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Abstract. We construct an additional independent integral of motion for a class of three
dimensional minimally superintegrable systems with constant magnetic field. This class was
introduced in [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages] and it is known to
possess periodic closed orbits. In the present paper we demonstrate that it is maximally
superintegrable. Depending on the values of the parameters of the system, the newly found
integral can be of arbitrarily high polynomial order in momenta.
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1 Introduction

In our recent paper [13] we found a class of minimally superintegrable systems in three spatial
dimensions with constant magnetic field which possesses closed bounded periodic trajectories
for a particular choice of parameters. Namely, a quantity κ constructed out of them (cf. equa-
tion (2.7) below) must be rational, κ = m

n . For three particular choices of κ this system is
known to be maximally superintegrable with integrals of at most second order in momenta [13].
Thus a natural question arises asking whether also for the remaining values of the parameters
satisfying the rationality constraint a missing independent integral can be constructed.

In this paper we describe how the considered system can be reduced to the two dimensional
anisotropic harmonic oscillator and how the known integrals of the anisotropic oscillator give
rise to a new integral for the system with the magnetic field. Assuming we have κ = m

n where m
and n are incommensurable, the additional integral is of order m+n−1 in momenta. Its leading
order terms involve angular momenta linearly.

For the sake of clearness, let us recall that in classical mechanics (with or without magnetic
field) integrability means that there exist N integrals of motion Xj including the Hamiltonian
that Poisson commute pairwise, are well defined functions on the phase space and are functionally
independent. The system is superintegrable if it allows k further independent integrals Ya that
Poisson commute with the Hamiltonian, but not necessarily with each other, nor with the
integrals Xj . The integer k satisfies 1 ≤ k ≤ N − 1 where k = 1 and k = N − 1 correspond
to minimal and maximal superintegrability, respectively. Similarly, in quantum mechanics we
assume that the integrals are well-defined commuting self-adjoint operators, polynomial in the
operators x̂j and p̂j representing the coordinates and the momenta, or more general objects,
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such as convergent series in these operators. Requirement of independence in this case means
that no nontrivial fully symmetrized polynomial in the integrals of motion should vanish.

Maximally superintegrable systems are of special interest in classical physics because all finite
trajectories in these systems are closed in configuration space and the motion is periodic. In
quantum mechanics the energy levels are degenerate and it has been conjectured that maximally
superintegrable systems are exactly solvable [24].

Most of the recent research on superintegrability focused on “natural” Hamiltonians with
scalar potentials. For early systematic study in three dimensions see [6, 7, 12, 27]. This paper
belongs to a series of papers [13, 14, 15] studying superintegrability of three dimensional systems
with magnetic fields. We refer the reader to the papers [14, 15] for discussion of a general
motivation for our research and to [13] for details concerning the introduction of the system
considered in this paper. For a general discussion of integrability and superintegrability see
a recent review [18], for superintegrability in the presence of vector potentials, e.g., [2, 4, 11, 16,
17, 20, 21, 28]. The influence of constant magnetic field on the motion in a given potential was
studied, e.g., in [5, 26] where the two body Coulomb problem was studied. Despite the similarities
the reader should notice the differences between the two approaches: in [5] additional, so called
particular, integrals conserved only on special “superintegrable” trajectories were constructed
whereas we consider the appearance of additional global integrals when a particular relation
among the parameters of the system holds.

The structure of the paper is as follows: In Section 2 we describe our system, its integrals and
its trajectories as presented in [13]. In Section 3 we reduce its dynamics to the well-known case of
two dimensional anisotropic harmonic oscillator (cf. [10, 19, 22]). In Section 4 we use the known
integrals of the anisotropic oscillator to construct previously unknown integrals for the three
dimensional problem under investigation. In Section 5 we present an explicit example. In the
last section we conclude with a summary of our results and comment on the superintegrability
of the quantum analogue of our system.

