Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 102, 17 pages      arXiv:1407.7919      https://doi.org/10.3842/SIGMA.2014.102

Particle Motion in Monopoles and Geodesics on Cones

Maxence Mayrand
Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 0B9

Received July 31, 2014, in final form November 01, 2014; Published online November 04, 2014

Abstract
The equations of motion of a charged particle in the field of Yang's $\mathrm{SU}(2)$ monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle $\mathbb{R}^8\setminus\{0\}\to\mathbb{R}^5\setminus\{0\}$ obtained by radially extending the Hopf fibration $S^7\to S^4$, and solved by elementary methods. The main result is that for every particle trajectory $\mathbf{r}:I\to\mathbb{R}^5\setminus\{0\}$, there is a 4-dimensional cone with vertex at the origin on which $\mathbf{r}$ is a geodesic. We give an explicit expression of the cone for any initial conditions.

Key words: particle motion; monopoles; geodesics; cones.

pdf (505 kb)   tex (129 kb)

References

  1. Bai Z., Meng G., Wang E., On the orbits of magnetized Kepler problems in dimension $2k+1$, J. Geom. Phys. 73 (2013), 260-269, arXiv:1302.7271.
  2. Cho Y.M., Higher-dimensional unifications of gravitation and gauge theories, J. Math. Phys. 16 (1975), 2029-2035.
  3. Dirac P.A.M., Quantised singularities in the electromagnetic field, Proc. R. Soc. Lond. Ser. A 133 (1931), 60-72.
  4. Duval C., Horváthy P., Particles with internal structure: the geometry of classical motions and conservation laws, Ann. Physics 142 (1982), 10-33.
  5. Fehér L.G., The ${\rm O}(3,1)$ symmetry problem of the charge-monopole interaction, J. Math. Phys. 28 (1987), 234-239.
  6. Fierz M., Zur Theorie magnetisch geladener Teilchen, Helvetica Phys. Acta 17 (1944), 27-34.
  7. Goddard P., Olive D.I., Magnetic monopoles in gauge field-theories, Rep. Progr. Phys. 41 (1978), 1357-1437.
  8. Haas F., Noether symmetries for charged particle motion under a magnetic monopole and general electric fields, physics/0211074.
  9. Harnad J., Paré J.P., Kaluza-Klein approach to the motion of nonabelian charged particles with spin, Classical Quantum Gravity 8 (1991), 1427-1444.
  10. Horváthy P.A., The dynamical symmetries of the monopole in geometric quantization, Lett. Math. Phys. 7 (1983), 353-361.
  11. Iwai T., The geometry of the ${\rm SU}(2)$ Kepler problem, J. Geom. Phys. 7 (1990), 507-535.
  12. Jackiw R., Dynamical symmetry of the magnetic monopole, Ann. Physics 129 (1980), 183-200.
  13. Kerner R., Generalization of the Kaluza-Klein theory for an arbitrary non-abelian gauge group, Ann. Inst. H. Poincaré Sect. A 9 (1968), 143-152.
  14. Lapidus I.R., Pietenpol J.L., Classical interaction of an electric charge with a magnetic monopole., Amer. J. Phys. 28 (1960), 17-18.
  15. McIntosh H.V., Cisneros A., Degeneracy in the presence of a magnetic monopole, J. Math. Phys. 11 (1970), 896-916.
  16. Meng G., Dirac and Yang monopoles revisited, Cent. Eur. J. Phys. 5 (2007), 570-575, math-ph/0409051.
  17. Meng G., MICZ-Kepler problems in all dimensions, J. Math. Phys. 48 (2007), 032105, 14 pages, math-ph/0507028.
  18. Meng G., The Poisson realization of $\mathfrak{so}(2,2k+2)$ on magnetic leaves and generalized MICZ-Kepler problems, J. Math. Phys. 54 (2013), 052902, 14 pages, arXiv:1211.5992.
  19. Minami M., Dirac's monopole and the Hopf map, Progr. Theoret. Phys. 62 (1979), 1128-1142.
  20. Minami M., Quaternionic gauge-fields on $S^7$ and Yang's ${\rm SU}(2)$ monopole, Progr. Theoret. Phys. 63 (1980), 303-321.
  21. Montgomery R., Canonical formulations of a classical particle in a Yang-Mills field and Wong's equations, Lett. Math. Phys. 8 (1984), 59-67.
  22. Montgomery R., MICZ-Kepler: dynamics on the cone over ${\rm SO}(n)$, Regul. Chaotic Dyn. 18 (2013), 600-607, arXiv:1305.1063.
  23. Moreira I.C., Ritter O.M., Santos F.C., Lie symmetries for the charge-monopole problem, J. Phys. A: Math. Gen. 18 (1985), L427-L430.
  24. Orzalesi C.A., Pauri M., Geodesic motion in multidimensional unified gauge theories, Nuovo Cimento B 68 (1982), 193-202.
  25. Poincaré H., Remarques sur une expérience de M. Birkeland, Compt. Rend. Acad. Sci. Paris 123 (1896), 530-533.
  26. Ritter O.M., Symmetries and invariants for some cases involving charged particles and general electromagnetic fields: a brief review, Braz. J. Phys. 30 (2000), 438-454.
  27. Ryder L.H., Dirac monopoles and the Hopf map $S^{3}\rightarrow S^{2}$, J. Phys. A: Math. Gen. 13 (1980), 437-447.
  28. Sivardière J., On the classical motion of a charge in the field of a magnetic monopole, Eur. J. Phys. 21 (2000), 183-190.
  29. Spivak M., A comprehensive introduction to differential geometry, Vol. 4, Publish or Perish, Boston, Mass., 1975.
  30. Sternberg S., Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci. USA 74 (1977), 5253-5254.
  31. Trautman A., Solutions of Maxwell and Yang-Mills equations associated with Hopf fibrings, Internat. J. Theoret. Phys. 16 (1977), 561-565.
  32. Weinstein A., A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978), 417-420.
  33. Wong S.K., Field and particle equations for the classical Yang-Mills field and particles with isotopic spin, Nuovo Cimento A 65 (1970), 689-694.
  34. Yang C.N., Generalization of Dirac's monopole to ${\rm SU}_2$ gauge fields, J. Math. Phys. 19 (1978), 320-328.
  35. Zwanziger D., Exactly soluble nonrelativistic model of particles with both electric and magnetic charges, Phys. Rev. 176 (1968), 1480-1488.

Previous article  Next article   Contents of Volume 10 (2014)