Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 042, 49 pages      arXiv:1409.7855      https://doi.org/10.3842/SIGMA.2015.042

Simplex and Polygon Equations

Aristophanes Dimakis a and Folkert Müller-Hoissen b
a) Department of Financial and Management Engineering, University of the Aegean, 82100 Chios, Greece
b) Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany

Received October 23, 2014, in final form May 26, 2015; Published online June 05, 2015

Abstract
It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a ''mixed order''. We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of ''polygon equations'' realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the $N$-simplex equation to the $(N+1)$-gon equation, its dual, and a compatibility equation.

Key words: higher Bruhat order; higher Tamari order; pentagon equation; simplex equation.

pdf (2792 kb)   tex (2009 kb)

References

  1. Adler V.E., Bobenko A.I., Suris Yu.B., Geometry of Yang-Baxter maps: pencils of conics and quadrirational mappings, Comm. Anal. Geom. 12 (2004), 967-1007, math.QA/0307009.
  2. Aitchison I.R., The geometry of oriented cubes, arXiv:1008.1714.
  3. Alekseev A., Enriquez B., Torossian C., Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations, Publ. Math. Inst. Hautes Études Sci. (2010), 143-189, arXiv:0903.4067.
  4. Alekseev A., Torossian C., The Kashiwara-Vergne conjecture and Drinfeld's associators, Ann. of Math. 175 (2012), 415-463, arXiv:0802.4300.
  5. Andersen J.E., Kashaev R., A TQFT from quantum Teichmüller theory, Comm. Math. Phys. 330 (2014), 887-934, arXiv:1109.6295.
  6. Baaj S., Skandalis G., Unitaires multiplicatifs et dualité pour les produits croisés de $C^*$-algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), 425-488.
  7. Baaj S., Skandalis G., Transformations pentagonales, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 623-628.
  8. Baaj S., Skandalis G., Unitaires multiplicatifs commutatifs, C. R. Math. Acad. Sci. Paris 336 (2003), 299-304.
  9. Baez J.C., Neuchl M., Higher-dimensional algebra. I. Braided monoidal $2$-categories, Adv. Math. 121 (1996), 196-244, q-alg/9511013.
  10. Bar-Natan D., On associators and the Grothendieck-Teichmuller group. I, Selecta Math. (N.S.) 4 (1998), 183-212, q-alg/9606021.
  11. Baxter R.J., Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193-228.
  12. Baxter R.J., Solvable eight-vertex model on an arbitrary planar lattice, Philos. Trans. Roy. Soc. London Ser. A 289 (1978), 315-346.
  13. Baxter R.J., On Zamolodchikov's solution of the tetrahedron equations, Comm. Math. Phys. 88 (1983), 185-205.
  14. Baxter R.J., The Yang-Baxter equations and the Zamolodchikov model, Phys. D 18 (1986), 321-347.
  15. Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B., Integrable structure of conformal field theory. III. The Yang-Baxter relation, Comm. Math. Phys. 200 (1999), 297-324, hep-th/9805008.
  16. Bazhanov V.V., Mangazeev V.V., Okada Y., Sergeev S.B., An elliptic parameterisation of the Zamolodchikov model, Nuclear Phys. B 871 (2013), 127-144, arXiv:1212.6800.
  17. Bazhanov V.V., Reshetikhin N.Yu., Remarks on the quantum dilogarithm, J. Phys. A: Math. Gen. 28 (1995), 2217-2226.
  18. Bazhanov V.V., Stroganov Yu.G., Conditions of commutativity of transfer matrices on a multidimensional lattice, Theoret. and Math. Phys. 52 (1982), 685-691.
