Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 083, 11 pages      arXiv:1401.5462      https://doi.org/10.3842/SIGMA.2014.083

Generalised Chern-Simons Theory and ${\rm G}_2$-Instantons over Associative Fibrations

Henrique N. Sá Earp
Imecc - Institute of Mathematics, Statistics and Scientific Computing, Unicamp, Brazil

Received January 29, 2014, in final form August 07, 2014; Published online August 11, 2014; References updated November 20, 2016

Abstract
Adjusting conventional Chern-Simons theory to ${\rm G}_2$-manifolds, one describes ${\rm G}_2$-instantons on bundles over a certain class of $7$-dimensional flat tori which fiber non-trivially over $T^4$, by a pullback argument. Moreover, if $c_2\neq0$, any (generic) deformation of the ${\rm G}_2$-structure away from such a fibred structure causes all instantons to vanish. A brief investigation in the general context of (conformally compatible) associative fibrations $f:Y^7\to X^4$ relates ${\rm G}_2$-instantons on pullback bundles $f^*E\to Y$ and self-dual connections on the bundle $E\to X$ over the base, a fact which may be of independent interest.

Key words: Chern-Simons; Yang-Mills; ${\rm G}_2$-manifolds; associative fibrations.

pdf (398 kb)   tex (18 kb)       [previous version:  pdf (397 kb)   tex (18 kb)]

References

  1. Bryant R.L., Metrics with holonomy ${\rm G}_2$ or ${\rm Spin}(7)$, Lecture Notes in Math., Vol. 1111, Springer, Berlin, 1985, 269-277.
  2. Clarke A., Instantons on the exceptional holonomy manifolds of Bryant and Salamon, J. Geom. Phys. 82 (2014), 84-97, arXiv:1308.6358.
  3. Donaldson S.K., Floer homology groups in Yang-Mills theory, Cambridge Tracts in Mathematics, Vol. 147, Cambridge University Press, Cambridge, 2002.
  4. Donaldson S.K., Thomas R.P., Gauge theory in higher dimensions, in The Geometric Universe (Oxford, 1996), Oxford University Press, Oxford, 1998, 31-47.
  5. Harland D., Ivanova T.A., Lechtenfeld O., Popov A.D., Yang-Mills flows on nearly Kähler manifolds and ${\rm G}_2$-instantons, Comm. Math. Phys. 300 (2010), 185-204, arXiv:0909.2730.
  6. Harvey R., Lawson Jr. H.B., Calibrated geometries, Acta Math. 148 (1982), 47-157.
  7. Ivanova T.A., Popov A.D., Instantons on special holonomy manifolds, Phys. Rev. D 85 (2012), 105012, 10 pages, arXiv:1203.2657.
  8. Joyce D.D., Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
  9. McLean R.C., Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 (1998), 705-747.
  10. Milnor J.W., Stasheff J.D., Characteristic classes, Princeton University Press, Princeton, N.J., 1974.
  11. Sá Earp H.N., Instantons on ${\rm G}_2$-manifolds, Ph.D. Thesis, Imperial College London, 2009.
  12. Sá Earp H.N., ${\rm G}_2$-instantons over asymptotically cylindrical manifolds, Geom. Topol., 19 (2015), 61-111, arXiv:1101.0880.
  13. Sá Earp H.N., Walpuski T., ${\rm G}_2$-instantons on twisted connected sums, Geom. Topol. 19 (2015), 1263-1285, arXiv:1310.7933.
  14. Salamon S., Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series, Vol. 201, Longman Scientific & Technical, Harlow, 1989.
  15. Thomas R.P., Gauge theory on Calabi-Yau manifolds, Ph.D. Thesis, Oxford University, 1997.
  16. Tian G., Gauge theory and calibrated geometry, I, Ann. of Math. 151 (2000), 193-268, math.DG/0010015.
  17. Walpuski T., ${\rm G}_2$-instantons on generalised Kummer constructions, Geom. Topol. 17 (2013), 2345-2388, arXiv:1109.6609.
  18. Wang S., A higher dimensional foliated Donaldson theory, I, Asian J. Math. 19 (2015), 527-554, arXiv:1212.6774.

Previous article  Next article   Contents of Volume 10 (2014)