2 The system

We consider the Hamiltonian system on the phase space with coordinates (~x, ~p) where ~x =
(x, y, z) and ~p = (p1, p2, p3). We assume that its magnetic field and effective potential are given
by

~B(~x) = (−Ω1,Ω2, 0), W (~x) =
Ω1Ω2

2S
(Sx− y)2, (2.1)

where Ω1, Ω2, S are real constants such that S 6= 0 and Ω2
1 + Ω2

2 6= 0. Its Hamiltonian can be
written as

H =
1

2

(
~pA
)2

+W (~x), (2.2)

where

pAj = pj +Aj(~x)

are gauge covariant expressions for the momenta (for our choice of mass equal to 1 they coincide
with the velocities). We notice that in the usual formulation of Hamiltonian dynamics which we
shall use here for computational reasons, the equations of motion on the phase space and thus
also the integrals of motion expressed in terms of the canonical variables xi and pj depend on the
chosen gauge. However, the existence of the integrals as well as their expression in terms of the
coordinates xi and the covariantized momenta pAj does not depend on the choice of gauge. This
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is best seen from the fact that the (non-canonical) Poisson brackets among the coordinates xi
and pAj

{xi, xj}P.B. = 0,
{
xi, p

A
j

}
P.B.

= δij ,
{
pAi , p

A
j

}
P.B.

= −εijkBk

as well as Poisson bracket of any functions expressed in terms of them are explicitly gauge
invariant (see, e.g., [25, Remark 5.1.10(6), p. 217]). Thus the notions of integrability and
superintegrability are gauge-invariant.

The system (2.1) is already known to be minimally superintegrable [13]. It has three Cartesian
type integrals

X0 = pA3 + Ω2x+ Ω1y,

X1 =
(
pA1
)2 − 2Ω2xp

A
3 − Ω2

2x
2 + Ω1Ω2x(Sx− 2y),

X2 =
(
pA2
)2 − 2Ω1yp

A
3 − Ω2

1y
2 +

Ω1Ω2

S
y(y − 2Sx) (2.3)

on which the Hamiltonian is polynomially dependent, H = 1
2

(
X2

0 +X1 +X2

)
, and an additional

first order integral

X3 = pA1 + SpA2 − (SΩ1 + Ω2)z. (2.4)

The classical trajectories of the system (2.1) are known, cf. [13]

x(t) =
1

ω2
1

((
ω2

1x0 − Ω2p30

)
cos(ω1t) + ω1p10 sin(ω1t) + Ω2p30

)
,

y(t) =
1

ω2
2

((
ω2

2y0 − Ω1p30

)
cos(ω2t) + ω2p20 sin(ω2t) + Ω1p30

)
,

z(t) =
1

Ω1S + Ω2

(
p10(cos(ω1t)− 1) + Sp20(cos(ω2t)− 1)

+
Ω2p30 − ω2

1x0

ω1
sin(ω1t) +

Ω1p30 − ω2
2y0

ω2
sin(ω2t)

)
+ z0, (2.5)

where we introduced the constants

ω1 =
√

Ω2(Ω1S + Ω2), ω2 =

√
Ω1

S
(Ω1S + Ω2) =

√
Ω1

SΩ2
ω1 (2.6)

in order to shorten the terms in (2.5).
In [13] it was also proven that in the special cases

S =
Ω1

Ω2
, S = 4

Ω1

Ω2
and S =

Ω1

4Ω2

the system (2.1) is maximally superintegrable, with the additional integral of order 1 and 2,
respectively. In the following we prove that the system (2.1) is maximally superintegrable
whenever the trajectories (2.5) are periodic (or, equivalently, closed), i.e., for

S =
Ω1

Ω2
κ2, where κ =

m

n
, m, n ∈ N are incommensurable, (2.7)

with the fifth integral of order m + n − 1 in the momenta p1, p2, p3. We notice that systems
with the parameters Ω1, Ω2, κ and Ω2, Ω1, 1

κ are equivalent, differ just by a choice of Cartesian
coordinates, cf. [13].
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We present the system as expressed in (2.1) since this is the form in which its mathematical
structure is most easy to analyze. However, this is not the best point of view for its physical
interpretation. Through a rotation the system can be brought to a form where either the
magnetic field ~B or the harmonic potential W is aligned with one of the coordinate axis. In [13]
we demonstrated its form when the magnetic field is aligned with the x-axis; however it may be
more illuminating to rotate it so that the potential W acts along a coordinate axis. Thus we
rotate our coordinate system about the z-axis by an angle α such that tanα = 1

