Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 086, 34 pages      arXiv:1505.00469      https://doi.org/10.3842/SIGMA.2015.086

BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras

Giacomo Graziani a, Abdenacer Makhlouf b, Claudia Menini c and Florin Panaite d
a) Université Joseph Fourier Grenoble I Institut Fourier, 100, Rue des Maths BP74 38402 Saint-Martin-d'Hères, France
b) Université de Haute Alsace, Laboratoire de Mathématiques, Informatique et Applications, 4, Rue des frères Lumière, F-68093 Mulhouse, France
c) University of Ferrara, Department of Mathematics, Via Machiavelli 30, Ferrara, I-44121, Italy
d) Institute of Mathematics of the Romanian Academy, PO-Box 1-764, RO-014700 Bucharest, Romania

Received May 12, 2015, in final form October 13, 2015; Published online October 25, 2015

Abstract
A BiHom-associative algebra is a (nonassociative) algebra $A$ endowed with two commuting multiplicative linear maps $\alpha,\beta\colon A\rightarrow A$ such that $\alpha (a)(bc)=(ab)\beta (c)$, for all $a, b, c\in A$. This concept arose in the study of algebras in so-called group Hom-categories. In this paper, we introduce as well BiHom-Lie algebras (also by using the categorical approach) and BiHom-bialgebras. We discuss these new structures by presenting some basic properties and constructions (representations, twisted tensor products, smash products etc).

Key words: BiHom-associative algebra; BiHom-Lie algebra; BiHom-bialgebra; representation; twisting; smash product.

pdf (537 kb)   tex (43 kb)

References

  1. Aizawa N., Sato H., $q$-deformation of the Virasoro algebra with central extension, Phys. Lett. B 256 (1991), 185-190.
  2. Aragón Periáán M.J., Calderón Martín A.J., On graded matrix Hom-algebras, Electron. J. Linear Algebra 24 (2012), 45-65.
  3. Aragón Periáán M.J., Calderón Martín A.J., Split regular Hom-Lie algebras, J. Lie Theory 25 (2015), 875-888.
  4. Ardizzoni A., Bulacu D., Menini C., Quasi-bialgebra structures and torsion-free abelian groups, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56 (2013), 247-265, arXiv:1302.2453.
  5. Ardizzoni A., Menini C., Milnor-Moore categories and monadic decomposition, arXiv:1401.2037.
  6. Bakayoko I., $L$-modules, $L$-comodules and Hom-Lie quasi-bialgebras, Afr. Diaspora J. Math. 17 (2014), 49-64.
  7. Benayadi S., Makhlouf A., Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014), 38-60, arXiv:1009.4226.
  8. Caenepeel S., Goyvaerts I., Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), 2216-2240, arXiv:0907.0187.
  9. Cap A., Schichl H., Vanžura J., On twisted tensor products of algebras, Comm. Algebra 23 (1995), 4701-4735.
  10. Chaichian M., Kulish P., Lukierski J., $q$-deformed Jacobi identity, $q$-oscillators and $q$-deformed infinite-dimensional algebras, Phys. Lett. B 237 (1990), 401-406.
  11. Chen Y., Wang Z., Zhang L., Integrals for monoidal Hom-Hopf algebras and their applications, J. Math. Phys. 54 (2013), 073515, 22 pages.
  12. Curtright T.L., Zachos C.K., Deforming maps for quantum algebras, Phys. Lett. B 243 (1990), 237-244.
  13. Goyvaerts I., Vercruysse J., Lie monads and dualities, J. Algebra 414 (2014), 120-158, arXiv:1302.6869.
  14. Graziani G., Group Hom-categories, Thesis, University of Ferrara, Italy, 2013.
  15. Hartwig J.T., Larsson D., Silvestrov S.D., Deformations of Lie algebras using $\sigma$-derivations, J. Algebra 295 (2006), 314-361, math.QA/0408064.
  16. Hassanzadeh M., Shapiro I., Sütlü S., Cyclic homology for Hom-associative algebras, J. Geom. Phys. 98 (2015), 40-56, arXiv:1504.03019.
  17. Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
  18. Larsson D., Silvestrov S., Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), 321-344, math.RA/0408061.
  19. Liu K.Q., Characterizations of the quantum Witt algebra, Lett. Math. Phys. 24 (1992), 257-265.
  20. Liu L., Shen B., Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55 (2014), 031701, 16 pages.
  21. López Peña J., Panaite F., Van Oystaeyen F., General twisting of algebras, Adv. Math. 212 (2007), 315-337, math.QA/0605086.
  22. Makhlouf A., Panaite F., Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55 (2014), 013501, 17 pages, arXiv:1310.8323.
  23. Makhlouf A., Panaite F., Twisting operators, twisted tensor products and smash products for Hom-associative algebras, Glasg. Math. J., to appear, arXiv:1402.1893.
  24. Makhlouf A., Silvestrov S., Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64, math.RA/0609501.
  25. Makhlouf A., Silvestrov S., Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, in Generalized Lie Theory in Mathematics, Physics and Beyond, Editors S. Silvestrov, E. Paal, V. Abramov, A. Stolin, Springer-Verlag, Berlin, 2009, 189-206, arXiv:0709.2413.
  26. Makhlouf A., Silvestrov S., Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (2010), 553-589, arXiv:0811.0400.
  27. Sheng Y., Representations of Hom-Lie algebras, Algebr. Represent. Theory 15 (2012), 1081-1098, arXiv:1005.0140.
  28. Van Daele A., Van Keer S., The Yang-Baxter and pentagon equation, Compositio Math. 91 (1994), 201-221.
  29. Yau D., Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl. 2 (2008), 95-108, arXiv:0709.0849.
  30. Yau D., Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra 8 (2010), 45-64, arXiv:0810.4866.
  31. Yau D., Module Hom-algebras, arXiv:0812.4695.
  32. Yau D., Hom-quantum groups III: Representations and module Hom-algebras, arXiv:0911.5402.

Previous article  Next article   Contents of Volume 11 (2015)