dS
+ [W, ·]+

)
Ll[U ]

= (−1)n+14n[S,W ]+ + anIr,

for some scalars t1, . . . , tn−1. We recover the hierarchy (3.2) setting up these scalars to 0.
Another matrix hierarchy was introduced in [9], but there the time variable is a scalar.
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Example 3.5. Here are the first three equations of the homogeneous hierarchy (3.2).

� For n = 1 we obtain the noncommutative analogue of the homogeneous PII equation:

PIINC : W2S = 2W 3 + 4[S,W ]+. (3.3)

This coincides with the homogeneus version of the fully noncommutative PII equation
studied in [20], in a more general context of any noncommutative algebra with derivation.

� For n = 2 we have the 4-th order equation:

PII
(2)
NC : W4S = 6W 5 + 4

[
W 2,W2S

]
+

+ 2WW2SW + 2
[
W 2
S ,W

]
+

+ 6WSWWS − 42[S,W ]+.

� For n = 3 we have the 6-th order equation:

PII
(3)
NC : W6S = 20W 7 − 15

[
W2S ,W

4
]
− 20W 2W2SW

2 − 10
[
WW2SW,W

2
]
+

− 10
[
W 2
S ,W

3
]
+
− 15

[
WW 2

SW,W
]
+
− 20WSW

3WS

− 25
[
WSWWS ,W

2
]
+
− 5
[
WSW

2WS ,W
]
+
− 10WWSWWSW

+ 6
[
W4S ,W

2
]

+ 2WW4SW + 4(WSW3SW + +WW3SWS)

+ 9(WWSW3S +W3SWSW ) + 15(WSWW3S +W3SWWS)

+ 25
[
W2S ,W

2
S

]
+

+ 20WSW2SWS

+ 11
[
W 2

2S ,W
]
+

+ 20W2SWW2S + 43[S,W ]+.

A fundamental property of matrix Lenard operators (that we are going to use in the next
section in order to find the Lax pair for the hierarchy (3.2)) is given by the following formula
(see [9]).

Proposition 3.6. For each n ∈ N the Lenard operator acting on the Miura transform factorizes
like

d

dS
Ln+1[U ] =

(
d

dS
− [W, ·]+

)(
d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
Ln[U ]. (3.4)

This formula is achieved by the direct computation of the recursive formula for the noncom-
mutative Lenard operators computed in the Miura transform U = WS −W 2.

4 The isomonodromic Lax pair

In this section we are finally going to find out a Lax pair for the noncommutative hierarchy (3.2),
making use of the Riemann–Hilbert Problem 2.5 introduced in Section 2. In this way we will
also be able to show the relation between some solution of the hierarchy (3.2) and the Fredholm
determinant of the matrix n-th Airy Hankel operator.

To start with, we consider a new sequence of functions, defined using the solution of the
Riemann–Hilbert Problem 2.5.

Definition 4.1. For each n ∈ N, we construct

Ψ(n)(λ,~s) := Ξ(n)(λ) exp
(
θ(n)(λ)⊗ σ3

)
.

It is easy to check that these functions
{

Ψ(n)
}
n∈N actually solve a new sequence of Riemann–

Hilbert problems, with constant jump conditions. Namely, the following problems.
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Problem 4.2. Find a (λ−) analytic matrix-valued function

Ψ(n)(λ) : C \
(
γn+ ∪ γn−

)
→ GL(2r,C)

admitting continuous extension to the contour γn+∪γn− from either side and such that it satisfies
the following two conditions:

� the jump condition for each λ ∈ γn+ ∪ γn−

Ψ
(n)
+ (λ) = Ψ

(n)
− (λ)

(
Ir Cχγn+(λ)

Cχγn−(λ) Ir

)
︸ ︷︷ ︸

:=K(n)

;

� the asymptotic condition for |λ| → ∞

Ψ(n)(λ) ∼

I2r +
∑
j≥1

Ξ
(n)
j

λj

 exp
(
θ(n)(λ)⊗ σ3

)
.