S = Ω2
κ2Ω1

. The
system takes the form (2.2) with the harmonic oscillator potential acting along one coordinate
axis,

W̃ (x̃, ỹ, z̃) =
1

2

(
κ2Ω2

1 +
Ω2

2

κ2

)
x̃2 ≡ 1

2
(ω̂)2x̃2 (2.8)

in the constant magnetic field

~̂
B =

1√
Ω2

2 + κ4Ω2
1

(
−κ2Ω2

1 − Ω2
2,Ω1Ω2

(
κ2 − 1

)
, 0
)
≡
(
B̂ cosβ, B̂ sinβ, 0

)
.

Vice versa, we may, at least on some open neighborhood, express Ω1, Ω2 and κ in terms of the
three new parameters ω̂, B̂ and β by solving algebraic equations. Such three dimensional unidi-
rectional harmonic oscillator inserted in a constant magnetic field is minimally superintegrable
with two first order integrals p̃A2 and p̃A3 − B̂y cosβ+ B̂x sinβ and one independent second order
integral. We see that the integral (2.4) reflects the invariance of the system under translation
along the ỹ direction. The solutions of the equations of motion exhibit oscillatory behaviour
with two independent frequencies

ω1 =
1√
2

√
B̂2 + ω̂2 +

√(
B̂2 + ω̂2

)2 − 4B̂2ω̂2 cos(β)2,

ω2 =
1√
2

√
B̂2 + ω̂2 −

√(
B̂2 + ω̂2

)2 − 4B̂2ω̂2 cos(β)2

(they coincide with the frequencies ω1,2 in (2.6)). When these frequencies become resonant,

ω1

ω2
= κ =

m

n
,

a new higher order integral to be constructed below appears.

3 Reduction to the anisotropic oscillator

Oscillator potentials and constant magnetic fields share some similarities, as noticed, e.g., in [3].
On the other hand, the first order integrals X0 and X3 in (2.3) and (2.4) show that the system
can be regarded as an oscillator in the direction of x̃, cf. (2.8) plus a constant magnetic field. In
the following we see how, by using the known first order integrals, the system (2.1) can indeed
be reduced to a two dimensional anisotropic oscillator for the parameter S satisfying (2.7). With
gauge chosen as

~A = (0, 0,−Ω2x− Ω1y), (3.1)

the Hamilton equations read

ẋ = p1, ẏ = p2, ż = −Ω1y − Ω2x+ p3, ṗ3 = 0,

ṗ1 = −
(
Ω2

2 + κ2Ω2
1

)
x+ Ω2p3, ṗ2 = −

(
Ω2

1 +
Ω2

2

κ2

)
y + Ω1p3.
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By substituting p3 ≡ p30 and by the shift

x = X +
Ω2p30

Ω2
2 + Ω2

1κ
2
, y = Y +

Ω1p30κ
2

Ω2
2 + Ω2

1κ
2
, (3.2)

the equations simplify to

Ṗ1 = −
(
Ω2

2 + κ2Ω2
1

)
X, Ṗ2 = −

(
Ω2

1 +
Ω2

2

κ2

)
Y, Ẋ = P1, Ẏ = P2, (3.3)

ż = −Ω1Y − Ω2X + p30, (3.4)

where P1, P2 are the momenta conjugated to the new space coordinates X, Y (once evaluated
they are equal to the original p1, p2). By solving the first two equations in (3.3) with respect
to X and Y and substituting into (3.4) we find

Ω2Ṗ1 + Ω1κ
2Ṗ2 −

(
Ω2

2 + Ω2
1κ

2
)
ż = 0

corresponding to the integral (2.4). The dynamics are thus reduced to the dynamics of an
anisotropic oscillator, whose frequency ratio is κ and canonical coordinates are (X,Y, P1, P2).
It is known [22] that if κ satisfies (2.7), such an oscillator is superintegrable. Let us henceforth
restrict to this case and set

ω2 =
Ω2

1

n2
+

Ω2
2

m2
.

