Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 037, 9 pages      arXiv:1505.01250      https://doi.org/10.3842/SIGMA.2015.037
Contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet

Quantum Integrals for a Semi-Infinite $q$-Boson System with Boundary Interactions

Jan Felipe van Diejen a and Erdal Emsiz b
a) Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
b) Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile

Received February 04, 2015, in final form April 30, 2015; Published online May 06, 2015

Abstract
We provide explicit formulas for the quantum integrals of a semi-infinite $q$-boson system with boundary interactions. These operators and their commutativity are deduced from the Pieri formulas for a $q\to 0$ Hall-Littlewood type degeneration of the Macdonald-Koornwinder polynomials.

Key words: $q$-bosons; boundary interactions; Hall-Littlewood functions; hyperoctahedral symmetry; Pieri formulas; integrability.

pdf (335 kb)   tex (15 kb)

References

  1. Bogoliubov N.M., Izergin A.G., Kitanine N.A., Correlation functions for a strongly correlated boson system, Nuclear Phys. B 516 (1998), 501-528, solv-int/9710002.
  2. Borodin A., Corwin I., Petrov L., Sasamoto T., Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz, arXiv:1407.8534.
  3. van Diejen J.F., Properties of some families of hypergeometric orthogonal polynomials in several variables, Trans. Amer. Math. Soc. 351 (1999), 233-270, q-alg/9604004.
  4. van Diejen J.F., Scattering theory of discrete (pseudo) Laplacians on a Weyl chamber, Amer. J. Math. 127 (2005), 421-458, math-ph/0412097.
  5. van Diejen J.F., Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle, Comm. Math. Phys. 267 (2006), 451-476, math-ph/0604029.
  6. van Diejen J.F., Emsiz E., Boundary interactions for the semi-infinite $q$-boson system and hyperoctahedral Hall-Littlewood polynomials, SIGMA 9 (2013), 077, 12 pages, arXiv:1312.1028.
  7. van Diejen J.F., Emsiz E., Diagonalization of the infinite $q$-boson system, J. Funct. Anal. 266 (2014), 5801-5817, arXiv:1308.2237.
  8. van Diejen J.F., Emsiz E., The semi-infinite $q$-boson system with boundary interaction, Lett. Math. Phys. 104 (2014), 103-113, arXiv:1308.2242.
  9. van Diejen J.F., Emsiz E., Branching formula for Macdonald-Koornwinder polynomials, arXiv:1408.2280.
  10. van Diejen J.F., Vinet L., The quantum dynamics of the compactified trigonometric Ruijsenaars-Schneider model, Comm. Math. Phys. 197 (1998), 33-74, math/9709221.
  11. Dorlas T.C., Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schroedinger model, Comm. Math. Phys. 154 (1993), 347-376.
  12. Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
  13. Komori Y., Noumi M., Shiraishi J., Kernel functions for difference operators of Ruijsenaars type and their applications, SIGMA 5 (2009), 054, 40 pages, arXiv:0812.0279.
  14. Koornwinder T.H., Askey-Wilson polynomials for root systems of type $BC$, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, Amer. Math. Soc., Providence, RI, 1992, 189-204.
  15. Korepin V.E., Bogoliubov N.M., Izergin A.G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993.
  16. Korff C., Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra, Comm. Math. Phys. 318 (2013), 173-246, arXiv:1110.6356.
  17. Lieb E.H., Liniger W., Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. 130 (1963), 1605-1616.
  18. Macdonald I.G., Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000), Art. B45a, 40 pages, math.QA/0011046.
  19. Macdonald I.G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge, 2003.
  20. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  21. Povolotsky A.M., On the integrability of zero-range chipping models with factorized steady states, J. Phys. A: Math. Theor. 46 (2013), 465205, 25 pages, arXiv:1308.3250.
  22. Ruijsenaars S.N.M., Finite-dimensional soliton systems, in Integrable and Superintegrable Systems, World Sci. Publ., Teaneck, NJ, 1990, 165-206.
  23. Ruijsenaars S.N.M., Factorized weight functions vs. factorized scattering, Comm. Math. Phys. 228 (2002), 467-494.
  24. Sasamoto T., Wadati M., Exact results for one-dimensional totally asymmetric diffusion models, J. Phys. A: Math. Gen. 31 (1998), 6057-6071.
  25. Takeyama Y., A deformation of affine Hecke algebra and integrable stochastic particle system, J. Phys. A: Math. Theor. 47 (2014), 465203, 19 pages, arXiv:1407.1960.
  26. Tsilevich N.V., The quantum inverse scattering problem method for the $q$-boson model, and symmetric functions, Funct. Anal. Appl. 40 (2006), 207-217, math-ph/0510073.
  27. Venkateswaran V., Symmetric and nonsymmetric Hall-Littlewood polynomials of type $BC$, arXiv:1209.2933.

Previous article  Next article   Contents of Volume 11 (2015)