|
SIGMA 12 (2016), 096, 39 pages arXiv:1602.05369
https://doi.org/10.3842/SIGMA.2016.096
On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
Adam Nowak a, Krzysztof Stempak b and Tomasz Z. Szarek a
a) Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland
b) Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
Received May 25, 2016, in final form September 23, 2016; Published online September 29, 2016
Abstract
We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to $\mathbb{Z}_2^d$. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, $g$-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace-Stieltjes type. By means of the general Calderón-Zygmund theory we prove that these operators are bounded on weighted $L^p$ spaces, $1$ < $p$ < $\infty$, and from weighted $L^1$ to weighted weak $L^1$. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type.
Key words:
Dunkl harmonic oscillator; generalized Hermite functions; negative multiplicity function; Laguerre expansions of convolution type; Bessel harmonic oscillator; Laguerre-Dunkl expansions; Laguerre-symmetrized expansions; heat semigroup; Poisson semigroup; maximal operator; Riesz transform; $g$-function; spectral multiplier; area integral; Calderón-Zygmund operator.
pdf (662 kb)
tex (46 kb)
References
-
Álvarez López J.A., Calaza M., Embedding theorems for the Dunkl harmonic oscillator on the line, SIGMA 10 (2014), 004, 16 pages, arXiv:1301.4196.
-
Álvarez López J.A., Calaza M., A perturbation of the Dunkl harmonic oscillator on the line, SIGMA 11 (2015), 059, 33 pages, arXiv:1412.4655.
-
Amri B., Riesz transforms for Dunkl Hermite expansions, J. Math. Anal. Appl. 423 (2015), 646-659, arXiv:1201.1209.
-
Amri B., Sifi M., Riesz transforms for Dunkl transform, Ann. Math. Blaise Pascal 19 (2012), 247-262, arXiv:1105.1427.
-
Amri B., Sifi M., Singular integral operators in Dunkl setting, J. Lie Theory 22 (2012), 723-739.
-
Amri B., Tayari H., The $L^p$-continuity of imaginary powers of the Dunkl harmonic oscillator, Indian J. Pure Appl. Math. 46 (2015), 239-249.
-
Ben Salem N., Samaali T., Hilbert transforms associated with Dunkl-Hermite polynomials, SIGMA 5 (2009), 037, 17 pages, arXiv:0903.4369.
-
Betancor J.J., Castro A.J., Nowak A., Calderón-Zygmund operators in the Bessel setting, Monatsh. Math. 167 (2012), 375-403, arXiv:1012.5638.
-
Betancor J.J., Fariña J.C., Rodríguez-Mesa L., Testoni R., Torrea J.L., Fractional square functions and potential spaces, J. Math. Anal. Appl. 386 (2012), 487-504.
-
Betancor J.J., Fariña J.C., Rodríguez-Mesa L., Testoni R., Torrea J.L., Fractional square functions and potential spaces, II, Acta Math. Sin. (Engl. Ser.) 31 (2015), 1759-1774.
-
Betancor J.J., Molina S.M., Rodríguez-Mesa L., Area Littlewood-Paley functions associated with Hermite and Laguerre operators, Potential Anal. 34 (2011), 345-369, arXiv:1001.3814.
-
Boggarapu P., Roncal L., Thangavelu S., Mixed norm estimates for the Cesàro means associated with Dunkl-Hermite expansions, Trans. Amer. Math. Soc., to appear, arXiv:1410.2162.
-
Boggarapu P., Thangavelu S., Mixed norm estimates for the Riesz transforms associated to Dunkl harmonic oscillators, Ann. Math. Blaise Pascal 22 (2015), 89-120, arXiv:1407.1644.
-
Castro A.J., Szarek T.Z., On fundamental harmonic analysis operators in certain Dunkl and Bessel settings, J. Math. Anal. Appl. 412 (2014), 943-963, arXiv:1304.2904.
-
Christ M., Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, Vol. 77, Amer. Math. Soc., Providence, RI, 1990.
-
Dunkl C.F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), 167-183.
-
Duoandikoetxea J., Fourier analysis, Graduate Studies in Mathematics, Vol. 29, Amer. Math. Soc., Providence, RI, 2001.
-
Forzani L., Sasso E., Scotto R., Maximal operators associated with generalized Hermite polynomial and function expansions, Rev. Un. Mat. Argentina 54 (2013), 83-107.
