Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 060, 46 pages      arXiv:1409.3610      https://doi.org/10.3842/SIGMA.2015.060
Contribution to the Special Issue on New Directions in Lie Theory

$T$-Path Formula and Atomic Bases for Cluster Algebras of Type $D$

Emily Gunawan and Gregg Musiker
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received September 24, 2014, in final form July 09, 2015; Published online July 28, 2015

Abstract
We extend a $T$-path expansion formula for arcs on an unpunctured surface to the case of arcs on a once-punctured polygon and use this formula to give a combinatorial proof that cluster monomials form the atomic basis of a cluster algebra of type $D$.

Key words: cluster algebra; triangulated surface; atomic basis.

pdf (896 kb)   tex (71 kb)

References

  1. Baur K., Marsh R.J., Frieze patterns for punctured discs, J. Algebraic Combin. 30 (2009), 349-379, arXiv:0711.1443.
  2. Caldero P., Keller B., From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211, math.RT/0506018.
  3. Ceballos C., Pilaud V., Cluster algebras of type $D$: Pseudotriangulations approach, arXiv:1504.06377.
  4. Cerulli Irelli G., Positivity in skew-symmetric cluster algebras of finite type, arXiv:1102.3050.
  5. Cerulli Irelli G., Keller B., Labardini-Fragoso D., Plamondon P.G., Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math. 149 (2013), 1753-1764, arXiv:1203.1307.
  6. Cerulli Irelli G., Labardini-Fragoso D., Quivers with potentials associated to triangulated surfaces, Part III: tagged triangulations and cluster monomials, Compos. Math. 148 (2012), 1833-1866, arXiv:1108.1774.
  7. Dupont G., Thomas H., Atomic bases of cluster algebras of types $A$ and $\tilde{A}$, Proc. Lond. Math. Soc. 107 (2013), 825-850, arXiv:1106.3758.
  8. Fock V., Goncharov A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), 1-211, math.AG/0311149.
  9. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930, math.AG/0311245.
  10. Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, math.RA/0608367.
  11. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, math.RT/0104151.
  12. Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121, math.RA/0208229.
  13. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311, math.QA/0309138.
  14. Hernandez D., Leclerc B., Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), 265-341, arXiv:0903.1452.
  15. Lee K., Li L., Zelevinsky A., Positivity and tameness in rank 2 cluster algebras, J. Algebraic Combin. 40 (2014), 823-840, arXiv:1303.5806.
  16. Musiker G., Schiffler R., Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), 187-209, arXiv:0810.3638.
  17. Musiker G., Schiffler R., Williams L., Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308, arXiv:0906.0748.
  18. Musiker G., Schiffler R., Williams L., Bases for cluster algebras from surfaces, Compos. Math. 149 (2013), 217-263, arXiv:1110.4364.
  19. Nakajima H., Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71-126, arXiv:0905.0002.
  20. Schiffler R., A geometric model for cluster categories of type $D_n$, J. Algebraic Combin. 27 (2008), 1-21, math.RT/0608264.
  21. Schiffler R., On cluster algebras arising from unpunctured surfaces. II, Adv. Math. 223 (2010), 1885-1923, arXiv:0809.2593.
  22. Schiffler R., Thomas H., On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. 2009 (2009), 3160-3189, arXiv:0712.4131.
  23. Sherman P., Zelevinsky A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (2004), 947-974, math.RT/0307082.

Previous article  Next article   Contents of Volume 11 (2015)