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Abstract. In this paper some open problems for Painlevé equations are discussed. In
particular the following open problems are described: (i) the Painlevé equivalence problem;
(ii) notation for solutions of the Painlevé equations; (iii) numerical solution of Painlevé
equations; and (iv) the classification of properties of Painlevé equations.
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1 Introduction

The Painlevé equations are now regarded as “nonlinear special functions”, being nonlinear
analogs of the classical special functions and form the core of “modern special function theo-
ry” [44, 68, 76, 138]. Indeed Iwasaki, Kimura, Shimomura and Yoshida [83] characterize the
Painlevé equations as “the most important nonlinear ordinary differential equations” and state
that “many specialists believe that during the twenty-first century the Painlevé functions will
become new members of the community of special functions”. Subsequently this has happened
as the Painlevé equations are a chapter in the NIST Digital Library of Mathematical Functions
[118, Section 32]. The Painlevé functions have greatly expanded the role that the classical special
functions, such as the Airy, Bessel, Hermite, Legendre and hypergeometric functions, started
to play in the 19th century. Increasingly, as nonlinear science develops, people are finding that
the solutions to an extraordinarily broad array of scientific problems, from neutron scattering
theory, special solutions of partial differential equations such as nonlinear wave equations, fi-
bre optics, transportation problems, combinatorics, random matrices, quantum gravity and to
number theory, can be expressed in terms of solutions of the Painlevé equations.

The Painlevé equations (PI–PVI), whose solutions are called the Painlevé transcendents, are
the nonlinear ordinary differential equations given by
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where α, β, γ and δ are arbitrary constants. These six equations have attracted much attention
for mathematicians and physicists during the past 40 years or so, though they were discovered
by Painlevé, Gambier et al. in the late 19th and early 20th centuries, in an investigation of which
second-order ordinary differential equations of the form
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, z

)
, (1.7)

where F is rational in w and dw/dz and locally analytic in z, having the property that their
solutions have no movable branch points. They showed that there were fifty canonical equations
of the form (1.7) with this property, now known as the Painlevé property, up to a Möbius
(bilinear rational) transformation

W (ζ) =
a(z)w + b(z)

c(z)w + d(z)
, ζ = φ(z), (1.8)

where a(z), b(z), c(z), d(z) and φ(z) are locally analytic functions. Further Painlevé, Gambier
et al. showed that of these fifty equations, forty-four can be reduced to linear equations, solved
in terms of elliptic functions, or are reducible to one of six new nonlinear ordinary differential
equations that define new transcendental functions, see Ince [81, Chapter 14].

Following Sakai [128] and Ohyama et al. [113] (see also [114]), PIII (1.3) can be classified into
four cases:

(i) if γδ 6= 0, which is known as P
(6)
III , then set γ = 1 and δ = −1, without loss of generality,

by rescaling w and z if necessary
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(ii) if γ = 0 and αδ 6= 0 (or equivalently δ = 0 and βγ 6= 0), which is known as P
(7)
III , then set

α = 1 and δ = −1, without loss of generality
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or if δ = 0 and βγ 6= 0 set β = −1 and γ = 1
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(iii) if γ = δ = 0 and αβ 6= 0, which is known as P
(8)
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(iv) if α = γ = 0 (or equivalently β = δ = 0) then the equation can be solved by quadratures
and has no transcendental solutions.

In the sequel, we shall refer to equation (1.9) as PIII rather than P
(6)
III since this is the generic

case. Equation (1.10) is also known as the degenerate PIII, cf. [94, 95]. These different types
of PIII were noted by Painlevé [123].

Similarly, PV (1.5) can be classified into three cases:

(i) if δ 6= 0, then set δ = −1
2 , without loss of generality;

(ii) if δ = 0 and γ 6= 0, then the equation is known as degenerate PV (deg-PV)
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which is equivalent to PIII (1.9), cf. [67, Theorem 4.2], [76, Section 34];

(iii) if γ = 0 and δ = 0 then the equation can be solved by quadratures and has no transcen-
dental solutions.

Each of the Painlevé equations can be written as a Hamiltonian system
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,
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dz
= −∂HJ

∂q
,

for a suitable Hamiltonian function HJ(q, p, z) [84, 115, 116]. The function σ(z) ≡ HJ(q, p, z)
satisfies a second-order, second-degree ordinary differential equation, known as the “Painlevé
σ-equation”, whose solution is expressible in terms of the solution of the associated Painlevé
equation [84, 116]. The Painlevé σ-equations (SI–SVI) associated with PI–PVI respectively are(
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where β, ϑ0, ϑ∞ and κ1, . . . , κ4 are arbitrary constants.

