Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 111, 14 pages      arXiv:1408.0588      https://doi.org/10.3842/SIGMA.2014.111

Mach-Type Soliton in the Novikov-Veselov Equation

Jen-Hsu Chang
Department of Computer Science and Information Engineering, National Defense University, Tauyuan County 33551, Taiwan

Received September 18, 2014, in final form December 10, 2014; Published online December 18, 2014

Abstract
Using the reality condition of the solutions, one constructs the Mach-type soliton of the Novikov-Veselov equation by the minor-summation formula of the Pfaffian. We study the evolution of the Mach-type soliton and find that the amplitude of the Mach stem wave is less than two times of the one of the incident wave. It is shown that the length of the Mach stem wave is linear with time. One discusses the relations with $V$-shape initial value wave for different critical values of Miles parameter.

Key words: Pfaffian; Mach-type soliton; Mach stem wave; $V$-shape wave.

pdf (556 kb)   tex (163 kb)

References

  1. Ablowitz M.J., Baldwin D.E., Nonlinear shallow ocean-wave soliton interactions on flat beaches, Phys. Rev. E 86 (2012), 036305, 5 pages, arXiv:1208.2904.
  2. Athorne C., Nimmo J.J.C., On the Moutard transformation for integrable partial differential equations, Inverse Problems 7 (1991), 809-826.
  3. Biondini G., Chakravarty S., Soliton solutions of the Kadomtsev-Petviashvili II equation, J. Math. Phys. 47 (2006), 033514, 26 pages, nlin.SI/0511068.
  4. Bogdanov L.V., Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation, Theoret. and Math. Phys. 70 (1987), 219-223.
  5. Chakravarty S., Kodama Y., Soliton solutions of the KP equation and application to shallow water waves, Stud. Appl. Math. 123 (2009), 83-151, arXiv:0902.4423.
  6. Chakravarty S., Lewkow T., Maruno K.I., On the construction of the KP line-solitons and their interactions, Appl. Anal. 89 (2010), 529-545, arXiv:0911.2290.
  7. Chang J.H., On the $N$-solitons solutions in the Novikov-Veselov equation, SIGMA 9 (2013), 006, 13 pages, arXiv:1206.3751.
  8. Chang J.H., The interactions of solitons in the Novikov-Veselov equation, arXiv:1310.4027.
  9. Dubrovsky V.G., Topovsky A.V., Basalaev M.Y., New exact multi line soliton and periodic solutions with constant asymptotic values at infinity of the NVN integrable nonlinear evolution equation via dibar-dressing method, arXiv:0912.2155.
  10. Grinevich P.G., The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, Russ. Math. Surv. 55 (2000), 1015-1083.
  11. Grinevich P.G., Manakov S.V., Inverse problem of scattering theory for the two-dimensional Schrödinger operator, the $\bar\partial$-method and nonlinear equations, Funct. Anal. Appl. 20 (1986), 94-103.
  12. Hu H.-C., Lou S.-Y., Construction of the Darboux transformaiton and solutions to the modified Nizhnik-Novikov-Veselov equation, Chinese Phys. Lett. 21 (2004), 2073-2076.
  13. Hu H.-C., Lou S.-Y., Liu Q.-P., Darboux transformation and variable separation approach: the Nizhnik-Novikov-Veselov equation, Chinese Phys. Lett. 20 (2003), 1413-1415, nlin.SI/0210012.
  14. Ishikawa M., Wakayama M., Applications of minor-summation formula. II. Pfaffians and Schur polynomials, J. Combin. Theory Ser. A 88 (1999), 136-157.
  15. Kazeykina A.V., Novikov R.G., Large time asymptotics for the Grinevich-Zakharov potentials, Bull. Sci. Math. 135 (2011), 374-382, arXiv:1011.4038.
  16. Kodama Y., KP solitons in shallow water, J. Phys. A: Math. Theor. 43 (2010), 434004, 54 pages, arXiv:1004.4607.
  17. Kodama Y., KP solitons and Mach reflection in shallow water, arXiv:1210.0281.
  18. Kodama Y., Lectures delivered at the NSF/CBMS Regional Conference in the Mathematical Sciences ''Solitons in Two-Dimensional Water Waves and Applications to Tsunami'' (UTPA, May 20-24, 2013), available at http://faculty.utpa.edu/kmaruno/nsfcbms-tsunami.html.
  19. Kodama Y., Maruno K.-I., $N$-soliton solutions to the DKP equation and Weyl group actions, J. Phys. A: Math. Gen. 39 (2006), 4063-4086, nlin.SI/0602031.
  20. Kodama Y., Oikawa M., Tsuji H., Soliton solutions of the KP equation with $V$-shape initial waves, J. Phys. A: Math. Theor. 42 (2009), 312001, 9 pages, arXiv:0904.2620.
  21. Kodama Y., Williams L., KP solitons, total positivity, and cluster algebras, Proc. Natl. Acad. Sci. USA 108 (2011), 8984-8989, arXiv:1105.4170.
  22. Kodama Y., Williams L., The Deodhar decomposition of the Grassmannian and the regularity of KP solitons, Adv. Math. 244 (2013), 979-1032, arXiv:1204.6446.
  23. Kodama Y., Williams L., KP solitons and total positivity for the Grassmannian, Invent. Math. 198 (2014), 637-699, arXiv:1106.0023.
  24. Manakov S.V., The method of the inverse scattering problem, and two-dimensional evolution equations, Russian Math. Surveys 31 (1976), no. 5, 245-246.
  25. Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
  26. Miles J.W., Resonantly interacting solitary waves, J. Fluid Mech. 79 (1977), 171-179.
  27. Nimmo J.J.C., Darboux transformations in $(2+1)$-dimensions, in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, 183-192.
  28. Novikov S.P., Veselov A.P., Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations, Phys. D 18 (1986), 267-273.
  29. Ohta Y., Pfaffian solutions for the Veselov-Novikov equation, J. Phys. Soc. Japan 61 (1992), 3928-3933.
  30. Veselov A.P., Novikov S.P., Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations, Sov. Math. Dokl. 30 (1984), 588-591.
  31. Yeh H., Li W., Kodama Y., Mach reflection and KP solitons in shallow water, Eur. Phys. J. ST 185 (2010), 97-111, arXiv:1004.0370.

Previous article  Next article   Contents of Volume 10 (2014)