As it is standard in the theory of isomonodromic deformations, we deduce the Lax pair for
the noncommutative PII hierarchy (3.2) from the Riemann–Hilbert problems with piecewise
constant jumps solved by Ψ(n). The main idea is the following: using the fact that each Ψ(n) has
constant jump condition (i.e., the jump matrix K(n) does not explicitly depend on the spectral
parameter λ or the deformations parameters si, i = 1, . . . , r), we can thus conclude that the
quantities

d

dS
Ψ(n)

(
Ψ(n)

)−1
=: L(n) and

∂

∂λ
Ψ(n)

(
Ψ(n)

)−1
=: M (n) (4.1)

are matrix-valued polynomials in λ.

Remark 4.3. Here the inverse of Ψ(n) is simply given by(
Ψ(n)

)−1
(λ) = exp

(
−θ(n)(λ)⊗ σ3

)
Θ(n)(λ).

Furthermore, by using the symmetries of the Riemann–Hilbert Problem 2.5, we can compute
the exact form of the coefficients of these polynomials L(n), M (n).

The final result is summarized in the proposition below.

Proposition 4.4. There exist two polynomial matrices in λ, which we denote with L(n)

and M (n), respectively of degree 1 and 2n, such that the following system of differential equations
is satisfied:

d

dS
Ψ(n)(λ,~s) = L(n)(λ,~s)Ψ(n)(λ,~s),

∂λΨ(n)(λ,~s) = M (n)(λ,~s)Ψ(n)(λ,~s). (4.2)

Moreover, L(n) and M (n) have the following forms

L(n)(λ,~s) =

(
iλIr W (~s)
W (~s) −iλIr

)
, with W (~s) = 2β

(n)
1 (~s),

and

M (n)(λ,~s) =

(
A(λ,~s) + iS iG(λ,~s)
−iG(λ,~s) −A(λ,~s)− iS

)
+

(
E(λ,~s) F (λ,~s)
F (λ,~s) E(λ,~s)

)
,
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where

A(λ,~s) =

n∑
k=0

i

2
λ2n−2kA2n−2k(~s), with A2n = Ir,

G(λ,~s) =

n∑
k=1

i

2
λ2n−2kG2n−2k(~s),

E(λ,~s) =

n∑
k=1

i

2
λ2n−2k+1E2n−2k+1(~s),

F (λ,~s) =
n∑
k=1

i

2
λ2n−2k+1F2n−2k+1(~s).

Proof. We start computing the logarithmic derivative of Ψ(n) w.r.t. S, namely the quantity
that we defined in (4.1) as

d

dS
Ψ(n)

(
Ψ(n)

)−1
:= L(n).

The matrix-valued function L(n) is entire in λ, since it has no jumps along γn+∪γn−. Furthermore,
its asymptotic behavior at infinity is given by a matrix polynomial of degree 1 in λ. Thus, by the
generalized Liouville theorem, we conclude that L(n) is exactly a matrix polynomial of degree 1
in λ.

In particular from the asymptotic expansion at ∞, we find an explicit form of its matrix
coefficients. Here and in the following series expansions in powers of λ we will use the notation
[ ]≥0 to indicate that we are taking only the powers λr with r ≥ 0.

L(n)(λ) =
d

dS
Ψ(n)

(
Ψ(n)

)−1
=

I2r +
∑
j≥1

Ξ
(n)
j

λj

 iλσ̂3

I2r +
∑
j≥1

Θ
(n)
j

λj


≥0

= iλσ̂3 + i
(
Ξ

(n)
1 σ̂3 + σ̂3Θ

(n)
1

)
= iλσ̂3 + i

[
Ξ

(n)
1 , σ̂3

]
= iλσ̂3 + 2β

(n)
1 ⊗ σ1,

where in the last two passages we used the fact that Θ
(n)
1 = −Ξ

(n)
1 and then the symmetry (2.8).

