Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 101, 5 pages      arXiv:1510.01901      https://doi.org/10.3842/SIGMA.2015.101
Contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications

Hankel Determinants of Zeta Values

Alan Haynes a and Wadim Zudilin b
a) Department of Mathematics, University of York, York, YO10 5DD, UK
b) School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan NSW 2308, Australia

Received October 19, 2015, in final form December 16, 2015; Published online December 17, 2015

Abstract
We study the asymptotics of Hankel determinants constructed using the values $\zeta(an+b)$ of the Riemann zeta function at positive integers in an arithmetic progression. Our principal result is a Diophantine application of the asymptotics.

Key words: irrationality; Hankel determinant; zeta value.

pdf (270 kb)   tex (8 kb)

References

  1. Apéry R., Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11-13.
  2. Ball K., Rivoal T., Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math. 146 (2001), 193-207.
  3. Kronecker L., Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen, Berl. Monatsber. 1881 (1881), 535-600.
  4. Monien H., Hankel determinants of Dirichlet series, arXiv:0901.1883.
  5. Monien H., Personal communication, 2011.
  6. Pólya G., Szegő G., Problems and theorems in analysis, Vol. II, Springer-Verlag, New York - Heidelberg, 1976.

Previous article   Contents of Volume 11 (2015)