-
Grafakos L., Modern Fourier analysis, Graduate Texts in Mathematics, Vol. 250, 3rd ed., Springer, New York, 2014.
-
Harboure E., de Rosa L., Segovia C., Torrea J.L., $L^p$-dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann. 328 (2004), 653-682.
-
Johnson W.P., The curious history of Faà di Bruno's formula, Amer. Math. Monthly 109 (2002), 217-234.
-
Langowski B., Harmonic analysis operators related to symmetrized Jacobi expansions, Acta Math. Hungar. 140 (2013), 248-292, arXiv:1210.1342.
-
Langowski B., On potential spaces related to Jacobi expansions, J. Math. Anal. Appl. 432 (2015), 374-397, arXiv:1410.6635.
-
Langowski B., Potential and Sobolev spaces related to symmetrized Jacobi expansions, SIGMA 11 (2015), 073, 17 pages, arXiv:1505.01653.
-
Langowski B., Harmonic analysis operators related to symmetrized Jacobi expansions for all admissible parameters, Acta Math. Hungar. 150 (2016), 49-82, arXiv:1512.08948.
-
Nefzi W., Higher order Riesz transforms for the Dunkl harmonic oscillator, Taiwanese J. Math. 19 (2015), 567-583.
-
Nowak A., Stempak K., $L^2$-theory of Riesz transforms for orthogonal expansions, J. Fourier Anal. Appl. 12 (2006), 675-711.
-
Nowak A., Stempak K., Riesz transforms for multi-dimensional Laguerre function expansions, Adv. Math. 215 (2007), 642-678.
-
Nowak A., Stempak K., Imaginary powers of the Dunkl harmonic oscillator, SIGMA 5 (2009), 016, 12 pages, arXiv:0902.1958.
-
Nowak A., Stempak K., Riesz transforms for the Dunkl harmonic oscillator, Math. Z. 262 (2009), 539-556, arXiv:0802.0474.
-
Nowak A., Stempak K., Negative powers of Laguerre operators, Canad. J. Math. 64 (2012), 183-216, arXiv:0912.0038.
-
Nowak A., Stempak K., A symmetrized conjugacy scheme for orthogonal expansions, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 427-443, arXiv:1009.1767.
-
Nowak A., Stempak K., Sharp estimates for potential operators associated with Laguerre and Dunkl-Laguerre expansions, Potential Anal. 44 (2016), 109-136, arXiv:1402.2522.
-
Nowak A., Szarek T.Z., Calderón-Zygmund operators related to Laguerre function expansions of convolution type, J. Math. Anal. Appl. 388 (2012), 801-816.
-
Rösler M., Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 93-135, math.CA/0210366.
-
Rubio de Francia J.L., Ruiz F.J., Torrea J.L., Calderón-Zygmund theory for operator-valued kernels, Adv. Math. 62 (1986), 7-48.
-
Ruiz F.J., Torrea J.L., Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math. 88 (1988), 221-243.
-
Sasso E., Functional calculus for the Laguerre operator, Math. Z. 249 (2005), 683-711.
-
Segovia C., Wheeden R.L., On certain fractional area integrals, J. Math. Mech. 19 (1969), 247-262.
-
Stempak K., Torrea J.L., On $g$-functions for Hermite function expansions, Acta Math. Hungar. 109 (2005), 99-125.
-
Stempak K., Torrea J.L., Higher Riesz transforms and imaginary powers associated to the harmonic oscillator, Acta Math. Hungar. 111 (2006), 43-64.
-
Szarek T., Littlewood-Paley-Stein type square functions based on Laguerre semigroups, Acta Math. Hungar. 131 (2011), 59-109, arXiv:1001.3579.
-
Szarek T.Z., Multipliers of Laplace transform type in certain Dunkl and Laguerre settings, Bull. Aust. Math. Soc. 85 (2012), 177-190, arXiv:1101.4139.
-
Szarek T.Z., On Lusin's area integrals and $g$-functions in certain Dunkl and Laguerre settings, Math. Nachr. 285 (2012), 1517-1542, arXiv:1011.0898.
-
Thangavelu S., Lectures on Hermite and Laguerre expansions, Mathematical Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993.
-
Wróbel B., Multivariate spectral multipliers for the Dunkl transform and the Dunkl harmonic oscillator, Forum Math. 27 (2015), 2301-2322.
|
|