Example 1.1. The Hamiltonian associated with PII (1.2) is

HII(q, p, z;α) = 1
2p

2 −
(
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2)q (1.19)
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see [84, 117]. Eliminating p in (1.20) then q satisfies PII (1.2) whilst eliminating q yields
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2)2

2p
, (1.21)

which is known as P34 since is equivalent to equation XXXIV of Chapter 14 in [81]. Hence if q
satisfies PII (1.2) then p = q′ + q2 + 1

2z satisfies (1.21). Conversely if p satisfies (1.21) then
q =

(
p′ − α − 1

2

)
/(2p) satisfies PII (1.2). Thus there is a one-to-one correspondence between

solutions of PII (1.2) and those of P34 (1.21). Further, the function σ(z;α) = HII(q, p, z;α)
defined by (1.19), where q and p satisfy the system (1.20), then σ(z;α) satisfies (1.14). Conversely
if σ(z;α) is a solution of (1.14), then

q(z;α) =
4σ′′(z;α) + 2α+ 1

8σ′(z;α)
, p(z;α) = −2σ′(z;α),

with ′ ≡ d/dz, are solutions of (1.2) and (1.21), respectively [84, 115, 116, 117].

In this paper some open problems associated with the Painlevé equations are discussed.
Specifically the following open problems are discussed.

1. Develop algorithmic procedures for the Painlevé equivalence problem: given an equation
with the Painlevé property, how do we know if the equation can be solved in terms of
a Painlevé equation (or a Painlevé σ-equation)?

2. Develop software for numerically studying the Painlevé equations which utilizes the fact
that they are integrable equations solvable using isomonodromy methods.

3. Develop a notation for the Painlevé transcendents which takes into account the wide variety
of solutions the Painlevé equations have.

4. Provide a complete classification and unified structure of the special properties which
the Painlevé equations possess – the presently known results are rather fragmentary and
non-systematic.

2 Painlevé equivalence problem

For a linear ordinary differential equation, if it can be solved in terms of known functions then
the equation is regarded as being is solved. Symbolic software such as MAPLE can easily find
the solutions of the linear ordinary differential equations, as illustrated in the following example.

Example 2.1. Consider the linear equations

d2v

dz2
+ z2v = 0,

d2w

dz2
+ e2zw = 0,

which respectively have the solutions

v(z) =
√
z
{
C1J1/4

(
1
2z

2
)

+ C2J−1/4
(
1
2z

2
)}
, w(z) = C1J0(e

z) + C2Y0(e
z),

with C1 and C2 arbitrary constants, Jν(ζ) and Yν(ζ) Bessel functions.

It is a general property of linear ordinary differential equations that all singularities of their
solutions are fixed. For example, solutions of the second-order equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0,

can only have singularities where the coefficients do, namely at the singularities of p(z) and q(z).
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Definition 2.2. A fixed singular point of a solution of an ordinary differential equation is
a singular point whose location does not vary with the particular solution chosen but depends
only on the equation.

However it is not as simple for nonlinear ordinary differential equations which are quite
different since, in general, their solutions can have both movable and fixed singularities.

Definition 2.3. A movable singular point of a solution of an ordinary differential equation is
one whose location depends on the constant(s) of integration.

Currently there is no symbolic software available even to identify a nonlinear ordinary dif-
ferential equation let alone find a solution, except for a few very simple examples. It is quite
straightforward to determine whether a given (nonlinear) ordinary differential equation has the
Painlevé property, e.g., using the Painlevé test [2, 3]; see also [1, 51, 98, 99].

Painlevé, Gambier et al. classified all ordinary differential equations of the form (1.7) with the
Painlevé property, up to a Möbius transformation (1.8). Consequently, a given equation of the
form (1.7) with the Painlevé property which is not in the list of fifty equations given by Ince [81,
Chapter 14], how does one determine the Möbius transformation? If the equation is autonomous,
or has a symmetry, then it has a first integral and one should be able to solve it in terms of
elliptic equations, linear equations or by quadratures. If the equation is non-autonomous and
does not possess a symmetry then it is likely to be solvable in terms of a Painlevé transcendent.
The question is then to which one of the Painlevé equations (1.1)–(1.6) is the equation solvable
in terms of?