We can then consider the second quantity defined in (4.1), namely

∂

∂λ
Ψ(n)

(
Ψ(n)

)−1
=: M (n).

We use the same argument as for L(n). Indeed, also M (n) is entire in λ, since it has no jumps
along γn+ ∪ γn−. Its asymptotic behavior at infinity is given by a matrix polynomial of degree 2n
in λ. We thus conclude, by the generalized Liouville theorem, that M (n) is exactly a matrix
polynomial in λ of degree 2n. In particular from the asymptotic expansion at ∞ we can find an
explicit form of this matrix:

M (n)(λ) = ∂λΨ(n)
(
Ψ(n)

)−1

=

I2r +
∑
j≥1

Ξ
(n)
j

λj

(( iλ2nIr
2

+ iS

)
⊗ σ3

)I2r +
∑
j≥1

Θ
(n)
j

λj


≥0

=
iλ2n

2
σ̂3 + iS ⊗ σ3 +

2n∑
l=1

iλ2n−l

2

Ξ
(n)
l σ̂3 + σ̂3Θ

(n)
l +

∑
j : j+k=l

Ξ
(n)
j σ̂3

(
l−1∑
k=1

Θ
(n)
k

)
︸ ︷︷ ︸

=M
(n)
2n−l

.

In order to obtain the remaining part of the statement, we use the following lemma.
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Lemma 4.5. The coefficient of the term λ2n−l in the matrix M (n) is such that:

� if l = 2m, then

M
(n)
2n−2m = A2n−2m(~s)σ̂3 +G2n−2m(~s)σ̂2;

� if instead l = 2m− 1, then

M
(n)
2n−2m+1 = E2n−2m+1(~s)⊗ I2r + F2n−2m+1(~s)σ̂1.

Proof. The proof is a direct consequence of the symmetry property that the asymptotics coeffi-
cients of Ξ(n), Θ(n) have. We start with the even case l = 2m. The coefficient of the term λ2n−2m

in the matrix M (n) is given by the following sum:

M
(n)
2n−2m =

Ξ
(n)
2mσ̂3 + σ̂3Θ

(n)
2m +

∑
j : j+k=2m

Ξ
(n)
j σ̂3

(
2m−1∑
k=1

Θ
(n)
k

) ,

where in the last sum all the terms are of type

Ξ
(n)
2s σ̂3Θ

(n)
2(m−s) or Ξ

(n)
2s−1σ̂3Θ

(n)
2(m−s)+1.

Using the symmetries (2.8) and (2.9), a direct computation shows that these terms are always
linear combinations of the Pauli’s matrices σ̂2, σ̂3.

So we can conclude that

M
(n)
2n−2m = A2n−2m(~s)σ̂3 +G2n−2m(~s)σ̂2.

where the functions A2n−2m(~s), G2n−2m(~s) depend on the asymptotic coefficients of Ξ(n), Θ(n).
We work in the same way for the odd case, l = 2m− 1. The coefficient of λ2n−2m+1 is given

by the same formula

M
(n)
2n−2m+1 =

Ξ
(n)
2m−1σ̂3 + σ̂3Θ

(n)
2m−1 +

∑
j : j+k=2m−1

Ξ
(n)
j σ̂3

(
2m−2∑
k=1

Θ
(n)
k

) ,

where in the last sum there are just terms of the two following types

Ξ
(n)
2s σ̂3Θ

(n)
2(m−s)−1 or Ξ

(n)
2s−1σ̂3Θ

(n)
2(m−s).

In both of the cases, always replacing the symmetries (2.8) and (2.9), they result to be linear
combinations of I2r, σ̂1. Thus we can finally conclude that

M
(n)
2n−2m+1 = E2n−2m+1(~s)⊗ I2r + F2n−2m+1(~s)σ̂1. �

Thanks to this lemma, the form of the matrix M (n) is exactly the one of the statement and
the proposition is completely proved. �

Remark 4.6. The system (4.2) for Ψ(n) describes the isomonodromic deformations w.r.t. the
deformation parameters si, i = 1, . . . , r, of the linear differential equation

∂

∂λ
Ψ(n)(λ,~s) = M (n)(λ,~s)Ψ(n)(λ,~s),

that has only one irregular singular point at ∞ of Poincaré rank r = 2n+ 1, and in the special
case of symmetry

−σ̂1M
(n)(λ,~s)σ̂1 = M (n)(−λ,~s).
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We can finally state that the system (4.2) is an isomonodromic Lax pair for the matrix PII
hierarchy (3.2).