The Hamiltonian of the two degree of freedom (from now on abbreviated to d.o.f.) oscillator (3.3)
is obtained by substituting (3.2) into the Hamiltonian (2.2) and reads

H2 =
1

2

(
P 2

1 + P 2
2

)
+

1

2
ω2
(
m2X2 + n2Y 2

)
. (3.5)

By introducing complex coordinates z1 = iP1 +mωX, z2 = iP2 +nωY , the ring of the invariants
of the oscillator (3.5) is generated by [10, 22]

I1 = z1z̄1, I2 = z2z̄2, I3 = Re
(
zn1 z̄

m
2

)
, I4 = Im

(
zn1 z̄

m
2

)
. (3.6)

The invariants (3.6) are clearly not independent; they satisfy the relation

I2
3 + I2

4 = In1 I
m
2 .

Equivalently, the integrals I3, I4 can be expressed in terms of Chebyshev polynomials as [8]

I3 = |z1|n−1|z2|m−1

(
|z1||z2|Tn

(
Re z1

|z1|

)
Tm

(
Re z2

|z2|

)
+ Im z1 Im z2Un−1

(
Re z1

|z1|

)
Um−1

(
Re z2

|z2|

))
,

I4 = |z1|n−1|z2|m−1

(
|z2| Im z1Un−1

(
Re z1

|z1|

)
Tm

(
Re z2

|z2|

)
−

− |z1| Im z2Tn

(
Re z1

|z1|

)
Um−1

(
Re z2

|z2|

))
, (3.7)

where Tn, Un denote the Chebyshev polynomial of degree n of the first and second type, respec-
tively.

As we will show in the next section, the integrals I1 and I2 correspond to the Cartesian type
integrals X1 and X2 of the original system while I3 (or I4) gives a new independent integral for
the system (2.1). We find it interesting to note that, under the assumption (2.7), the system
reduces to the Landau problem (i.e., a particle moving in a constant magnetic field without any
potential force) in the limit Ω1 → 0 if S is kept constant, i.e., κ→ +∞, Ω1 ≈ 1

κ2
. This reflects

the fact that one of the frequencies in the oscillator (3.5) goes to zero, and the polynomial
integrals (3.7) are becoming of increasing order until they are lost in the limit.
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4 The fifth integral

Let us first invert the shift (3.2). The integrals I1 and I2 give, after neglecting terms proportional
to p2

30,

Ĩ1 = p2
1 − 2Ω2xp30 +

Ω2
1m

2 + Ω2
2n

2

n2
x2, (4.1)

Ĩ2 = p2
2 − 2Ω1yp30 +

Ω2
1m

2 + Ω2
2n

2

m2
y2. (4.2)

By substituting back p3 = p30 into (4.1)–(4.2) we see they correspond to the Cartesian type
integrals X1 and X2 of (2.1).

Similarly, we can find the expressions of the integrals I3 and I4 in the original phase space
coordinates. We find it convenient to work with the following series expressions for Chebyshev
polynomials

Tn(a) =

[n
2

]∑
k=0

(
n

2k

)
an−2k

(
a2 − 1

)k
, Un(a) =

[n
2

]∑
k=0

(
n+ 1

2k + 1

)
an−2k

(
a2 − 1

)k
,

so that we can explicitly write the two integrals as polynomials in the momenta. Namely, after
inverting the shift (3.2) and substituting p30 = p3 we have, in gauge covariant form,