  19. Biedenharn L.C., Louck J.D., Angular momentum in quantum physics, Encyclopedia of Mathematics and its Applications, Vol. 8, Addison-Wesley, Reading, MA, 1981.
  20. Bytsko A., Volkov A., Tetrahedron equation and cyclic quantum dilogarithm identities, Int. Math. Res. Not. 2015 (2015), 1075-1100, arXiv:1304.1641.
  21. Carter J.S., Saito M., Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, Vol. 55, Amer. Math. Soc., Providence, RI, 1998.
  22. Cartier P., Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre, Astérisque (1990), exp.\ no. 716, 17-67.
  23. Cherednik I.V., Factorizing particles on a half-line and root systems, Theoret. and Math. Phys. 61 (1984), 977-983.
  24. Dimakis A., Müller-Hoissen F., KP line solitons and Tamari lattices, J. Phys. A: Math. Theor. 44 (2011), 025203, 49 pages, arXiv:1009.1886.
  25. Dimakis A., Müller-Hoissen F., KP solitons, higher Bruhat and Tamari orders, in Associahedra, Tamari Lattices and Related Structures, Prog. Math. Phys., Vol. 299, Editors F. Müller-Hoissen, J. Pallo, J. Stasheff, Birkhäuser/Springer, Basel, 2012, 391-423, arXiv:1110.3507.
  26. Doliwa A., Sergeev S.M., The pentagon relation and incidence geometry, arXiv:1208.3339.
  27. Drinfeld V.G., Quasi-Hopf algebras, Leningrad Math. J. 1 (1989), 1419-1457.
  28. Drinfeld V.G., On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ${\rm Gal}(\overline{\bf Q}/{\bf Q})$, Leningrad Math. J. 2 (1990), 829-860.
  29. Drinfeld V.G., On some unsolved problems in quantum group theory, in Quantum Groups (Leningrad, 1990), Lecture Notes in Math., Vol. 1510, Editor P.P. Kulish, Springer, Berlin, 1992, 1-8.
  30. Edelman P.H., Reiner V., The higher Stasheff-Tamari posets, Mathematika 43 (1996), 127-154.
  31. Elias B., Williamson G., Soergel calculus, arXiv:1309.0865.
  32. Etingof P., Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation, Comm. Algebra 31 (2003), 1961-1973, math.QA/0112278.
  33. Etingof P., Kazhdan D., Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), 1-41, q-alg/9506005.
  34. Etingof P., Latour F., The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems, Oxford Lecture Series in Mathematics and its Applications, Vol. 29, Oxford University Press, Oxford, 2005.
  35. Etingof P., Schedler T., Soloviev A., Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209, math.QA/9801047.
  36. Etingof P., Schiffmann O., Lectures on quantum groups, Lectures in Mathematical Physics, International Press, Boston, MA, 1998.
  37. Faddeev L.D., Kashaev R.M., Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), 427-434.
  38. Felsner S., Ziegler G.M., Zonotopes associated with higher Bruhat orders, Discrete Math. 241 (2001), 301-312.
  39. Frenkel I., Moore G., Simplex equations and their solutions, Comm. Math. Phys. 138 (1991), 259-271.
  40. Furusho H., Pentagon and hexagon equations, Ann. of Math. 171 (2010), 545-556, math.QA/0702128.
  41. Furusho H., Around associators, in Automorphic Forms and Galois Representations, London Mathematical Society Lecture Note Series, Vol. 415, Editors M. Kim, F. Diamond, P.L. Kassaei, Cambridge University Press, Cambridge, 2014, 105—117.
  42. Goncharenko V.M., Veselov A.P., Yang-Baxter maps and matrix solitons, in New Trends in Integrability and Partial Solvability, NATO Science Series II: Math. Phys. Chem., Vol. 132, Editors A.B. Shabat, A. González-López, M. Maŕas, L. Martínez Alonso, M.A. Rodríguez, Kluwer, Dordrecht, 2004, 191-197, math-ph/0303032.