Proposition 4.7. For each fixed n, the compatibility condition of the system (4.2), i.e., the
equation

∂

∂λ
L(n)(λ,~s)− d

dS
M (n)(λ,~s) +

[
L(n)(λ,~s),M (n)(λ,~s)

]
= 0 (4.3)

is equivalent to the following equation(
d

dS
+ [W, ·]+

)
Ln[U ] = (−1)n+14n[S,W ]+,

Furthermore, the coefficients of the matrix M (n) are written in terms of the matrix Lenard
operators in the following way

A2n−2k(~s) = −1

2

(
−1

4

)k−1(
Lk[U ]−

(
d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
Lk−1[U ]

)
,

G2n−2k(~s) =
i

2

(
−1

4

)k−1(( d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
Lk−1[U ]

)
,

E2n−2k+1 (~s) = −i

(
−1

4

)k−1 d

dS

−1(
[W, ·]

(
[W, ·]+ +

d

dS

)
Lk−1[U ]

)
,

F2n−2k+1 (~s) = −i

(
−1

4

)k−1((
[W, ·]+ +

d

dS

)
Lk−1[U ]

)
, for k = 1, . . . , n. (4.4)

In other words the system (4.2) is a Lax pair for the matrix Painlevé II hierarchy (3.2).

Proof. We first rewrite the compatibility condition (4.3) as the following system of differential
equations for the coefficients A, F , G, E:

d

dS
E(λ,~s) = [W,F (λ,~s)],

d

dS
A(λ,~s) = −i[W,G(λ,~s)]+,

d

dS
F (λ,~s) = −2λG(λ,~s) + [W,E(λ,~s)],

d

dS
G(λ,~s) = 2λF (λ,~s) + i[W,A(λ,~s)]+ − [S,W ]+.

These equations must be satisfied identically in λ. Thus, by the polinomiality of the coefficients
A, F , G, E, this system is equivalent to the following one

d

dS
E2n−2k+1(~s) = [W,F2n−2k+1(~s)],

d

dS
A2n = 0,

d

dS
A2n−2k(~s) = −i[W,G2n−2k(~s)]+,

G2n−2k(~s) =
1

2

(
− d

dS
F2n−2k+1(~s) + [W,E2n−2k+1(~s)]

)
,

F2n−1(~s) = − i

2
[W,A2n]+ ,

F2n−2k−1(~s) =
1

2

(
d

dS
G2n−2k(~s)− i[W,A2n−2k(~s)]+

)
,

i

2

d

dS
G0(~s) = −[S,W ]+ −

1

2
[W,A0(~s)]+ for k = 1, . . . , n. (4.5)
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In order to prove the statement, we are going to prove by induction over l = 2n − j that
each coefficient A2n−2k, E2n−2k+1, G2n−2k, F2n−2k+1 is given by the formulae (4.4) and that
this implies that the last equation in the system (4.5) is exactly the n-th member of the PII
hierarchy (3.2).

We first check that for l = 2n−1, 2n−2 the formulae (4.4) are solutions of the equations (4.5),
i.e., the coefficients F2n−1, E2n−1, G2n−2, A2n−2, are given by these formulae.

Since A2n = Ir, the equation

d

dS
A2n = 0

is satisfied. Then, the equation for F2n−1 will be satisfied for

F2n−1 = −iW,

that is exactly the result of the formula in (4.4) for k = 1, since

−i

(
−1

4

)0((
[W, ·]+ +

d

dS

)
L0[U ]

)
= −iW.

