Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 018, 13 pages      arXiv:1409.8413      https://doi.org/10.3842/SIGMA.2015.018
Contribution to the Special Issue on New Directions in Lie Theory

Irreducible Generic Gelfand-Tsetlin Modules of $\mathfrak{gl}(n)$

Vyacheslav Futorny a, Dimitar Grantcharov b and Luis Enrique Ramirez a
a) Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP, Brasil
b) Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA

Received October 01, 2014, in final form February 24, 2015; Published online February 28, 2015

Abstract
We provide a classification and explicit bases of tableaux of all irreducible generic Gelfand-Tsetlin modules for the Lie algebra $\mathfrak{gl}(n)$.

Key words: Gelfand-Tsetlin modules; Gelfand-Tsetlin basis; tableaux realization.

pdf (441 kb)   tex (20 kb)

References

  1. Britten D.J., Lemire F.W., Futorny V.M., Simple $A_2$-modules with a finite-dimensional weight space, Comm. Algebra 23 (1995), 467-510.
  2. Drozd Yu.A., Futorny V.M., Ovsienko S.A., Harish-Chandra subalgebras and Gel'fand-Zetlin modules, in Finite-Dimensional Algebras and Related Topics (Ottawa, ON, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, 79-93.
  3. Drozd Yu.A., Ovsienko S.A., Futorny V.M., Irreducible weighted ${\rm sl}(3)$-modules, Funct. Anal. Appl. 23 (1989), 217-218.
  4. Drozd Y.A., Ovsienko S.A., Futorny V.M., Gel'fand-Zetlin modules over Lie algebra ${\rm SL}(3)$, in Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math., Vol. 131, Amer. Math. Soc., Providence, RI, 1992, 23-29.
  5. Fernando S.L., Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc. 322 (1990), 757-781.
  6. Futorny V.M., A generalization of Verma modules, and irreducible representations of the Lie algebra ${\rm sl}(3)$, Ukrain. Math. J. 38 (1986), 422-427.
  7. Futorny V.M., Weight representations of semi-simple finite-dimensional Lie algebras, Ph.D. Thesis, Kiev University, 1986.
  8. Futorny V.M., Irreducible ${\rm sl}(3)$-modules with infinite-dimensional weight subspaces, Ukrain. Math. J. 41 (1989), 856-859.
  9. Futorny V.M., Weighted ${\rm sl}(3)$-modules generated by semiprimitive elements, Ukrain. Math. J. 43 (1991), 250-254.
  10. Futorny V.M., Grantcharov D., Ramirez L.E., Classification of irreducible Gelfand-Tsetlin modules for $\mathfrak{sl}(3)$, in preparation.
  11. Futorny V.M., Ovsienko S.A., Fibers of characters in Gel'fand-Tsetlin categories, Trans. Amer. Math. Soc. 366 (2014), 4173-4208, math.RT/0610071.
  12. Gel'fand I.M., Tsetlin M.L., Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk USSR 71 (1950), 825-828.
  13. Graev M.I., Infinite-dimensional representations of the Lie algebra ${\mathfrak{gl}}(n,{\mathbb C})$ related to complex analogs of the Gelfand-Tsetlin patterns and general hypergeometric functions on the Lie group ${\rm GL}(n,{\mathbb C})$, Acta Appl. Math. 81 (2004), 93-120.
  14. Graev M.I., A continuous analogue of Gelfand-Tsetlin schemes and a realization of the principal series of irreducible unitary representations of the group ${\rm GL}(n,{\mathbb C})$ in the space of functions on the variety of these schemes, Dokl. Math. 75 (2007), 31-35.
  15. Kostant B., Wallach N., Gelfand-Zeitlin theory from the perspective of classical mechanics. I, in Studies in Lie Theory, Progr. Math., Vol. 243, Birkhäuser Boston, Boston, MA, 2006, 319-364, math.SG/0408342.
  16. Kostant B., Wallach N., Gelfand-Zeitlin theory from the perspective of classical mechanics. II, in The Unity of Mathematics, Progr. Math., Vol. 244, Birkhäuser Boston, Boston, MA, 2006, 387-420, math.SG/0501387.
  17. Mathieu O., Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), 537-592.
  18. Mazorchuk V., On categories of Gelfand-Zetlin modules, in Noncommutative Structures in Mathematics and Physics (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., Vol. 22, Kluwer Acad. Publ., Dordrecht, 2001, 299-307.
  19. Nazarov M., Tarasov V., Yangians and Gelfand-Zetlin bases, Publ. Res. Inst. Math. Sci. 30 (1994), 459-478, hep-th/9302102.
  20. Ramirez L.E., Combinatorics of irreducible Gelfand-Tsetlin ${\mathfrak{sl}}(3)$-modules, Algebra Discrete Math. 14 (2012), 276-296.
  21. Ramirez L.E., Classificação dos $\mathfrak{sl}(3)$-módulos de Gelfand-Tsetlin irredutíveis, Ph.D. Thesis, Universidade de São Paulo, 2013.
  22. Vinberg E.B., Some commutative subalgebras of a universal enveloping algebra, Math. USSR Izvestiya 36 (1991), 1-22.
  23. Zhelobenko D.P., Compact Lie groups and their representations, Translations of Mathematical Monographs, Vol. 40, Amer. Math. Soc., Providence, R.I., 1973.

Previous article  Next article   Contents of Volume 11 (2015)