We note that the solutions of some of the equations in the list given by Ince [81, Chapter 14]
are solved in terms of Painlevé transcendents. For example, equation XX in the list, namely
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=

1
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(
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is solvable in terms of PII since letting u(z) =
√
w(z) yields (1.2) with α = 0.

Example 2.4. Consider the equation
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z
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This equation can be shown to possess the Painlevé property, but is not in the list of fifty
equations given in [81, Chapter 14]. Equation (2.1) arises from the symmetry reduction

u(x, t) = lnw(z), z = 2
√
xt,

of the Tzitzéica equation [135, 136, 137]

uxt = e2u − e−u,

see also [64, 103, 104, 146]. Making the transformation

w(z) = x1/3y(x), z = 3
2x

2/3, (2.2)

in equation (2.1) yields
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=
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+ y3 − 1

x
, (2.3)
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which is the special case of P
(7)
III (1.11) with α = 0. The transformation (2.2) is suggested by the

asymptotic expansions of (2.1) and (2.3)

w(z) ∼ 1 + λz−1/2 exp
(
−
√

3z
)
, as z →∞,

y(x) ∼ x−1/3 + κx−2/3 exp
(
−3

2

√
3x2/3

)
, as x→∞,

with λ and κ constants. Consequently one can derive the isomonodromy problem for equa-
tion (2.1) from that of equation (2.3).

Example 2.5. Consider the complex sine-Gordon equation

∇2ψ +
(∇ψ)2ψ

1− |ψ|2
+ ψ

(
1− |ψ|2

)
= 0, (2.4)

where ∇ψ = (ψx, ψy), which is also known as the Pohlmeyer–Lund–Regge model [101, 102, 125].
This has a separable solution in polar coordinates given by ψ(r, θ) = ϕn(r)einθ, where ϕn(r)
satisfies the second-order equation
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{(
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}
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(
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n

)
= 0, (2.5)

which also arises in extended quantum systems [37, 38, 39], in relativity [74] and reflection
coefficients for orthogonal polynomials on the unit circle [140, equation (3.13)]. Equation (2.5)
can be shown to possess the Painlevé property, though is not in the list of 50 equations given in
[81, Chapter 14]. Equation (2.5) can be transformed into PV (1.5) in two different ways:

(i) the transformation

ϕn(r) =
1 + u(z)

1− u(z)
, with r = 1

2z,

yields
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1

2u
+

1
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+
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8z2u
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2(u− 1)
,

which is PV (1.5) with α = 1
8n

2, β = −1
8n

2, γ = 0 and δ = −1
2 ;

(ii) the transformation

ϕn(r) =

√
v(z)

v(z)− 1
, with r =

√
z,

yields

d2v

dz2
=

(
1

2v
+

1

v − 1

)(
dv
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)2

− 1

z

dv

dz
+
n2v(v − 1)2

2z2
− v
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,

which is PV (1.5) with α = 1
2n

2, β = 0, γ = −1
2 and δ = 0, i.e., deg-PV (1.12).

It is known that deg-PV (1.12) is equivalent to PIII (1.9), cf. [76, Section 34]. Using this it can
be shown that if w(z) satisfies

d2w

dz2
=

1

w

(
dw

dz

)2
− 1

z

dw

dz
− 2nw2

z
+

2n+ 2

z
+ γw3 +

δ
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,
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which is PIII (1.9) with α = −2n and β = 2n+ 2, then

ϕn(r) =

√
−zw′(z) + zw2(z) + (2n+ 1)w(z) + z√

2zw(z)
, with r = z,

satisfies (2.5). Consequently solutions of equation (2.5) can be expressed in terms of solutions
of both PIII (1.3) and PV (1.5).