  43. Hietarinta J., Labelling schemes for tetrahedron equations and dualities between them, J. Phys. A: Math. Gen. 27 (1994), 5727-5748, hep-th/9402139.
  44. Hietarinta J., Nijhoff F., The eight tetrahedron equations, J. Math. Phys. 38 (1997), 3603-3615, q-alg/9706001.
  45. Ip I.C.-H., Representation of the quantum plane, its quantum double, and harmonic analysis on $GL_q^+(2,{\mathbb R})$, Selecta Math. (N.S.) 19 (2013), 987-1082, arXiv:1108.5365.
  46. Izumi M., Kosaki H., Kac algebras arising from composition of subfactors: general theory and classification, Mem. Amer. Math. Soc. 158 (2002), no. 750, 198 pages.
  47. Jimbo M., Introduction to the Yang-Baxter equation, Internat. J. Modern Phys. A 4 (1989), 3759-3777.
  48. Jimbo M. (Editor), Yang-Baxter equation in integrable systems, Advanced Series in Mathematical Physics, Vol. 10, World Scientific Publishing Co. Inc., Singapore, 1990.
  49. Kapranov M.M., Voevodsky V.A., Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results), Cahiers Topologie Géom. Différentielle Catég. 32 (1991), 11-27.
  50. Kapranov M.M., Voevodsky V.A., $2$-categories and Zamolodchikov tetrahedra equations, in Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., Vol. 56, Amer. Math. Soc., Providence, RI, 1994, 177-259.
  51. Kapranov M.M., Voevodsky V.A., Braided monoidal $2$-categories and Manin-Schechtman higher braid groups, J. Pure Appl. Algebra 92 (1994), 241-267.
  52. Kashaev R.M., The Heisenberg double and the pentagon relation, St. Petersbg. Math. J. 8 (1997), 585-592, q-alg/9503005.
  53. Kashaev R.M., On matrix generalizations of the dilogarithm, Theoret. and Math. Phys. 118 (1999), 314-318.
  54. Kashaev R.M., A simple model of 4D-TQFT, arXiv:1405.5763.
  55. Kashaev R.M., Nakanishi T., Classical and quantum dilogarithm identities, SIGMA 7 (2011), 102, 29 pages, arXiv:1104.4630.
  56. Kashaev R.M., Reshetikhin N., Symmetrically factorizable groups and self-theoretical solutions of the pentagon equation, in Quantum Groups, Contemp. Math., Vol. 433, Amer. Math. Soc., Providence, RI, 2007, 267-279, math.QA/0111171.
  57. Kashaev R.M., Sergeev S.M., On pentagon, ten-term, and tetrahedron relations, Comm. Math. Phys. 195 (1998), 309-319, q-alg/9607032.
  58. Kazhdan D., Soibelman Y., Representations of the quantized function algebras, $2$-categories and Zamolodchikov tetrahedra equation, in The Gel'fand Mathematical Seminars, 1990-1992, Birkhäuser Boston, Boston, MA, 1993, 163-171.
  59. Korepanov I.G., Tetrahedral Zamolodchikov algebras corresponding to Baxter's $L$-operators, Comm. Math. Phys. 154 (1993), 85-97.
  60. Korepanov I.G., $\rm SL(2)$-solution of the pentagon equation and invariants of three-dimensional manifolds, Theoret. and Math. Phys. 138 (2004), 18-27, math.AG/0304149.
  61. Korepanov I.G., Relations in Grassmann algebra corresponding to three- and four-dimensional Pachner moves, SIGMA 7 (2011), 117, 23 pages, arXiv:1105.0782.
  62. Korepanov I.G., Deformation of a $3 \to 3$ Pachner move relation capturing exotic second homologies, arXiv:1201.4762.
  63. Korepanov I.G., Special 2-cocycles and 3-3 Pachner move relations in Grassmann algebra, arXiv:1301.5581.
