Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 006, 8 pages      arXiv:1410.7736      https://doi.org/10.3842/SIGMA.2015.006

Local Properties of Measures in Quantum Field Theory and Cosmology

José M. Velhinho
Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal

Received October 30, 2014, in final form January 14, 2015; Published online January 17, 2015

Abstract
We show that measure theoretical results concerning the Ashtekar-Lewandowski measure in the space of generalized connections have direct analogues in the context of the Bohr compactification of the line and associated Haar measure. We present also a characterization of the support of the measure associated with the canonical quantization of the free massive scalar field, following closely well known analogous results concerning the Euclidean path integral measure.

Key words: canonical quantization; scalar field; loop cosmology; support of the measure.

pdf (283 kb)   tex (15 kb)

References

  1. Ashtekar A., Bojowald M., Lewandowski J., Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys. 7 (2003), 233-268, gr-qc/0304074.
  2. Ashtekar A., Lewandowski J., Background independent quantum gravity: a status report, Classical Quantum Gravity 21 (2004), R53-R152, gr-qc/0404018.
  3. Ashtekar A., Singh P., Loop quantum cosmology: a status report, Classical Quantum Gravity 28 (2011), 213001, 122 pages, arXiv:1108.0893.
  4. Banerjee K., Calcagni G., Martín-Benito M., Introduction to loop quantum cosmology, SIGMA 8 (2012), 016, 73 pages, arXiv:1109.6801.
  5. Bojowald M., Loop quantum cosmology, Living Rev. Relativity 11 (2008), 4, 131 pages, gr-qc/0601085.
  6. Bojowald M., Mathematical structure of loop quantum cosmology: homogeneous models, SIGMA 9 (2013), 082, 43 pages, arXiv:1206.6088.
  7. Castelló Gomar L., Cortez J., Martín-de Blas D., Mena Marugán G.A., Velhinho J.M., Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes, J. Cosmol. Astropart. Phys. 2012 (2012), no. 11, 001, 21 pages, arXiv:1211.5176.
  8. Colella Ph., Lanford O.E., Appendix: Sample field behavior for the free Markov random field, in Constructive Quantum Field Theory (International School of Mathematical Physics, Erice (Sicily), 1973), Lecture Notes in Phys., Vol. 25, Editors G. Velo, A. Wightman, Springer-Verlag, Berlin - New York, 1973, 44-70.
  9. Glimm J., Jaffe A., Quantum physics. A functional integral point of view, 2nd ed., Springer-Verlag, New York, 1987.
  10. Marolf D., Mourão J.M., On the support of the Ashtekar-Lewandowski measure, Comm. Math. Phys. 170 (1995), 583-605, hep-th/9403112.
  11. Mourão J.M., Thiemann T., Velhinho J.M., Physical properties of quantum field theory measures, J. Math. Phys. 40 (1999), 2337-2353, hep-th/9711139.
  12. Reed M., Rosen L., Support properties of the free measure for Boson fields, Comm. Math. Phys. 36 (1974), 123-132.
  13. Rivasseau V., From perturbative to constructive renormalization, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1991.
  14. Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
  15. Velhinho J.M., Comments on the kinematical structure of loop quantum cosmology, Classical Quantum Gravity 21 (2004), L109-L113, gr-qc/0406008.
  16. Velhinho J.M., On the structure of the space of generalized connections, Int. J. Geom. Methods Mod. Phys. 1 (2004), 311-334, math-ph/0402060.
  17. Velhinho J.M., The quantum configuration space of loop quantum cosmology, Classical Quantum Gravity 24 (2007), 3745-3758, arXiv:0704.2397.
  18. Yamasaki Y., Measures on infinite-dimensional spaces, Series in Pure Mathematics, Vol. 5, World Sci. Publ. Co., Singapore, 1985.

Previous article  Next article   Contents of Volume 11 (2015)