X4 =

[n−1
2

]∑
k=0

(−1)k
(

n

2k + 1

)(
mωX̃A

)n−2k−1(
pA1
)2k+1

×
[m−1

2
]∑

k=0

(−1)k
(

m

2k + 1

)(
nωỸ A

)m−2k−1(
pA2
)2k+1

+

[n
2

]∑
k=0

(−1)k
(
n

2k

)(
mωX̃A

)n−2k(
pA1
)2k [m

2
]∑

k=0

(−1)k
(
m

2k

)(
nωỸ A

)m−2k(
pA2
)2k

(4.3)

and

X5 =

[n−1
2

]∑
k=0

(−1)k
(

n

2k + 1

)(
mωX̃A

)n−2k−1(
pA1
)2k+1

[m
2

]∑
k=0

(−1)k
(
m

2k

)(
nωỸ A

)m−2k(
pA2
)2k

−
[n
2

]∑
k=0

(−1)k
(
n

2k

)(
mωX̃A

)n−2k(
pA2
)2k

×
[m−1

2
]∑

k=0

(−1)k
(

m

2k + 1

)(
nωỸ A

)m−2k−1(
pA1
)2k+1

, (4.4)

where

X̃A = x−
n2Ω2

(
pA3 + Ω2x+ Ω1y

)
n2Ω2

2 +m2Ω2
1

, Ỹ A = y −
m2Ω1

(
pA3 + Ω2x+ Ω1y

)
n2Ω2

2 +m2Ω2
1

.

Since I1, I2, I3 are independent integrals for the oscillator system, by applying the chain
rule we see that the integrals X0, X1, X2, X4 form a set of independent integrals for the
original system, where X0 = p3. Moreover, if the gauge is chosen as in (3.1), none of them
depends on the z variable, while X3 does. Therefore the five integrals X0, X1, X2, X3, X4 are
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independent. This implies the maximally superintegrability of the system (2.1). Notice that the
same argument also applies to X0, X1, X2, X3, X5.

Let us now discuss the order of the new integrals X4, X5. From the expressions (4.3) and (4.4),
it is clear that their order is at most m+ n. However from (4.3) we see that the terms of order
m+ n in X4 are only of the form

αkγjp
2k
1 p

2j
2 p

n+m−2(k+j)
3 , k = 0, . . . ,

[n
2

]
, j = 0, . . . ,

[m
2

]
(4.5)

or

βkδjp
2k+1
1 p2j+1

2 p
n+m−2(k+j+1)
3 , k = 0, . . . ,

[
n− 1

2

]
, j = 0, . . . ,

[
m− 1

2

]
, (4.6)

where αj , βj , γj , δj are coefficients whose explicit expression can be found through (4.3). We
can eliminate all the terms of the form (4.5) by subtracting the integrals

αkγjX
n+m−2(k+j)
0 Xk

1X
j
2 , k = 0, . . . ,

[n
2

]
, j = 0, . . . ,

[m
2

]
. (4.7)

Similarly, we can subtract

βkδj
2
X
n+m−2(k+j+1)
0 Xk

1X
j
2

(
Ω2

κ2Ω1

(
X2

3 −X1

)
− κ2 Ω1

Ω2
X2

)
, (4.8)

where k = 0, . . . ,
[
n−1

2

]
, j = 0, . . . ,

[
m−1

2

]
, and eliminate all the terms (4.6). Therefore the

order of the integral X4 can be reduced to m + n − 1. By construction the terms of order
m + n − 1 of the reduced integral X̃4 take the form of products of m + n − 1 linear momenta
and one coordinate. Since the highest order terms of any integral must belong to the enveloping
algebra of the Euclidean algebra [14, 18], we deduce that each of the highest order terms of X̃4

is a product of m+ n− 2 linear momenta and one angular momentum. Since the leading order
terms of all the other independent integrals X0, X1, X2, X3 contain only linear momenta, it is
not possible to further reduce the order of the integral X̃4 by polynomial combinations of the
other integrals.

Concerning the order of X5, we notice that this integral contains the highest order terms of
the type

αkγjp
2k
2 p

2j+1
1 p

n−2(k+j)−1
3 , k = 0, . . . ,

[m
2

]
, j = 0, . . . ,

[
n− 1

2

]
or

βkδjp
2k+1
1 p2j

2 p
n−2(k+j)−1
3 , k = 0, . . . ,

[
m− 1

2

]
, j = 0, . . . ,

[n
2

]
,

whose order as polynomials in p1 and p2 is odd. Therefore, it is not possible to eliminate them
by polynomial combinations of the other integrals. As far as we can see, the order of X5 cannot
be reduced and it is m+ n.