The function ϕn(r) also satisfies the differential-difference equations

dϕn
dr

+
n

r
ϕn −

(
1− ϕ2

n

)
ϕn−1 = 0, (2.6a)

dϕn−1
dr

− n− 1

r
ϕn−1 +

(
1− ϕ2

n−1
)
ϕn = 0. (2.6b)

Solving (2.6a) for ϕn−1(r) and substituting in (2.6b) yields equation (2.5), whilst eliminating
the derivatives in (2.6), after letting n→ n+ 1 in (2.6b), yields the difference equation

ϕn+1 + ϕn−1 =
2n

r

ϕn
1− ϕ2

n

, (2.7)

which is known as the discrete Painlevé II equation [108, 124, 140]. If n = 1 then equations (2.6)
have the solution

ϕ0(r) = 1, ϕ1(r) =
C1I1(r)− C2K1(r)

C1I0(r) + C2K0(r)
,

where I0(r), K0(r), I1(r) and K1(r) are the imaginary Bessel functions and C1 and C2 are
arbitrary constants. Then one can use (2.7) to determine ϕn(r), for n = 2, 3, . . .. Using this
Barashenkov and Pelinovsky [20] derive explicit multi-vortex solutions for the complex sine-
Gordon equation (2.4).

The relationship between solutions of (2.5) and those of PIII (1.9), is illustrated in the fol-
lowing theorem.

Theorem 2.6. If ϕn(r) satisfies (2.5) then wn(r) = ϕn+1(r)/ϕn(r) satisfies

d2wn

dr2
=

1

wn

(
dwn
dr

)2

− 1

r

dwn
dr
− 2n

r
w2
n +

2n+ 2

r
+ w3

n −
1

wn
,

which is PIII (1.3) with parameters α = −2n and β = 2n+ 2.

Proof. See Hisakado [79] and Tracy and Widom [132]. �

Example 2.7. In their study of third-order ordinary differential equations, Muğan and Jrad
[107] show that the equations

y2
d3y

dx3
= 4y

dy

dx

d2y

dx2
− 3

(
dy

dx

)3

+ y4
dy

dx
+ 4κµx

(
y

dy

dx
− κy3

)
− 4κµy2 + 3µ

dy

dx
, (2.8)

y
d3y

dx3
= 2

dy

dx

d2y

dx2
− 2y2

d2y

dx2
+ y3

dy

dx
+ y5 + κ

(
2

dy

dx
+ xy3 + y2

)
, (2.9)

y
d3y

dx3
=

dy

dx

d2y

dx2
− 2y3 + κy2 − κ2

12

(
x

dy

dx
− y
)
, (2.10)

where κ and µ are non-zero constants, have the Painlevé property. In [107] see equation (2.67)
with k1 = 3µ, k2 = 0, without loss of generality, and k3 = 4κµ; equation (2.106) with k2 = κ
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and k3 = 0, without loss of generality; and equation (4.14) with k1 = κ and k2 = 0, without
loss of generality1. Levi, Sekera and Winternitz [100] show that (2.8), (2.10) and (2.10) have no
symmetries and state that these equations are “candidates for new Painlevé transcendents”; see
equations (3.3), (3.4) and (3.4) in [100]. However, we show below, equation (2.8) can be solved
in terms of PIV (1.4) and equation (2.9) and (2.10) in terms of P34 (1.21).

Letting y =
1

u

du

dx
in equation (2.8) gives the tri-linear equation

(
du

dx

)2 d4u

dx4
− 4

du

dx

d2u

dx2
d3u

dx3
+ 3

(
d2u

dx2

)3

+

(
4κµxu

du

dx
+ 3µu2

)
d2u

dx2

+ 4κµ(κ+ 1)x

(
du

dx

)3

− µ(4κ+ 3)u

(
du

dx

)2

= 0,

which has the first integral, the bi-linear equation(
du

dx

)
d3u

dx3
=

3

2

(
d2u

dx2

)2

−
(
2κ2µx2 +K

)(du

dx

)2

− 4κµxu
du

dx
− 3

2
µu2,

with K a constant of integration. Since
du

dx
= uy, then we obtain the second-order ordinary

differential equation

d2y

dx2
=

3

2y

(
dy

dx

)2

+
1

2
y3 −

(
2κ2µx2 −K

)
y − 4κµx− 3µ

2y
,

which is the first integral of (2.8) and is not one of the 50 equations in Ince’s list. However,
making the transformation

y(x) =
µ1/4

κ1/2w(z)
, z = κ1/2µ1/4x,

yields PIV (1.4) with parameters

α =
K

κµ1/2
, β = − 1

2κ2
.

