Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 114, 18 pages      arXiv:1404.7234      https://doi.org/10.3842/SIGMA.2014.114

Periodic Vortex Streets and Complex Monodromy

Adrian D. Hemery a and Alexander P. Veselov b, c
a) Charterhouse School, Godalming, Surrey, GU7 2DX, UK
b) Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
c) Moscow State University, Russia

Received August 28, 2014, in final form December 10, 2014; Published online December 23, 2014

Abstract
The explicit constructions of periodic and doubly periodic vortex relative equilibria using the theory of monodromy-free Schrödinger operators are described. Several concrete examples with the qualitative analysis of the corresponding travelling vortex streets are given.

Key words: vortex; equilibria; monodromy; integrability.

pdf (1417 kb)   tex (1008 kb)

References

  1. Acheson D.J., Elementary fluid dynamics, Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Oxford University Press, New York, 1990.
  2. Airault H., McKean H.P., Moser J., Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), 95-148.
  3. Aref H., Newton P.K., Stremler M.A., Tokieda T., Vainchtein D.L., Vortex crystals, Adv. Appl. Mech. 39 (2003), 1-75.
  4. Aref H., Stremler M.A., On the motion of three point vortices in a periodic strip, J. Fluid Mech. 314 (1996), 1-25.
  5. Bartman A.B., A new interpretation of the Adler-Moser KdV polynomials: interaction of vortices, in Nonlinear and Turbulent Processes in Physics, Vol. 3 (Kiev, 1983), Harwood Academic Publ., Chur, 1984, 1175-1181.
  6. Berest Yu.Yu., Solution of a restricted Hadamard problem on Minkowski spaces, Comm. Pure Appl. Math. 50 (1997), 1019-1052.
  7. Berest Yu.Yu., Loutsenko I.M., Huygens' principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries equation, Comm. Math. Phys. 190 (1997), 113-132, solv-int/9704012.
  8. Chalykh O.A., Feigin M.V., Veselov A.P., Multidimensional Baker-Akhiezer functions and Huygens' principle, Comm. Math. Phys. 206 (1999), 533-566, math-ph/9903019.
  9. Dubrovin B.A., Novikov S.P., Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, Soviet Phys. JETP 40 (1975), 1058-1063.
  10. Duistermaat J.J., Grünbaum F.A., Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177-240.
  11. Feigin M.V., Johnston D., A class of Baker-Akhiezer arrangements, Comm. Math. Phys. 328 (2014), 1117-1157, arXiv:1212.3597.
  12. Felder G., Hemery A.D., Veselov A.P., Zeros of Wronskians of Hermite polynomials and Young diagrams, Phys. D 241 (2012), 2131-2137, arXiv:1005.2695.
  13. Feynman R.P., Application of quantum mechanics to liquid helium, in Quantum Turbulence, Progress in Low Temperature Physics, Vol. 1, Editor C.J. Gorter, Amsterdam, North-Holland, 1955, 17-53.
  14. Friedman A.A., Polubarinova P.Ya., On moving singularities of planar motion of incompressible fluid, Geofiz. Sb. 5 (1927), 9-24 (in Russian).
  15. Gesztesy F., Weikard R., Picard potentials and Hill's equation on a torus, Acta Math. 176 (1996), 73-107.
  16. Gibbons J., Veselov A.P., On the rational monodromy-free potentials with sextic growth, J. Math. Phys. 50 (2009), 013513, 25 pages, arXiv:0807.3501.
  17. Hemery A.D., Veselov A.P., Whittaker-Hill equation and semifinite-gap Schrödinger operators, J. Math. Phys. 51 (2010), 072108, 17 pages, arXiv:0906.1697.
  18. Krichever I.M., Methods of algebraic geometry in the theory of non-linear equations, Russian Math. Surveys 32 (1977), no. 6, 185-213.
  19. Krichever I.M., Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980), 282-290.
  20. Lamb H., Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
  21. Milne-Thomson L.M., Theoretical hydrodynamics, 5th ed., Macmillan, London, 1968.
  22. Montaldi J., Soulière A., Tokieda T., Vortex dynamics on a cylinder, SIAM J. Appl. Dyn. Syst. 2 (2003), 417-430, math.DS/0210028.
  23. Oblomkov A.A., Monodromy-free Schrödinger operators with quadratically increasing potential, Theoret. and Math. Phys. 121 (1999), 1574-1584.
  24. Smirnov A.O., Finite-gap solutions of the Fuchsian equations, Lett. Math. Phys. 76 (2006), 297-316, math.CA/0310465.
  25. Stieltjes T.J., Sur quelques théorèmes d'algèbre, C. R. Math. Acad. Sci. Paris 100 (1885), 439-440.
  26. Stremler M.A., On relative equilibria and integrable dynamics of point vortices in periodic domains, Theor. Comput. Fluid Dyn. 24 (2010), 25-37.
  27. Stremler M.A., Aref H., Motion of three point vortices in a periodic parallelogram, J. Fluid Mech. 392 (1999), 101-128.
  28. Taǐmanov I.A., On the two-gap elliptic potentials, Acta Appl. Math. 36 (1994), 119-124.
  29. Takemura K., The Heun equation and the Calogero-Moser-Sutherland system. I. The Bethe Ansatz method, Comm. Math. Phys. 235 (2003), 467-494, math.CA/0103077.
  30. Tkachenko V.K., On vortex lattices, Soviet Phys. JETP 22 (1966), 1282-1286.
  31. Tokieda T., Tourbillons dansants, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 943-946.
  32. Treibich A., Verdier J.-L., Solitons elliptiques, in The Grothendieck Festschrift, Vol. III, Progr. Math., Vol. 88, Birkhäuser Boston, Boston, MA, 1990, 437-480.
  33. Veselov A.P., On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy, J. Phys. A: Math. Gen. 34 (2001), 3511-3519, math-ph/0012040.
  34. Veselov A.P., On Darboux-Treibich-Verdier potentials, Lett. Math. Phys. 96 (2011), 209-216, arXiv:1004.5355.
  35. von Helmholtz H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858), 25-55 (English transl.: On integrals of the hydrodynamic equations which express vortex motions, Philos. Mag. 33 (1867), 485-512).
  36. von Kármán Th., Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. (1911), 509-517.
  37. von Kármán Th., Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. (1912), 547-556.
  38. Whittaker E.T., On a class of differential equations whose solutions satisfy integral equations, Proc. Edinburgh Math. Soc. 33 (1914), 14-23.
  39. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.

Previous article  Next article   Contents of Volume 10 (2014)