5 Example: n = 2, m = 3

In order to illustrate the concepts and general results introduced above let us consider a par-
ticular nontrivial example. We choose the constants n = 2 and m = 3, i.e., κ = 3

2 . Thus the
Hamiltonian of the 2 d.o.f. oscillator (3.5) reads

H2 =
1

2

(
P 2

1 + P 2
2

)
+

1

2
ω2
(
9X2 + 4Y 2

)
, ω2 =

1

4
Ω2

1 +
1

9
Ω2

2.
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The integral X4 is of order n+m− 1 = 4. Thus its leading order terms are fourth order terms
in the enveloping algebra of the Euclidean algebra, linear in angular momenta lj and cubic in
linear momenta pj . Explicitly, they are as follows

X
(h.o.)
4 =

1√
9Ω2

1 + 4Ω2
2

((
16Ω3

2

9Ω1
+ 4Ω1Ω2

)
l2p

2
2p3 − 4Ω1Ω2(3l2p3 + 8l3p2)p2

3

−
(
4Ω2

2 + 9Ω2
1

)
(l1p3 + l3p1)p2

2 + 27Ω2
1(l1p3 + l3p1t)p

2
3

)
. (5.1)

The highest order terms take the same form also when X4 is expressed in a gauge covariant way,
using pAj = pj +Aj(~x) and lAj =

∑
k,l εjklxkp

A
l instead of pj , lj .

For the sake of completeness let us also write down rather unwieldy expression for the lower
order terms (for our fixed gauge (3.1) since the gauge covariant expression is even more cum-
bersome)

X4 −X(h.o.)
4 = 2Ω1τy

2p2
1p3 − 2τ

(
3Ω1x+

8

9
Ω2y

)
yp1p2p3 −

8Ω2τ

9
yzp1p

2
3

+ τ

(
Ω1

2

(
9x2 + y2 − z2

)
+ 2Ω2xy +

2

9

Ω2
2

Ω1

(
x2 − z2

))
p2

2p3

− 1

2τ

(
27

(
x2 − 1

3
y2 − z2

)
Ω3

1 − 36Ω2
1Ω2xy

+ 4Ω2
2Ω1

(
3x2 + 4y2 − 3z2

)
− 64Ω3

2

9
xy

)
p3

3

− 2Ω1τyzp2p
2
3 −

τ3

27
y3p2

1 +
τ3

3
xy2p1p2 +

4Ω2τ
3

81Ω1
y2zp1p3

− τ3

4
x2yp2

2 +
τ3

9
y2zp2p3

− τ
(

Ω2
1

(
9
x2

4
+ 2y2 − z2

)
+

4Ω2
2

9

(
x2 − 1

3
y2 − z2

)
+

16Ω3
2

81Ω1
xy

)
yp2

3

+
1

18Ω1
τ3

((
Ω1y −

2

3
Ω2x

)2

−
(

Ω2
1 +

4

9
Ω2

2

)
z2

)
y2p3 +

τ5

108
y3x2,

where τ =
√

9Ω2
1 + 4Ω2

2 = 6ω.

Sample trajectories for two different choices of the frequencies Ω1,2 are shown in Fig. 1.

6 Conclusions

We have demonstrated in a constructive way that the classical system given by the poten-
tials (2.1) is maximally superintegrable whenever the parameters satisfy the rationality con-
straint (2.7). The constructed fifth independent integral is polynomial in the momenta and
coordinates and it is of order m+n− 1 where m and n are incommensurable integers such that
S = m2Ω1

n2Ω2
. Its leading order terms contain angular momenta, in contrast with all the other,

previously known integrals for the system (2.1).

The explicit form of the integral X4 given as the expression (4.3) minus terms of the form (4.7)
and (4.8) is unfortunately rather complicated, cf. (5.1). We were not yet able to obtain any better
insight into the structure of the monomials in (5.1). In particular we would like to be able to
predict the monomials appearing in the highest order terms for arbitrary m, n, together with
relations between their coefficients. This understanding should be postponed to future work.
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Figure 1. Sample trajectories for n = 2, m = 3, ~x0 = (1, 0, 0), ~p0 =
(
0, 1, 12

)
and Ω1 = 1, Ω2 = 3

2 (solid

line) versus Ω1 = 1, Ω2 = 1
2 (dashed line).