Letting y =
1

u

du

dx
in equation (2.9) gives the tri-linear equation

u
du

dx

d4u

dx4
=

[
u

d2u

dx2
+

(
du

dx

)2
]

d3u

dx3
+ 2κu

d2u

dx2
+ κx

(
du

dx

)3

− κu
(

du

dx

)2

,

which has the first integral

d3u

dx3
+ (κx− 3C1u)

du

dx
+ 2κu = 0, (2.11)

with C1 a constant of integration. Letting u = v + κx/C1 gives

d3v

dx3
− 3C1v

dv

dx
= 2κx

dv

dx
+ κv.

1The sign of the last term in (2.10) has been changed as there is a sign error in [107, equation (4.14)].
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Multiplying this by v and integrating gives

v
d2v

dx2
=

1

2

(
dv

dx

)2

+ C1v
3 + κxv2 + C2,

with C2 a constant of integration, which is equivalent to P34 (1.21), by rescaling the variables
if necessary. Due to the relationship between P34 (1.21) and PII (1.2) [67], solutions of equa-
tion (2.9) can be expressed in terms of solutions of PII (1.2). Specifically if w(z) is a solution
of PII (1.2), then

y(x) = −κ1/3
{

2w(z) +
zw(z) + α

w′(z) + w2(z)

}
, x = −z/κ1/3,

where ′ ≡ d/dz satisfies (2.9).

Letting y =
du

dx
in equation (2.10) and integrating gives the third-order equation

d3u

dx3
+ (24u− κx)

du

dx
− κ2x

12
= 0,

where the constant of integration has been set to zero, without loss of generality. Then making
the transformation

u = −1
4v −

1
24κx,

yields

d3v

dx3
= (6v + 2κx)

dv

dx
+ κv. (2.12)

Multiplying this by v and integrating gives

v
d2v

dx2
=

1

2

(
dv

dx

)2

+ 2v3 + κxv2 + C,

with C a constant of integration, which is equivalent to P34 (1.21), by rescaling the variables if
necessary.

Remark 2.8. We remark that equations (2.11) and (2.12), after rescaling the variables, arise
as a scaling reduction of the Korteweg–de Vries equation [67] and as a nonclassical reduction of
the Boussinesq equation [46].

Bureau [35] (see also [36, 40]) has also studied the classification of second order, second degree
equations(

d2w

dz2

)2

= F

(
w,

dw

dz
, z

)
+G

(
w,

dw

dz
, z

)
d2w

dz2
, (2.13)

where F and G are rational in w and dw/dz and locally analytic in z. Cosgrove and Scoufis [58]
have classified all equations with the Painlevé property for the special case of (2.13) when G ≡ 0,
i.e., (

d2w

dz2

)2

= F

(
w,

dw

dz
, z

)
,
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where F is rational in w and dw/dz , locally analytic in z and not a perfect square. Cos-
grove and Scoufis [58] solved the equations with the Painlevé property in terms of the Painlevé
transcendents, elliptic functions, and solutions of linear equations, see also [53, 57, 129, 130].
Cosgrove [52] classified all equations that are of Painlevé type of the form(

d2w

dz2

)m
= F

(
w,

dw

dz
, z

)
, m ≥ 3,

where F is rational in w and dw/dz and locally analytic in z and solved the equations in terms
of the first, second and fourth Painlevé transcendents, elliptic functions, or quadratures.

For various results on classifying classes of second-order ordinary differential equations, in-
cluding Painlevé equations, see Babich and Bordag [12], Bagderina [13, 15, 16, 17, 18], Bagderina
and Tarkhanov [19], Berth and Czichowski [22], Hietarinta and Dryuma [78], Kamran, Lamb and
Shadwick [88], Kartak [90, 91, 92, 93], Kossovskiy and Zaitsev [97], Milson and Valiquette [106],
Valiquette [139] and Yumaguzhin [145]. Most of these studies are concerned with the invariance
of second-order ordinary differential equations of the form

d2w

dz2
= F3(w, z)

(
dw

dz

)3

+ F2(w, z)

(
dw

dz

)2

+ F1(w, z)
dw

dz
+ F0(w, z),

under the point transformations of the form

w = ψ(y, x), z = φ(y, x),
∂(ψ, φ)

∂(y, x)
≡ ∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
6= 0.

Chazy [41, 42], Garnier [75] and Bureau [34] have obtained partial results on the classification
of ordinary differential equations with the Painlevé property for third-order equations of the form

d3w

dz3
= F

(
w,

dw

dz
,
d2w

dz2
, z

)
, (2.14)

where F is rational in w and its derivatives, and locally analytic in z. Despite the considerable
length of these papers, only a very small proportion of the possible equations with the Painlevé
property in each class were discovered. Further no new transcendents were discovered, i.e.,
every equation with the Painlevé property was shown to be solvable in terms of previously
known equations, either Painlevé transcendents, elliptic functions or quadratures.

