Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 094, 8 pages      arXiv:1308.1141      https://doi.org/10.3842/SIGMA.2014.094
Contribution to the Special Issue on New Directions in Lie Theory

$\mathcal{A}=\mathcal{U}$ for Locally Acyclic Cluster Algebras

Greg Muller
Department of Mathematics, Louisiana State University, USA

Received May 16, 2014, in final form August 25, 2014; Published online September 03, 2014

Abstract
This note presents a self-contained proof that acyclic and locally acyclic cluster algebras coincide with their upper cluster algebras.

Key words: cluster algebras; upper cluster algebras; acyclic cluster algebras.

pdf (352 kb)   tex (13 kb)

References

  1. Berenstein A., Fomin S., Zelevinsky A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52, math.RT/0305434.
  2. Fock V., Goncharov A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), 1-211, math.AG/0311149.
  3. Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, math.RA/0608367.
  4. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, math.RT/0104151.
  5. Fomin S., Zelevinsky A., Cluster algebras: notes for the CDM-03 conference, in Current Developments in Mathematics, Int. Press, Somerville, MA, 2003, 1-34, math.RT/0311493.
  6. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, math.RA/0602259.
  7. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311, math.QA/0309138.
  8. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, Vol. 167, Amer. Math. Soc., Providence, RI, 2010.
  9. Keller B., Cluster algebras and cluster categories, Bull. Iranian Math. Soc. 37 (2011), 187-234.
  10. Matherne J., Muller G., Computing upper cluster algebras, Int. Math. Res. Not., to appear, arXiv:1307.0579.
  11. Muller G., Skein algebras and cluster algebras of marked surfaces, arXiv:1204.0020.
  12. Muller G., Locally acyclic cluster algebras, Adv. Math. 233 (2013), 207-247, arXiv:1111.4468.

Previous article  Next article   Contents of Volume 10 (2014)