  64. Korepanov I.G., Two-cocycles give a full nonlinear parameterization of the simplest 3-3 relation, Lett. Math. Phys. 104 (2014), 1235-1261, arXiv:1310.4075.
  65. Korepanov I.G., Multiplicative expression for the coefficient in fermionic 3-3 relation, arXiv:1503.02272.
  66. Korepanov I.G., Sadykov N.M., Parameterizing the simplest Grassmann-Gaussian relations for Pachner move 3-3, SIGMA 9 (2013), 053, 19 pages, arXiv:1305.3246.
  67. Korepanov I.G., Saǐto S., Finite-dimensional analogues of the string $s \leftrightarrow t$ duality, and the pentagon equation, Theoret. and Math. Phys. 120 (1999), 862-869.
  68. Korepanov I.G., Sharygin G.I., Talalaev D.V., Cohomologies of $n$-simplex relations, arXiv:1409.3127.
  69. Kulish P.P., Representation of the Zamolodchikov-Faddeev algebra, J. Sov. Math. 24 (1984), 208-215.
  70. Lawrence R.J., Algebras and triangle relations, J. Pure Appl. Algebra 100 (1995), 43-72.
  71. Mac Lane S., Natural associativity and commutativity, Rice Univ. Studies 49 (1963), 28-46.
  72. Maillet J.-M., On pentagon and tetrahedron equations, St. Petersburg Math. J. 6 (1995), 375-383, hep-th/9312037.
  73. Maillet J.-M., Nijhoff F., Multidimensional integrable lattice models, quantum groups, and the $d$-simplex equations, Report CERN.TH-5595/89, 1989.
  74. Maillet J.-M., Nijhoff F., Integrability for multidimensional lattice models, Phys. Lett. B 224 (1989), 389-396.
  75. Maillet J.-M., Nijhoff F., On the algebraic structure of integrable systems in multidimensions, in XVIIth International Colloquium on Group Theoretical Methods in Physics (Sainte-Adèle, PQ, 1988), Editors Y. Saint-Aubin, L. Vinet, World Sci. Publ., Teaneck, NJ, 1989, 504-507.
  76. Maillet J.-M., Nijhoff F., The tetrahedron equation and the four-simplex equation, Phys. Lett. A 134 (1989), 221-228.
  77. Maillet J.-M., Nijhoff F., Multidimensional lattice integrability and the simplex equations, in Nonlinear Evolution Equations: Integrability and Spectral Methods, Editors A. Degasperis, A.P. Fordy, M. Lakshmanan, Manchester University Press, Manchester, 1990, 537-548.
  78. Manin Yu.I., Schechtman V.V., Arrangements of real hyperplanes and Zamolodchikov equations, in Group Theoretical Methods in Physics, Vol. I (Yurmala, 1985), Editors M.A. Markov, V.I. Man'ko, V.V. Dodonov, VNU Sci. Press, Utrecht, 1986, 151-165.
  79. Manin Yu.I., Shechtman V.V., Higher Bruhat orders, related to the symmetric group, Funct. Anal. Appl. 20 (1986), 148-150.
  80. Manin Yu.I., Schechtman V.V., Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, in Algebraic Number Theory - in Honor of K. Iwasawa, Adv. Stud. Pure Math., Vol. 17, Editors J. Coates, R. Greenberg, B. Mazur, I. Satake, Academic Press, Boston, MA, 1989, 289-308.
  81. Masuda T., Nakagami Y., A von Neumann algebra framework for the duality of the quantum groups, Publ. Res. Inst. Math. Sci. 30 (1994), 799-850.
  82. Michielsen F.P., Nijhoff F.W., $d$-algebras, the $d$-simplex equations, and multidimensional integrability, in Quantum Topology, Ser. Knots Everything, Vol. 3, Editors L.H. Kauffman, R.A. Baadhio, World Sci. Publ., River Edge, NJ, 1993, 230-243.
  83. Militaru G., Heisenberg double, pentagon equation, structure and classification of finite-dimensional Hopf algebras, J. London Math. Soc. 69 (2004), 44-64.