Most of the recent studies of Painlevé classification for third-order equations have concen-
trated on equations in the Bureau polynomial class where the function F in (2.14) is polynomial
in w and its derivatives, rather than rational. Cosgrove [55, 56] classified third-order equations
of this specific form with the Painlevé property and solved the equations in terms of the Painlevé
transcendents, elliptic functions, solutions of linear equations or quadratures; see also [14, 54].

Open Problem 2.9. Given an ordinary differential equation with the Painlevé property, how
do we know whether it can be solved in terms of a Painlevé transcendent?

3 Notation for Painlevé transcendents

Uniquely amongst the functions discussed in the DLMF [118], there is no special notation for the
Painlevé transcendents, i.e., the solutions of the Painlevé equations. There are several functions

in the DLMF whose notation involves P , or a variant, e.g., P
(α,β)
n (z) (Jacobi polynomials), Pn(z)

(Legendre polynomials), and ℘(z) (Weierstrass elliptic functions). For linear equations, there
are a finite number of linearly independent solutions, e.g., Ai(z) and Bi(z) for the Airy equation

d2w

dz2
− zw = 0.
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However, for nonlinear equations such as the Painlevé equations, the issue of notation is not as
simple as there are numerous completely different solutions. Although second-order equations,
there don’t exist two “representative solutions”. What is needed is some agreed notation for the
Painlevé transcendents. In fact, unlike the linear case when the set of all solutions is a finite
dimensional vector space, the set of all solutions of a Painlevé equation form a transcendental
structure (a foliation travelling through a fibre bundle, each fibre of which is described by an
affine Dynkin diagram) without any global coordinates which could be used as natural universal
markers of the solutions. Such a notation would assist in the classification of properties of
Painlevé equations.

For example, there are several different types of solutions of PII (1.2).

(i) The general solution of PII is a transcendental function for all values of α and involves two
arbitrary constants.

(ii) Suppose that wk(z) is the solution of PII with α = 0, i.e.,

d2wk

dz2
= 2w3

k + zwk,

with the asymptotic behaviour

wk(z) ∼ kAi(z), as z →∞, (3.1)

where k is a real parameter and Ai(z) is the Airy function, which uniquely determines the
solution. This family of solutions has different analytical properties on the real axis and
have different asymptotic behaviours as z → −∞, depending on the parameter k.

• If |k| < 1, then wk(z) is the Ablowitz–Segur solution [4, 131], which is pole-free on the
real axis and as z → −∞ has oscillatory behaviour with algebraic decay given by

wk(z) = d|z|−1/4 sin
(
2
3 |z|

3/2 − 3
4d

2 ln |z| − θ0
)

+ o(|z|−1/4), (3.2)

where the connection formulae d2(k) and θ0(k), which relate the asymptotic be-
haviours (3.1) and (3.2) as z → ±∞, are

d2(k) = −π−1 ln
(
1− k2

)
,

θ0(k) = 3
2d

2 ln 2 + arg
{

Γ
(
1− 1

2 id2
)}

+ 1
4π[1− 2 sgn(k)],

see [21, 48, 63].

• If k = ±1 then wk(z) is the Hastings–McLeod solution [77] which is monotonic, pole-
free on the real axis and has algebraic growth as z → −∞ given by

w±1(z) = ±
(
1
2 |z|
)1/2

+ o
(
|z|1/2

)
. (3.3)

• If |k| > 1 then wk(z) is a singular solution which has infinitely many poles on the
negative real axis – see the numerical plot by Fornberg and Weideman [70, Fig. 12] –
and has singular oscillatory behaviour as z → −∞ given by

wk(z) =

√
|z|

sin
{
2
3 |z|3/2 + β ln

(
8|z|3/2

)
+ φ

}
+O

(
|z|−3/2

) +O
(
|z|−1

)
, (3.4)

where z bounded away from the singularities appearing in the denominator and the
connection formulae β(k) and φ(k) are

β(k) = 1
2π
−1 ln

(
k2 − 1

)
, φ(k) = − arg

[
Γ
(
1
2 iβ
)]

+ 1
2π[sgn(k)− 1],

see [29, 89].
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• Bothner [28] discusses the transition from the Ablowitz–Segur solution (3.2) and the
singular solution (3.4) to the Hastings–McLeod solution (3.3) as z → −∞ and |k| → 1.
The transition asymptotics are expressed in terms of the Jacobi elliptic functions.