As a consequence, the equation for the coefficient E2n−1 in the system (4.5) becomes

d

dS
E2n−1(~s) = 0,

thus E2n−1 is constant w.r.t. the variable S and it is in particular E2n−1 = 0, because of the
asymptotics of Ψ(n). This is also what is given by the formula for k = 1:

−i

(
−1

4

)0 d

dS

−1(
[W, ·]

(
[W, ·]+ +

d

dS

)
L0[U ]

)
= 0.

We can then compute the term G2n−2 for which the equation in (4.5) is now

G2n−2 = −1

2

d

dS
(−iW ) =

i

2
WS ,

that coincides with the formula

i

2

(
−1

4

)0(( d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
L0[U ]

)
=

i

2

d

dS
W.

Finally, we can compute the term A2n−2. It is supposed to satisfy, from the system (4.5), the
equation

d

dS
A2n−2 = −i[W,G2n−2]+ =

1

2
[W,WS ]+.

Integrating and taking the constant of integration another time equal 0 (for the same reason
used above) we get

A2n−2 =
1

2
W 2.

The same that is given by the formula

−1

2

(
−1

4

)0(
L1[U ]−

(
d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
L0[U ]

)
= −1

2

(
WS −W 2 −WS

)
.

Thus for k = 1 the formulas in (4.4) gives solutions of the system (4.5).



A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions 21

Now we proceed by induction: supposing that for l = 2n− 2k + 1 the coefficients E2n−2k+1,
F2n−2k+1 are given by the formulas (4.4), we will find that then also the coefficients for l = 2n−2k
and l = 2n− 2k − 1 have the form given by the formulas (4.4).

Indeed, from the equations in (4.5), we have

G2n−2k(~s) =
1

2

(
− d

dS
F2n−2k+1(~s) + [W,E2n−2k+1(~s)]

)
= −1

2

(
−i

(
−1

4

)k−1 d

dS

((
[W, ·]+ +

d

dS

)
Lk−1[U ]

))

+
1

2

(
[W, ·]

(
−i

(
−1

4

)k−1 d

dS

−1(
[W, ·]

(
[W, ·]+ +

d

dS

)
Lk−1[U ]

)))

=
i

2

(
−1

4

)k−1(( d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
Lk−1[U ]

)
that is exactly the formula in (4.4) for this coefficient. Then we can compute

A2n−2k(~s) = −i
d

dS

−1

[W,G2n−2k(~s)]+ =
1

2

(
−1

4

)k−1 d

dS

−1

[W, ·]+

×
((

d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
Lk−1[U ]

)
= −1

2

(
−1

4

)k−1(
Lk[U ]−

(
d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
Lk−1[U ]

)
,

where in the last passage we have integrated (taking the integration’s constant 0) after having
applied formula (3.4). Then the equation for F2n−2k−1(~s) reads as

F2n−2k−1 =
1

2

(
d

dS
G2n−2k(~s)− i [W,A2n−2k(~s)]+

)
=

1

2

(
d

dS

i

2

(
−1

4

)k−1(( d

dS
− [W, ·] d

dS

−1

[W, ·]
)(

d

dS
+ [W, ·]+

)
Lk−1[U ]

))

− i

2

(
[W, ·]+

1

2

(
−1

4

)k−1
(
Lk[U ]−

(
d

dS
− [W, ·] d

dS

−1

[W, ·]
)

×
(

d

dS
+ [W, ·]+

)
Lk−1[U ]

))
= −i

(
−1

4

)k ( d

dS
+ [W, ·]+

)
Lk[U ],

where in the last line we used another time property (3.4) of the matrix Lenard operators.
Finally, the formula for E2n−2k−1 directly follows from the equation above and taking the inte-
gration contant equal 0, while integrating the equation (4.5).