Up to this point our analysis was purely classical. Thus a natural question arises whether its
results can be taken over into the quantum case. We notice that the quantum analogues of the
expressions z1 and z2

ẑ1 = iP̂1 +mωX̂, ẑ2 = iP̂2 + nωŶ

satisfy [ẑ1, ẑ2] = 0. Thus the hermitean expressions

Î3 =
1

2

(
ẑn1
(
ẑ†2
)m

+ ẑm2
(
ẑ†1
)n)

, Î4 =
1

2i

(
ẑn1
(
ẑ†2
)m − ẑm2 (ẑ†1)n) (6.1)

are again integrals of motion,[
Ĥ, Î3

]
= 0,

[
Ĥ, Î4

]
= 0

(this claim can be also verified directly through a simple commutator evaluation, see also [10]).
Thus the integrals of the 2 d.o.f. anisotropic oscillator are preserved by the quantization although
their explicit expression as polynomials in X̂, Ŷ and P̂1,2 needs to be symmetrized due to
presence of terms involving the same component of both the coordinate and the momentum,
e.g., X̂ and P̂1 in ẑ1.

In order to return to the system (2.1) we assume that the gauge is fixed as in (3.1). We
notice that the Hamiltonian as well as the integrals (2.3) and (2.4) contain only commuting
terms in each of their monomials, thus can be taken into quantum mechanics without any need
for symmetrization. In the substitution

X̂ = x̂− n2Ω2p̂3

n2Ω2
2 +m2Ω2

1

, Ŷ = ŷ − m2Ω1p̂3

n2Ω2
2 +m2Ω2

1

(6.2)

we have only commuting variables x̂, ŷ and p̂3. The momentum p̂3 also commutes with p̂1

and p̂2. Thus substituting (6.2) into the expressions (6.1) for Î3 and Î4 one can directly obtain
the quantum integrals

X̂4 =
1

2

((
ip̂1 −

Ω2p̂3

mω
+mωx̂

)n(
−ip̂2 −

Ω1p̂3

nω
+ nωŷ

)m
+ h.c.

)
(6.3)
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and

X̂5 =
1

2i

((
ip̂1 −

Ω2p̂3

mω
+mωx̂

)n(
−ip̂2 −

Ω1p̂3

nω
+ nωŷ

)m
− h.c.

)
, (6.4)

where “h.c.” stands for hermitean conjugate. Expanding the powers in (6.3) and (6.4) one
obtains quantum analogues of equations (4.3) and (4.4) as their properly symmetrized versions.

Also the argument concerning the lowering of the order of the integral X4 remains the same
in the quantum case, thus the integral X̂4 makes the quantum system maximally superintegrable
of order (m+ n− 1).

Let us notice that in accordance with [1] and [23] both the Hamilton–Jacobi and the Schrödin-
ger equations separate in Cartesian coordinates. E.g., the Hamilton’s principal function S(~x, t)
can be written as

S(~x, t) = −Et+K3z + S1(x) + S2(y),

where the functions S1,2 are solutions of

S′1(x) = ±
√
−
(
κ2Ω2

1 + Ω2
2

)
x2 + 2K3xΩ2 + 2K1,

S′2(y) = ±

√
−
(

Ω2
1 +

Ω2
2

κ2

)
y2 + 2K3yΩ1 −K2

3 − 2K1 − 2E,

expressible in terms of square roots and inverse trigonometric functions. Whether it separates
also in some other coordinate system, i.e., whether the maximally superintegrable system (2.1)
is multiseparable, remains to our knowledge an open question.

Our considerations are by construction nonrelativistic. We mention that some of the non-
relativistic superintegrable systems with magnetic fields give rise also to their superintegrable
relativistic versions, as was observed in [9], e.g., in the case of helical undulator. Due to the
complicated structure of the integral (4.3) we are presently unable to construct its relativistic
version and thus we do not know whether the relativistic analogue of the system (2.1) is also
superintegrable.
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