• The case when k = iκ, with κ ∈ R, in the boundary condition (3.1), known as the
pure imaginary Ablowitz–Segur solution, is discussed by Its and Kapaev [82].

• Bogatskiy, Claeys and Its [25] extended these results to discuss complex Ablowitz–
Segur solutions in the case when k ∈ C.

(iii) For PII with α 6= 0, there are analogs of the Ablowitz–Segur and Hastings–McLeod solu-
tions, known as the quasi-Ablowitz–Segur solution and the quasi-Hastings–McLeod solution
[43, 59, 60]; see also [49, 70, 72, 134]. There is an extensive literature regarding the asymp-
totics for PII (1.2) when α = 0. There are significantly fewer asymptotic results in the case
when α 6= 0. Further, whilst the Ablowitz–Segur and Hastings–McLeod solutions have
exponential decay as z → ∞ given by (3.1), when α 6= 0 then the solutions only have
algebraic decay given by

w(z;α) ∼ −α/z, as z →∞.

For the quasi-Ablowitz–Segur solution when α ∈
(
−1

2 ,
1
2

)
, there exists a one-parameter

family of real solutions w(z) for k ∈ (− cos(πα), cos(πα)) with the following properties:

w(z) = B(z;α) + kAi(z)
[
1 +O

(
z−3/4

)]
, as z →∞,

and

w(z) = d|z|−1/4 cos
(
2
3 |z|

3/2 − 3
4d

2 ln |z|+ φ
)

+O
(
|z|−1

)
, as z → −∞,

where Ai(z) is the Airy function and B(z;α) is given by

B(z;α) ∼ α

z

∞∑
n=0

an
z3n

,

with coefficients an which are uniquely determined by the recurrence relation

an+1 = (3n+ 1)(3n+ 2)an − 2α2
n∑

j,k,`=0

ajaka`, a0 = 1.

The connection formulas are given by

d(k) = π−1/2
√
− ln

(
cos2(πα)− k2

)
,

φ(k) = −3
2d

2 ln 2 + arg Γ
(
1
2 id2

)
− 1

4π − arg(− sin(πα)− ki),

see Dai and Hu [59, 60]. For the quasi-Hastings–McLeod solution, Claeys, Kuijlaars and
Vanlessen [43] show that there exists a unique solution which is pole-free on the real axis
with the asymptotic behaviours

w(z) ∼ −α/z, z → +∞,

w(z) ∼
√

1
2 |z|, z → −∞;

see also [59, 60].
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(iv) Special function solutions of PII arise if and only if α = n+ 1
2 , with n ∈ Z, which involve one

arbitrary constant [73]. These are expressed in terms of the n× n Wronskian determinant

τn(z;ϑ) = det

[
dj+k

dzj+k
ϕ(z;ϑ)

]n−1
j,k=0

, n ≥ 1,

where

ϕ(z;ϑ) = cos(ϑ) Ai(ζ) + sin(ϑ) Bi(ζ), ζ = −2−1/3z,

with Ai(ζ) and Bi(ζ) the Airy functions and ϑ an arbitrary constant; see also the recent
studies [45, 61].

(v) Rational solutions of PII exist if and only if α = n, with n ∈ Z, which involve no arbitrary
constants [141, 143]. These solutions are expressed in terms of polynomials Qn(z) of degree
1
2n(n+ 1), now known as the Yablonskii–Vorob’ev polynomials, which are defined through
the recurrence relation (a second-order, bilinear differential-difference equation)

Qn+1Qn−1 = zQ2
n − 4

[
Qn

d2Qn

dz2
−
(

dQn
dz

)2
]
,

with Q0(z) = 1 and Q1(z) = z. Clarkson and Mansfield [47] investigated the locations of
the roots of the Yablonskii–Vorob’ev polynomials in the complex plane and showed that
these roots have a very regular, approximately triangular structure; the term “approxi-
mate” is used since the patterns are not exact triangles as the roots lie on arcs rather than
straight lines. Bertola and Bothner [24] and Buckingham and Miller [32, 33] have studied
the Yablonskii–Vorob’ev polynomials Qn(z) in the limit as n → ∞ and shown that the
roots lie in a “triangular region” with elliptic sides which meet with interior angle 2

5π.