In the end, when we replace the formulas for G0, A0 in the last equation of the system (4.5),
namely

i

2

d

dS
G0(~s) = −[S,W ]+ −

1

2
[W,A0(~s)]+,

using another time the property (3.4) we get the n-th member of the Painlevé II hierarchy:(
[W, ·]+ +

d

dS

)
Ln[U ] = (−1)n+14n[S,W ]+. �
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Remark 4.8. The matrices L(n), M (n) obtained here, are the analogue of the Lax pair for the
scalar Painlevé II hierarchy obtained in [6], with W (~s) given by

2β
(n)
1 (~s) = −2i lim

|λ|→∞

(
λΞ(n)(~s)

)
1,2

:= W (~s).

We can then state and prove the final result of this study, that links solutions of the homo-
geneus matrix Painlevé II hierarchy (3.2) to Fredholm determinants of the matrix Airy convo-
lution operators.

Corollary 4.9. There exists a solution W of the n-th member of the PII hierarchy (3.2) con-
nected to Fredholm determinant of the n-th Airy matrix operator (1.4) through the following
formula

−Tr
(
W 2(~s)

)
=

d2

dS2
ln
(
F (n)(s1, . . . , sr)

)
. (4.6)

This solution W has boundary behavior (W )rk,l=1 ∼ −2(cklAi2n+1(sk + sl))
r
k,l=1 in the regime

s → +∞ with |δj | ≤ m for every j, where s := 1
r

∑r
j=1 sj is the baricenter of the variables sj,

and δj := sj − s.

Proof. We first prove the formula (4.6). The statement is achieved by Theorem 2.9 and the

relation between α
(n)
1 , β

(n)
1 given by

d

dS
α

(n)
1 = −2i

(
β

(n)
1

)2
. (4.7)

This relation holds for each n and it is obtained by looking at the coefficient of the term λ−1 in
the asymptotic expansion at ∞ of

d

dS
Ψ(n)

(
Ψ(n)

)−1
,

and recalling that it must be 0. Indeed, from the asymptotic expansion of Ψ(n) we have that
the power λ−1 coming from the formal asymptotic expansion of d

dSΨ(n)
(
Ψ(n)

)−1
is1

[
d

dS
Ψ(n)

(
Ψ(n)

)−1
]
−1

=

I2r +
∑
j≥1

Ξ
(n)
j

λj

 iλσ̂3

I2r +
∑
j≥1

Θ
(n)
j

λj


−1

=
i

λ

(
Ξ

(n)
2 σ̂3 + σ̂3Θ

(n)
2 + Ξ

(n)
1 σ3Θ

(n)
1 +

d

dS
Ξ1

)
.

And replacing in the coefficient of λ−1 the relations between the asymptotic coefficients of Θ(n)

and the ones of Ξ(n), namely

Θ
(n)
1 = −Ξ

(n)
1 , Θ

(n)
2 =

(
Ξ

(n)
1

)2 − Ξ
(n)
2

the result is exactly the relation (4.7).
Now we are going to prove the second part of the statement. We define the scalar variables

s := 1
r

∑r
j=1 sj and δj := sj − s for any j = 1, . . . , r.

We are now going to study the behavior of the solution W for

s→ +∞ and |δj | ≤ m ∀ j. (4.8)

1Here the notation [ ]−1 indicates that we only take the term λ−1 in the relevant formal series.
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First, we rewrite the jump matrix J (n)(λ,~s) of Riemann–Hilbert Problem 2.5 in terms of the

rescaled complex parameter zs
1
2n = λ.

In particular we obtain that the jump matrices along γn+ and along γn−, are factorized in
a product of commuting matrices, written in terms of the rescaled parameter z and the vari-
ables s, δj . Namely,

I2r − 2πir(n)
(
±zs

1
2n
)
⊗ σ±χγn±

(
zs

1
2n
)

=

r∏
k,l=1

(
I2r + ckle

±is
2n+1
2n

(
z2n+1

2n+1
+z

(
2+

δk+δl
s

))
Ek,l ⊗ σ±χγ̃n±(z)

)
, (4.9)

where Ek,l are the elementary matrices and σ+ = ( 0 1
0 0 ), σ− = ( 0 0

1 0 ) and γ̃n± are the transformed

contours under the scaling λ = zs
1
2n .

