|
SIGMA 14 (2018), 027, 14 pages arXiv:1611.05674
https://doi.org/10.3842/SIGMA.2018.027
Hopf Algebras which Factorize through the Taft Algebra $T_{m^{2}}(q)$ and the Group Hopf Algebra $K[C_{n}]$
Ana-Loredana Agore ab
a) Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
b) ''Simion Stoilow'' Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania
Received August 28, 2017, in final form March 20, 2018; Published online March 25, 2018
Abstract
We completely describe by generators and relations and classify all Hopf algebras which factorize through the Taft algebra $T_{m^{2}}(q)$ and the group Hopf algebra $K[C_{n}]$: they are $nm^{2}$-dimensional quantum groups $T_{nm^{2}}^ {\omega}(q)$ associated to an $n$-th root of unity $\omega$. Furthermore, using Dirichlet's prime number theorem we are able to count the number of isomorphism types of such Hopf algebras. More precisely, if $d = {\rm gcd}(m,\nu(n))$ and $\frac{\nu(n)}{d} = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is the prime decomposition of $\frac{\nu(n)}{d}$ then the number of types of Hopf algebras that factorize through $T_{m^{2}}(q)$ and $K[C_n]$ is equal to $(\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_r + 1)$, where $\nu (n)$ is the order of the group of $n$-th roots of unity in $K$. As a consequence of our approach, the automorphism groups of these Hopf algebras are described as well.
Key words:
bicrossed product; the factorization problem; classification of Hopf algebras.
pdf (423 kb)
tex (21 kb)
References
-
Agore A.L., Classifying bicrossed products of two Taft algebras, J. Pure Appl. Algebra 222 (2018), 914-930, arXiv:1603.01854.
-
Agore A.L., Bontea C.G., Militaru G., Classifying bicrossed products of Hopf algebras, Algebr. Represent. Theory 17 (2014), 227-264, arXiv:1205.6110.
-
Agore A.L., Chirvăsitu A., Ion B., Militaru G., Bicrossed products for finite groups, Algebr. Represent. Theory 12 (2009), 481-488, math.GR/0703471.
-
Angiono I., Galindo C., Vendramin L., Hopf braces and Yang-Baxter operators, Proc. Amer. Math. Soc. 145 (2017), 1981-1995, arXiv:1604.02098,
-
Apostol T.M., Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York - Heidelberg, 1976.
-
Bontea C.-G., Classifying bicrossed products of two Sweedler's Hopf algebras, Czechoslovak Math. J. 64 (2014), 419-431, arXiv:1205.7010.
-
Caenepeel S., Ion B., Militaru G., Zhu S., The factorization problem and the smash biproduct of algebras and coalgebras, Algebr. Represent. Theory 3 (2000), 19-42, math.QA/9809063.
-
Cap A., Schichl H., Vanžura J., On twisted tensor products of algebras, Comm. Algebra 23 (1995), 4701-4735.
-
Gelaki S., Exact factorizations and extensions of fusion categories, J. Algebra 480 (2017), 505-518, arXiv:1603.01568.
-
Jara P., López Peña J., Navarro G., Ştefan D., On the classification of twisting maps between $K^n$ and $K^m$, Algebr. Represent. Theory 14 (2011), 869-895, arXiv:0805.2874.
-
Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
-
Keilberg M., Automorphisms of the doubles of purely non-abelian finite groups, Algebr. Represent. Theory 18 (2015), 1267-1297, arXiv:1311.0575.
-
Krop L., Radford D.E., Finite-dimensional Hopf algebras of rank one in characteristic zero, J. Algebra 302 (2006), 214-230.
-
Majid S., Matched pairs of Lie groups and Hopf algebra bicrossproducts, Nuclear Phys. B Proc. Suppl. 6 (1989), 422-424.
-
Majid S., Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130 (1990), 17-64.
-
Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
-
Michor P.W., Knit products of graded Lie algebras and groups, Rend. Circ. Mat. Palermo (2) Suppl. (1990), no. 22, 171-175.
-
Molnar R.K., Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51.
-
Ore O., Structures and group theory. I, Duke Math. J. 3 (1937), 149-174.
-
Scherotzke S., Classification of pointed rank one Hopf algebras, J. Algebra 319 (2008), 2889-2912, math.RA/0703601.
-
Takeuchi M., Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra 9 (1981), 841-882.
-
Vaes S., Vainerman L., Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math. 175 (2003), 1-101, math.OA/0101133.
-
Wang Z., You L., Chen H.-X., Representations of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one, Algebr. Represent. Theory 18 (2015), 801-830, arXiv:1309.7442.
-
Zappa G., Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, in Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940, Edizioni Cremonense, Rome, 1942, 119-125.
|
|