(vi) There exist tronquée and tri-tronquée solutions of PII, which are pole-free in sectors of the
complex plane [30, 31]; see also [23, 80, 85, 86, 105, 111].

Open Problem 3.1. Develop a notation for the Painlevé transcendents which takes into account
the wide variety of solutions the Painlevé equations have.

4 Numerical solution of Painlevé equations

Numerical analysis of the Painlevé equations presents novel challenges: in particular, in contrast
to the classical special functions, where the linearity of the equations greatly simplifies the
situation, each problem for the nonlinear Painlevé equations arises essentially anew. Ideally
what is needed is reliable, easy to use software to compute numerically the solutions of the
Painlevé equations. On the other hand, Painlevé transcendents, being solutions of integrable
nonlinear equations, have much global information available about them. The software should
be in the form of a living document where new numerical problems can be addressed by a pool
of experts as they arise, as well as providing access to existing software. At the technical level,
how does one combine asymptotic information about the solutions obtained from the Riemann–
Hilbert problem, together with efficient numerical codes in order to compute the solution w(z) at
finite values of z? A comprehensive analysis presents many challenges, conceptual, philosophical
and technical.

Deift [62] wrote:

Writing useful numerical software for such nonlinear equations [i.e., the Painlevé
equations] presents many challenges, conceptual, philosophical and technical. With-
out the help of linearity, it is not at all clear how to select a broad enough class of
“representative problems”.
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Numerical simulations of the Painlevé equations given in [44, 45] were obtained using MAPLE
using the DEplot command with option method=dverk78, which finds a numerical solution using
a seventh-eighth order continuous Runge–Kutta method. This is relatively simple to use, gives
plots of solutions quickly with accuracy better than the human eye can detect, and generally
works fine for initial value problems.

Some recent numerical computations of Painlevé equations include: a pole field solver using
Padé approximations [65, 66, 69, 70, 71, 126, 127]; numerical Riemann–Hilbert problems [119,
120, 122, 121, 133, 142]; Fredholm determinants [26, 27]; Padé approximations [110, 112, 144];
pole elimination [5, 6, 7, 8, 9, 10, 11]; a multidomain spectral method [96].

Open Problem 4.1.

• The Runge–Kutta method, and variants, are standard ODE solvers. Can we do better for
integrable equations such as the Painlevé equations?

• Painlevé equations are “integrable” and solvable by the isomonodromy method through an
associated Riemann–Hilbert problem. How can we use this in the development of software
for studying the Painlevé equations numerically?

• It is well known that there are discrete Painlevé equations, which are integrable discrete
equations that tend to the associated Painlevé equations in an appropriate continuum limit.
Should we use a “integrable discretization” of the Painlevé equations?

5 Classification of properties of Painlevé equations

The Painlevé equations are known to have a cornucopia of properties such as: a Hamiltonian
representation; exact solutions (rational solutions, algebraic solutions, solutions in terms of
classical special solutions); Bäcklund transformations (which relate two solutions of a Painlevé
equation); associated isomonodromy problems (which are Lax pairs that express the Painlevé
equation as the compatibility of two linear systems); and asymptotic approximations in the
complex plane, with associated connection formulae relating the asymptotics. For details see
[44, 50, 68, 76, 83, 87, 109] and the references therein.

Open Problem 5.1. A complete classification and a unifying structure for these properties is
needed as the presently known results are rather fragmentary and non-systematic.
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1106.

[5] Abramov A.A., Yukhno L.F., Numerical solution of the Cauchy problem for Painlevé III, Differ. Equ. 48
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Math. Math. Phys. 53 (2013), 540–563.

[9] Abramov A.A., Yukhno L.F., Numerical solution of the Painlevé V equation, Comput. Math. Math. Phys.
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[58] Cosgrove C.M., Scoufis G., Painlevé classification of a class of differential equations of the second order
and second degree, Stud. Appl. Math. 88 (1993), 25–87.

[59] Dai D., Hu W., Connection formulas for the Ablowitz–Segur solutions of the inhomogeneous Painlevé II
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59 (2004), 163–180.

[108] Nijhoff F.W., Papageorgiou V.G., Similarity reductions of integrable lattices and discrete analogues of the
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