Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 122, 46 pages      arXiv:1804.10664      https://doi.org/10.3842/SIGMA.2018.122

Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I

Adolfo Guillot
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico

Received May 01, 2018, in final form November 05, 2018; Published online November 11, 2018

Abstract
For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the classification of those which do not have multivalued solutions.

Key words: Painlevé property; univalence; semicompleteness; Chazy equation; Riccati equation; Kowalevski exponents.

pdf (732 kb)   tex (52 kb)

References

  1. Audin M., Remembering Sofya Kovalevskaya, Springer, London, 2011.
  2. Briot C., Bouquet J.C., Recherches sur les fonctions doublement périodiques, C. R. Acad. Sci. Paris 40 (1855), 342-344.
  3. Brunella M., Birational geometry of foliations, Monografías de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2000.
  4. Burnside W., Note on the equation $y^2 = x \big(x^4-1\big)$, Proc. Lond. Math. Soc. s1-24 (1892), 17-20.
  5. Camacho C., Sad P., Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595.
  6. Chazy J., Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Acta Math. 34 (1911), 317-385.
  7. Conte R., The Painlevé approach to nonlinear ordinary differential equations, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 77-180, solv-int/9710020.
  8. Cosgrove C.M., Chazy classes IX-XI of third-order differential equations, Stud. Appl. Math. 104 (2000), 171-228.
  9. Cosgrove C.M., Higher-order Painlevé equations in the polynomial class. I. Bureau symbol ${\rm P2}$, Stud. Appl. Math. 104 (2000), 1-65.
  10. Cosgrove C.M., Higher-order Painlevé equations in the polynomial class. II. Bureau symbol $P1$, Stud. Appl. Math. 116 (2006), 321-413.
  11. Exton H., Third order differential systems with fixed critical points, Funkcial. Ekvac. 19 (1976), 45-51.
  12. Fujiki A., Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci. 24 (1988), 1-97.
  13. Gambier B., Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes, Acta Math. 33 (1910), 1-55.
  14. Garnier R., Sur des systèmes différentiels du second ordre dont l'intégrale générale est uniforme, Ann. Sci. École Norm. Sup. 77 (1960), 123-144.
  15. Ghys E., Rebelo J.C., Singularités des flots holomorphes. II, Ann. Inst. Fourier (Grenoble) 47 (1997), 1117-1174.
  16. Goriely A., A brief history of Kovalevskaya exponents and modern developments, Regul. Chaotic Dyn. 5 (2000), 3-15.
  17. Guillot A., Champs quadratiques uniformisables, Ph.D. Thesis, École Normale Supérieure de Lyon, 2001.
  18. Guillot A., Sur les exemples de Lins Neto de feuilletages algébriques, C. R. Math. Acad. Sci. Paris 334 (2002), 747-750.
  19. Guillot A., Un théorème de point fixe pour les endomorphismes de l'espace projectif avec des applications aux feuilletages algébriques, Bull. Braz. Math. Soc. (N.S.) 35 (2004), 345-362.
  20. Guillot A., Semicompleteness of homogeneous quadratic vector fields, Ann. Inst. Fourier (Grenoble) 56 (2006), 1583-1615.
  21. Guillot A., Sur les équations d'Halphen et les actions de ${\rm SL}_2({\bf C})$, Publ. Math. Inst. Hautes Études Sci. (2007), 221-294.
  22. Guillot A., Some generalizations of Halphen's equations, Osaka J. Math. 48 (2011), 1085-1094.
  23. Guillot A., The geometry of Chazy's homogeneous third-order differential equations, Funkcial. Ekvac. 55 (2012), 67-87, arXiv:1011.6090.
  24. Guillot A., Complex differential equations and geometric structures on curves, in Geometrical Themes Inspired by the $N$-Body Problem, Lecture Notes in Math., Vol. 2204, Springer, Cham, 2018, 1-47.
  25. Guillot A., Further Riccati differential equations with elliptic coefficients and meromorphic solutions, J. Nonlinear Math. Phys. 25 (2018), 497-508.
  26. Guillot A., Ramírez V., On the multipliers at fixed points of self-maps of the projective plane, in preparation.
  27. Guillot A., Rebelo J., Semicomplete meromorphic vector fields on complex surfaces, J. Reine Angew. Math. 667 (2012), 27-65.
  28. Halphen G.H., Sur un système d'équations différentielles, C. R. Acad. Sci. Paris 92 (1881), 1101-1103.
  29. Halphen G.H., Sur certains systèmes d'équations différentielles, C. R. Acad. Sci. Paris 92 (1881), 1404-1406.
  30. Hille E., Ordinary differential equations in the complex domain, Dover Publications, Inc., Mineola, NY, 1997.
  31. Hoyer P., Ueber die Integration eines Differentialgleichungssystems von der Form ... durch elliptische Funktionen, Ph.D. Thesis, Friedrich-Willelms Universität, Berlin, 1879, available at http://resolver.sub.uni-goettingen.de/purl?PPN310984289.
  32. Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944.
  33. Kimura T., Matuda T., On systems of differential equations of order two with fixed branch points, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 445-449.
  34. Kowalevski S., Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math. 12 (1889), 177-232.
  35. Kudryashov Yu., Ramírez V., Spectra of quadratic vector fields on $\mathbb{C}^2$: the missing relation, arXiv:1705.06340.
  36. Landau L.D., Lifshitz E.M., Course of theoretical physics, Vol. 1, Mechanics, Pergamon Press, Oxford - London - New York - Paris, 1976.
  37. Lawden D.F., Elliptic functions and applications, Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York, 1989.
  38. Lins Neto A., Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup. 35 (2002), 231-266.
  39. Lins Neto A., Fibers of the Baum-Bott map for foliations of degree two on ${\mathbb P}^2$, Bull. Braz. Math. Soc. (N.S.) 43 (2012), 129-169.
  40. Mumford D., Tata lectures on theta. II. Jacobian theta functions and differential equations, Progress in Mathematics, Vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984.
  41. Painlevé P., Mémoire sur les équations différentielles dont l'intégrale générale est uniforme, Bull. Soc. Math. France 28 (1900), 201-261.
  42. Painlevé P., Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme, Acta Math. 25 (1902), 1-85.
  43. Palais R.S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957), iii+123 pages.
  44. Pan I., Sebastiani M., Les équations différentielles algébriques et les singularités mobiles, Ensaios Matemáticos, Vol. 8, Sociedade Brasileira de Matemática, Rio de Janeiro, 2004.
  45. Rebelo J.C., Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble) 46 (1996), 411-428.
  46. SageMath, the Sage Mathematics Software System, Version 8.1, 2017, available at http://www.sagemath.org.
  47. Yoshida H., Necessary condition for the existence of algebraic first integrals. I. Kowalevski's exponents, Celestial Mech. 31 (1983), 363-379.

Previous article  Next article   Contents of Volume 14 (2018)