  84. Moore G., Seiberg N., Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), 177-254.
  85. Müller-Hoissen F., Pallo J.M., Stasheff J. (Editors), Associahedra, Tamari lattices and related structures, Prog. Math. Phys., Vol. 299, Birkhäuser/Springer, Basel, 2012.
  86. Rambau J., Reiner V., A survey of the higher Stasheff-Tamari orders, in Associahedra, Tamari Lattices and Related Structures, Prog. Math. Phys., Vol. 299, Editors F. Müller-Hoissen, J.M. Pallo, J. Stasheff, Birkhäuser/Springer, Basel, 2012, 351-390.
  87. Rogers L.J., On function sum theorems connected with the series formula, Proc. London Math. Soc. S2-4 (1907), 169-189.
  88. Sergeev S.M., On a two dimensional system associated with the complex of the solutions of the tetrahedron equation, solv-int/9709013.
  89. Sergeev S.M., Mathematics of quantum integrable systems in multidimensional discrete space-time, Preliminary draft, version 4, 2009, available at http://ise.canberra.edu.au/mathphysics/files/2009/09/book5.pdf.
  90. Skandalis G., Operator algebras and duality, in Proceedings of the International Congress of Mathematicians, Vols. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, 997-1009.
  91. Sklyanin E.K., Classical limits of SU(2)-invariant solutions of the Yang-Baxter equation, J. Sov. Math. 40 (1988), 93-107.
  92. Stasheff J.D., Homotopy associativity of $H$-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
  93. Street R., Higher categories, strings, cubes and simplex equations, Appl. Categ. Structures 3 (1995), 29-77.
  94. Street R., Fusion operators and cocycloids in monoidal categories, Appl. Categ. Structures 6 (1998), 177-191.
  95. Stroganov Yu.G., The tetrahedron equation and spin integrable models on the cubic lattice, Theoret. and Math. Phys. 110 (1997), 141-167.
  96. Suris Yu.B., Veselov A.P., Lax matrices for Yang-Baxter maps, J. Nonlinear Math. Phys. 10 (2003), suppl. 2, 223-230, math.QA/0304122.
  97. Tamari D., Monoides préordonnés et chaînes de Malcev, Ph.D. Thesis, Paris, 1951.
  98. Veselov A.P., Yang-Baxter maps and integrable dynamics, Phys. Lett. A 314 (2003), 214-221, math.QA/0205335.
  99. Veselov A.P., Yang-Baxter maps: dynamical point of view, in Combinatorial Aspect of Integrable Systems, MSJ Mem., Vol. 17, Editors A. Berenstein, D. Kazhdan, C. Lecouvey, M. Okado, A. Schilling, T. Takagi, A. Veselov, Math. Soc. Japan, Tokyo, 2007, 145-167, math.QA/0612814.
  100. Volkov A.Yu., Beyond the ''pentagon identity'', Lett. Math. Phys. 39 (1997), 393-397, q-alg/9603003.
  101. Woronowicz S.L., From multiplicative unitaries to quantum groups, Internat. J. Math. 7 (1996), 127-149.
  102. Woronowicz S.L., Zakrzewski S., Quantum '$ax+b$' group, Rev. Math. Phys. 14 (2002), 797-828.
  103. Yang C.N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315.
  104. Zakrzewski S., Poisson Lie groups and pentagonal transformations, Lett. Math. Phys. 24 (1992), 13-19.
  105. Zamolodchikov A.B., Tetrahedra equations and integrable systems in three-dimensional space, Sov. Phys. JETP 52 (1980), 325-336.
  106. Zamolodchikov A.B., Tetrahedron equations and the relativistic $S$-matrix of straight-strings in $2+1$-dimensions, Comm. Math. Phys. 79 (1981), 489-505.
  107. Ziegler G.M., Higher Bruhat orders and cyclic hyperplane arrangements, Topology 32 (1993), 259-279.

Previous article  Next article   Contents of Volume 11 (2015)