Now, we are going to show that each matrix in the factorization (4.9), that we denote by F±kl ,
is close to the identity matrix I2r in the regime fixed in (4.8). Remark that every F±kl has 2n
critical points, corresponding to

zh0 = d
1
2n
kl ei π

2n
(2h+1), h = 0, . . . , 2n− 1,

where dkl = 2 + δk+δl
s is real, positive and bounded, while looking at the regime (4.8).

We can then split the curves γ̃n± respectively in the curves γ̃n±,kl one for each factor F±kl
appearing in the factorization (4.9). The curves γ̃n±,kl pass respectively through the points zh0
with h = 0, . . . , n− 1 (in the upper plane) and h = n, . . . , 2n− 1 (in the lower plane).

In this way, we can then evaluate the ∞-norm of each term F±kl − I2r and we have

∣∣∣∣F±kl − I2r

∣∣∣∣
∞ = |ckl| sup

z∈γ̃n±,kl
e
∓s

2n+1
2n =

(
z2n+1

2n+1
+zdkl

)
= |ckl|e∓

2n
2n+1

(sdkl)
2n+1
2n sin(± π

2n) → 0

for s→ +∞ and |δj | ≤ m ∀ j.
We can conclude that the rescaled jump matrix itself J (n)

(
s

1
2n z
)

is close to the identity matrix
in the regime (4.8), since each factor F±kl in its factorization shares this property.

Consider now the rescaled function X(n)(z) := Ξ(n)
(
zs

1
2n

)
. By using Riemann–Hilbert Prob-

lem 2.5 solved by Ξ(n), we have that

� X(n) is analytic on C \ γ̃n+ ∪ γ̃n− and it admits continuous extension to these curves from
either side;

� its boundary values X±(z) while approaching γ̃n+ ∪ γ̃n− from the left and respectively from
the right, are related through the jump condition (2.6) but with the rescaled jump matrix
computed in (4.9);

� for |z| → +∞ we have X(n) ∼ I2r +
∑

j≥1

X
(n)
j

zj
.

Remark that we have X
(n)
1 = s−

1
2nΞ

(n)
1 .

By applying the small norm theorem (see for instance Theorem 1.5.1 in [11]), we conclude
that the function X(n)(z) behaves as

X(n)(z) = I2r +O
(
z−1e−Cs

2n+1
2n
)
, s→ +∞, |δj | ≤ m ∀ j, (4.10)

for a certain value C > 0.
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Now, using the integral formula [12] for the rescaled solution of the Riemann–Hilbert Prob-
lem 2.5, namely X(n)(z), we have that

X(n)(z) = I2r −
∫
γ̃n+

X
(n)
− (w)r(n)

(
ws

1
2n

)
⊗ σ+

w − z
dw −

∫
γ̃n−

X
(n)
− (w)r(n)

(
−ws

1
2n

)
⊗ σ−

w − z
dw,

and thus we recover the following expression for the first asymptotic coefficient(
X

(n)
1

)
1,2

=

∫
γ̃n+

X
(n)
− (w)r(n)

(
ws

1
2n
)
dw.

Finally, by recalling the definition of W and using (4.10) we conclude that

W = −2i
(
Ξ

(n)
1

)
1,2

= −2is
1
2n

∫
γ̃n+

X
(n)
− (w)r(n)

(
ws

1
2n
)
dw ∼ −2(cklAi2n+1(sk + sl))

r
k,l=1,

in the regime (4.8). �

Remark 4.10. Relation (4.6) can be thought as the noncommutative analogue of the results
proved in [22] for the Painlevé II equation and in [5, 16] for the scalar Painlevé II hierarchy,
connecting the theory of Painlevé trascendents to the determinantal point processes theory. For
the noncommutative Painlevé II equation (3.3), this link was already established in [4] and here
we actually extended that result to the noncommutative hierarchy (3.2).
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