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Figure 1. The exchange graph on triangulations of a hexagon (left) and the exchange graph on support

τ -tilting modules of the quiver with relations Q (right).
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Figure 2. The D◦-accordion complex of the dissection D◦ of Fig. 3 (left) and the 2-term silting complex

of the quiver Q(D◦) (right).

With this algebraic result, we can explain the isomorphism of Fig. 2, and extend it to dis-
sections of any polygon. Any reference dissection of a polygon gives rise to an exchange graph
on certain dissections. This exchange graph is the dual graph of the accordion complex studied
in [6, 10, 12] (see Section 4).

Theorem 1.2. Any accordion complex is isomorphic to the support τ -tilting simplicial complex
of an explicit finite dimensional algebra. Thus, the corresponding exchange graphs are isomor-
phic.

Note that this statement could be seen as a consequence of a more general result [13, Proposi-
tion 2.44]. However, the latter combines several isomorphisms (from dissections, via non-kissing
paths, through non-attracting chords, to support τ -tilting modules) and the proof is quite intri-
cate. In the present paper, we will easily deduce Theorem 1.2 from Theorem 1.1 and from the


