|
SIGMA 11 (2015), 034, 12 pages arXiv:1410.2339
https://doi.org/10.3842/SIGMA.2015.034
A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms
Dave Witte Morris
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
Received October 17, 2014, in final form April 14, 2015; Published online April 27, 2015
Abstract
A Lie algebra $\mathfrak{g}_\mathbb{Q}$ over $\mathbb{Q}$ is said to be $\mathbb{R}$-universal
if every homomorphism from $\mathfrak{g}_\mathbb{Q}$ to $\mathfrak{gl}(n,\mathbb{R})$ is conjugate
to a homomorphism into $\mathfrak{gl}(n,\mathbb{Q})$ (for every $n$).
By using Galois cohomology, we provide a short proof of the known fact that every
real semisimple Lie algebra has an $\mathbb{R}$-universal $\mathbb{Q}$-form. We also
provide a classification of the $\mathbb{R}$-universal Lie algebras that are semisimple.
Key words:
semisimple Lie algebra; finite-dimensional representation; global field; Galois cohomology; linear algebraic group; Tits algebra.
pdf (389 kb)
tex (19 kb)
References
-
Demazure M., Grothendieck A., Schémas en groups. III. Structure des schémas en groupes reductifs, Séminaire de géométrie algébrique du Bois Marie, 1962/1964, available at http://library.msri.org/books/sga/sga/pdf/sga3-3.pdf.
-
Harder G., Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen, Jber. Deutsch. Math.-Verein. 70 (1968), 182-216, available at http://www.digizeitschriften.de/en/dms/img/?PPN=PPN37721857X_0070&DMDID=dmdlog17.
-
Kneser M., Lectures on Galois cohomology of classical groups, Tata Institute of Fundamental Research Lectures on Mathematics, Vol. 47, Tata Institute of Fundamental Research, Bombay, 1969, available at http://www.math.tifr.res.in/ publ/ln/tifr47.pdf.
-
Knus M.A., Merkurjev A., Rost M., Tignol J.P., The book of involutions, American Mathematical Society Colloquium Publications, Vol. 44, Amer. Math. Soc., Providence, RI, 1998.
-
Lam T.Y., Introduction to quadratic forms over fields, Graduate Studies in Mathematics, Vol. 67, Amer. Math. Soc., Providence, RI, 2005.
-
Morris D., Real representations of semisimple Lie algebras have ${\mathbb Q}$-forms, in Algebraic Groups and Arithmetic, Tata Institute of Fundamental Research, Mumbai, 2004, 469-490.
-
Platonov V., Rapinchuk A., Algebraic groups and number theory, Pure and Applied Mathematics, Vol. 139, Academic Press, Inc., Boston, MA, 1994.
-
Prasad G., Rapinchuk A., On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior, Adv. Math. 207 (2006), 646-660.
-
Raghunathan M.S., Arithmetic lattices in semisimple groups, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), 133-138.
-
Tits J., Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, 33-62.
-
Tits J., Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220.
-
Tits J., Strongly inner anisotropic forms of simple algebraic groups, J. Algebra 131 (1990), 648-677.
|
|