|
SIGMA 14 (2018), 051, 26 pages arXiv:1805.08954
https://doi.org/10.3842/SIGMA.2018.051
Contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications (OPSFA14)
Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials
Daniel D. Tcheutia a, Alta S. Jooste b and Wolfram Koepf a
a) Institute of Mathematics, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel, Germany
b) Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
Received January 26, 2018, in final form May 17, 2018; Published online May 23, 2018
Abstract
We show how to obtain linear combinations of polynomials in an orthogonal sequence $\{P_n\}_{n\geq 0}$, such as $Q_{n,k}(x)=\sum\limits_{i=0}^k a_{n,i}P_{n-i}(x)$, $a_{n,0}a_{n,k}\neq0$, that characterize quasi-orthogonal polynomials of order $k\le n-1$. The polynomials in the sequence $\{Q_{n,k}\}_{n\geq 0}$ are obtained from $P_{n}$, by making use of parameter shifts. We use an algorithmic approach to find these linear combinations for each family applicable and these equations are used to prove quasi-orthogonality of order $k$. We also determine the location of the extreme zeros of the quasi-orthogonal polynomials with respect to the end points of the interval of orthogonality of the sequence $\{P_n\}_{n\geq 0}$, where possible.
Key words:
classical orthogonal polynomials; quasi-orthogonal polynomials; interlacing of zeros.
pdf (493 kb)
tex (26 kb)
References
-
Brezinski C., Driver K.A., Redivo-Zaglia M., Quasi-orthogonality with applications to some families of classical orthogonal polynomials, Appl. Numer. Math. 48 (2004), 157-168.
-
Bultheel A., Cruz-Barroso R., Van Barel M., On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line, Calcolo 47 (2010), 21-48.
-
Chen W.Y.C., Hou Q.-H., Mu Y.-P., The extended Zeilberger algorithm with parameters, J. Symbolic Comput. 47 (2012), 643-654, arXiv:0908.1328.
-
Chihara T.S., On quasi-orthogonal polynomials, Proc. Amer. Math. Soc. 8 (1957), 765-767.
-
Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York - London - Paris, 1978.
-
Dickinson D., On quasi-orthogonal polynomials, Proc. Amer. Math. Soc. 12 (1961), 185-194.
-
Draux A., On quasi-orthogonal polynomials, J. Approx. Theory 62 (1990), 1-14.
-
Driver K., Jooste A., Interlacing of zeros of quasi-orthogonal Meixner polynomials, Quaest. Math. 40 (2017), 477-490.
-
Driver K., Jordaan K., Zeros of quasi-orthogonal Jacobi polynomials, SIGMA 12 (2016), 042, 13 pages, arXiv:1510.08599.
-
Driver K., Muldoon M.E., Interlacing properties and bounds for zeros of some quasi-orthogonal Laguerre polynomials, Comput. Methods Funct. Theory 15 (2015), 645-654.
-
Driver K., Muldoon M.E., Bounds for extreme zeros of quasi-orthogonal ultraspherical polynomials, J. Class. Anal. 9 (2016), 69-78, arXiv:1602.00044.
-
Fejér L., Mechanische Quadraturen mit positiven Cotesschen Zahlen, Math. Z. 37 (1933), 287-309.
-
Foupouagnigni M., Koepf W., Tcheutia D.D., Njionou Sadjang P., Representations of $q$-orthogonal polynomials, J. Symbolic Comput. 47 (2012), 1347-1371.
-
Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
-
Johnston S.J., Jooste A., Jordaan K., Quasi-orthogonality of some hypergeometric polynomials, Integral Transforms Spec. Funct. 27 (2016), 111-125.
-
Jooste A., Jordaan K., Toókos F., On the zeros of Meixner polynomials, Numer. Math. 124 (2013), 57-71.
-
Joulak H., A contribution to quasi-orthogonal polynomials and associated polynomials, Appl. Numer. Math. 54 (2005), 65-78.
-
Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
-
Koepf W., Hypergeometric summation. An algorithmic approach to summation and special function identities, 2nd ed., Universitext, Springer, London, 2014.
-
Koepf W., Schmersau D., Representations of orthogonal polynomials, J. Comput. Appl. Math. 90 (1998), 57-94, math.CA/9703217.
-
Marcellán F., Petronilho J., On the solution of some distributional differential equations: existence and characterizations of the classical moment functionals, Integral Transform. Spec. Funct. 2 (1994), 185-218.
-
Maroni P., Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., Vol. 9, Editors C. Brezinski, L. Gori, A. Ronveaux, Baltzer, Basel, 1991, 95-130.
-
Medem J.C., Álvarez-Nodarse R., Marcellán F., On the $q$-polynomials: a distributional study, J. Comput. Appl. Math. 135 (2001), 157-196.
-
Moak D.S., The $q$-analogue of the Laguerre polynomials, J. Math. Anal. Appl. 81 (1981), 20-47.
-
Riesz M., Sur le problème des moments. III, Ark. Mat. Astron. Fys. 17 (1923), 1-52.
-
Shohat J., On mechanical quadratures, in particular, with positive coefficients, Trans. Amer. Math. Soc. 42 (1937), 461-496.
-
Tcheutia D.D., Jooste A.S., Koepf W., Mixed recurrence equations and interlacing properties for zeros of sequences of classical $q$-orthogonal polynomials, Appl. Numer. Math. 125 (2018), 86-102.
|
|