Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 095, 22 pages      arXiv:1603.08842      https://doi.org/10.3842/SIGMA.2016.095
Contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy

A Riemann-Hilbert Approach for the Novikov Equation

Anne Boutet de Monvel a, Dmitry Shepelsky b and Lech Zielinski c
a) Institut de Mathématiques de Jussieu-PRG, Université Paris Diderot, 75205 Paris Cedex 13, France
b) Mathematical Division, Institute for Low Temperature Physics, 47 Nauki Avenue, 61103 Kharkiv, Ukraine
c) LMPA, Université du Littoral Côte d'Opale, 50 rue F. Buisson, CS 80699, 62228 Calais, France

Received June 08, 2016, in final form September 14, 2016; Published online September 24, 2016

Abstract
We develop the inverse scattering transform method for the Novikov equation $u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx}$ considered on the line $x\in(-\infty,\infty)$ in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a $3\times 3$ matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.

Key words: Novikov equation; Degasperis-Procesi equation; Camassa-Holm equation; inverse scattering transform; Riemann-Hilbert problem.

pdf (549 kb)   tex (39 kb)

References

  1. Beals R., Coifman R.R., Scattering and inverse scattering for first order systems, Comm. Pure Appl. Math. 37 (1984), 39-90.
  2. Boutet de Monvel A., Its A., Shepelsky D., Painlevé-type asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal. 42 (2010), 1854-1873.
  3. Boutet de Monvel A., Kostenko A., Shepelsky D., Teschl G., Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal. 41 (2009), 1559-1588, arXiv:0902.0391.
  4. Boutet de Monvel A., Lenells J., Shepelsky D., Long-time asymptotics for the Degasperis-Procesi equation on the half-line, arXiv:1508.04097.
  5. Boutet de Monvel A., Shepelsky D., Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris 343 (2006), 627-632.
  6. Boutet de Monvel A., Shepelsky D., The Camassa-Holm equation on the half-line: a Riemann-Hilbert approach, J. Geom. Anal. 18 (2008), 285-323.
  7. Boutet de Monvel A., Shepelsky D., Long-time asymptotics of the Camassa-Holm equation on the line, in Integrable Systems and Random Matrices, Contemp. Math., Vol. 458, Amer. Math. Soc., Providence, RI, 2008, 99-116.
  8. Boutet de Monvel A., Shepelsky D., Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line, in Probability, Geometry and Integrable Systems, Math. Sci. Res. Inst. Publ., Vol. 55, Cambridge University Press, Cambridge, 2008, 53-75.
  9. Boutet de Monvel A., Shepelsky D., Long time asymptotics of the Camassa-Holm equation on the half-line, Ann. Inst. Fourier (Grenoble) 59 (2009), 3015-3056.
  10. Boutet de Monvel A., Shepelsky D., A Riemann-Hilbert approach for the Degasperis-Procesi equation, Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995.
  11. Boutet de Monvel A., Shepelsky D., The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach, J. Phys. A: Math. Theor. 48 (2015), 035204, 34 pages, arXiv:1311.0495.
  12. Boutet de Monvel A., Shepelsky D., Zielinski L., The short-wave model for the Camassa-Holm equation: a Riemann-Hilbert approach, Inverse Problems 27 (2011), 105006, 17 pages.
  13. Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664, patt-sol/9305002.
  14. Camassa R., Holm D.D., Hyman J.M., A new integrable shallow water equation, Advances in Applied Mechanics, Vol. 31, Editors J.W. Hutchinson, T.Y. Wu, Academic Press, Boston, MA, 1994, 1-33.
  15. Caudrey P.J., The inverse problem for a general $n\times n$ spectral equation, Phys. D 6 (1982), 51-66.
  16. Chen G., Chen R.M., Liu Y., Existence and uniqueness of the global conservative weak solutions for the integrable Novikov equation, arXiv:1509.08569.
  17. Chen R.M., Guo F., Liu Y., Qu C., Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal. 270 (2016), 2343-2374.
  18. Constantin A., On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 953-970.
  19. Constantin A., Gerdjikov V.S., Ivanov R.I., Inverse scattering transform for the Camassa-Holm equation, Inverse Problems 22 (2006), 2197-2207, nlin.SI/0603019.
  20. Constantin A., Ivanov R.I., Lenells J., Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity 23 (2010), 2559-2575, arXiv:1205.4754.
  21. Constantin A., Lenells J., On the inverse scattering approach to the Camassa-Holm equation, J. Nonlinear Math. Phys. 10 (2003), 252-255, math-ph/0403039.
  22. Degasperis A., Holm D.D., Hone A.N.W., A new integrable equation with peakon solutions, Theoret. Math. Phys. 133 (2002), 1463-1474, nlin.SI/0205023.
  23. Degasperis A., Procesi M., Asymptotic integrability, in Symmetry and Perturbation Theory (Rome, 1998), World Sci. Publ., River Edge, NJ, 1999, 23-37.
  24. Deift P., Zhou X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. 137 (1993), 295-368.
  25. Fokas A.S., On a class of physically important integrable equations, Phys. D 87 (1995), 145-150.
  26. Grayshan K., Peakon solutions of the Novikov equation and properties of the data-to-solution map, J. Math. Anal. Appl. 397 (2013), 515-521.
  27. Himonas A.A., Holliman C., The Cauchy problem for the Novikov equation, Nonlinearity 25 (2012), 449-479.
  28. Hone A.N.W., Lundmark H., Szmigielski J., Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation, Dyn. Partial Differ. Equ. 6 (2009), 253-289, arXiv:0903.3663.
  29. Hone A.N.W., Wang J.P., Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor. 41 (2008), 372002, 10 pages, arXiv:0805.4310.
  30. Jiang Z., Ni L., Blow-up phenomenon for the integrable Novikov equation, J. Math. Anal. Appl. 385 (2012), 551-558.
  31. Johnson R.S., On solutions of the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), 1687-1708.
  32. Lai S., Li N., Wu Y., The existence of global strong and weak solutions for the Novikov equation, J. Math. Anal. Appl. 399 (2013), 682-691.
  33. Lenells J., The scattering approach for the Camassa-Holm equation, J. Nonlinear Math. Phys. 9 (2002), 389-393, nlin.SI/0306021.
  34. Matsuno Y., The $N$-soliton solution of the Degasperis-Procesi equation, Inverse Problems 21 (2005), 2085-2101, nlin.SI/0511029.
  35. Matsuno Y., Cusp and loop soliton solutions of short-wave models for the Camassa-Holm and Degasperis-Procesi equations, Phys. Lett. A 359 (2006), 451-457.
  36. Matsuno Y., Smooth multisoliton solutions and their peakon limit of Novikov's Camassa-Holm type equation with cubic nonlinearity, J. Phys. A: Math. Theor. 46 (2013), 365203, 27 pages, arXiv:1305.6728.
  37. Mikhailov A.V., Novikov V.S., Perturbative symmetry approach, J. Phys. A: Math. Gen. 35 (2002), 4775-4790, nlin.SI/0203055.
  38. Ni L., Zhou Y., Well-posedness and persistence properties for the Novikov equation, J. Differential Equations 250 (2011), 3002-3021.
  39. Novikov V., Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor. 42 (2009), 342002, 14 pages, arXiv:0905.2219.
  40. Pan C., Yi Y., Some extensions on the soliton solutions for the Novikov equation with cubic nonlinearity, J. Nonlinear Math. Phys. 22 (2015), 308-320.
  41. Qiao Z., A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys. 47 (2006), 112701, 9 pages.
  42. Qiao Z., New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solitons, J. Math. Phys. 48 (2007), 082701, 20 pages.
  43. Tığlay F., The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Not. 2011 (2011), 4633-4648, arXiv:1009.1820.
  44. Yan W., Li Y., Zhang Y., The Cauchy problem for the integrable Novikov equation, J. Differential Equations 253 (2012), 298-318.

Previous article  Next article   Contents of Volume 12 (2016)