Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 075, 19 pages      arXiv:1402.4606      https://doi.org/10.3842/SIGMA.2014.075
Contribution to the Special Issue on Deformations of Space-Time and its Symmetries

Energy Spectrum and Phase Transition of Superfluid Fermi Gas of Atoms on Noncommutative Space

Yan-Gang Miao a, b and Hui Wang a
a) School of Physics, Nankai University, Tianjin 300071, China
b) Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China

Received February 25, 2014, in final form July 07, 2014; Published online July 10, 2014

Abstract
Based on the Bogoliubov non-ideal gas model, we discuss the energy spectrum and phase transition of the superfluid Fermi gas of atoms with a weak attractive interaction on the canonical noncommutative space. Because the interaction of a BCS-type superfluid Fermi gas originates from a pair of Fermionic quasi-particles with opposite momenta and spins, the Hamiltonian of the Fermi gas on the noncommutative space can be described in terms of the ordinary creation and annihilation operators related to the commutative space, while the noncommutative effect appears only in the coefficients of the interacting Hamiltonian. As a result, we can rigorously solve the energy spectrum of the Fermi gas on the noncommutative space exactly following the way adopted on the commutative space without the use of perturbation theory. In particular, different from the previous results on the noncommutative degenerate electron gas and superconductor where only the first order corrections of the ground state energy level and energy gap were derived, we obtain the nonperturbative energy spectrum for the noncommutative superfluid Fermi gas, and find that each energy level contains a corrected factor of cosine function of noncommutative parameters. In addition, our result shows that the energy gap becomes narrow and the critical temperature of phase transition from a superfluid state to an ordinary fluid state decreases when compared with that in the commutative case.

Key words: noncommutative space; Fermi gas of atoms; superfluidity; energy spectrum; critical temperature of phase transition.

pdf (407 kb)   tex (27 kb)

References

  1. Amelino-Camelia G., Testable scenario for relativity with minimum length, Phys. Lett. B 510 (2001), 255-263, hep-th/0012238.
  2. Amelino-Camelia G., Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale, Internat. J. Modern Phys. D 11 (2002), 35-59, hep-th/0012238.
  3. Balachandran A.P., Govindarajan T.R., Mangano G., Pinzul A., Qureshi B.A., Vaidya S., Statistics and UV-IR mixing with twisted Poincaré invariance, Phys. Rev. D 75 (2007), 045009, 7 pages, hep-th/0608179.
  4. Balachandran A.P., Mangano G., Pinzul A., Vaidya S., Spin and statistics on the Groenewold-Moyal plane: Pauli-forbidden levels and transitions, Internat. J. Modern Phys. A 21 (2006), 3111-3126, hep-th/0508002.
  5. Bardeen J., Cooper L.N., Schrieffer J.R., Theory of superconductivity, Phys. Rev. 108 (1957), 1175-1204.
  6. Basu P., Chakraborty B., Scholtz F.G., A unifying perspective on the Moyal and Voros products and their physical meanings, J. Phys. A: Math. Theor. 44 (2011), 285204, 11 pages, arXiv:1101.2495.
  7. Basu P., Chakraborty B., Vaidya S., Fate of the superconducting ground state on the Moyal plane, Phys. Lett. B 690 (2010), 431-435, arXiv:0911.4581.
  8. Basu P., Srivastava R., Vaidya S., Thermal correlation functions of twisted quantum fields, Phys. Rev. D 82 (2010), 025005, 4 pages, arXiv:1003.4069.
  9. Berry M.V., Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London Ser. A 392 (1984), 45-57.
  10. Bogoliubov N.N., On a new method in the theory of superconductivity, Nuovo Cimento 7 (1958), 794-805.
  11. Bogoliubov N.N., Tolmachev V.V., Shirkov D.V., A new method in the theory of superconductivity, Consultants Bureau, Inc., New York, 1959.
  12. Bu J.-G., Kim H.-C., Lee Y., Vac C.H., Yee J.H., Noncommutative field theory from twisted Fock space, Phys. Rev. D 73 (2006), 125001, 10 pages, hep-th/0603251.
  13. Bu J.-G., Kim H.-C., Lee Y., Vac C.H., Yee J.H., $\kappa$-deformed spacetime from twist, Phys. Lett. B 665 (2008), 95-99, hep-th/0611175.
  14. Chaichian M., Kulish P.P., Nishijima K., Tureanu A., On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B 604 (2004), 98-102, hep-th/0408069.
  15. Chakraborty B., Gangopadhyay S., Hazra A.G., Scholtz F.G., Twisted Galilean symmetry and the Pauli principle at low energies, J. Phys. A: Math. Gen. 39 (2006), 9557-9572, hep-th/0601121.
  16. Chaoba Devi Y., Ghosh K.J.B., Chakraborty B., Scholtz F.G., Thermal effective potential in two- and three-dimensional non-commutative spaces, J. Phys. A: Math. Theor. 47 (2014), 025302, 32 pages, arXiv:1306.4482.
  17. Chin C., Grimm R., Julienne P., Tiesinga E., Feshbach resonances in ultracold gases, Rev. Modern Phys. 82 (2010), 1225-1286, arXiv:0812.1496.
  18. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  19. Connes A., Douglas M.R., Schwarz A., Noncommutative geometry and matrix theory: compactification on tori, J. High Energy Phys. 1998 (1998), no. 2, 003, 35 pages, hep-th/9711162.
  20. Cooper L.N., Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104 (1956), 1189-1190.
  21. Douglas M.R., Nekrasov N.A., Noncommutative field theory, Rev. Modern Phys. 73 (2001), 977-1029, hep-th/0106048.
  22. Fang Z., Nagaosa N., Takahashi K.S., Asamitsu A., Mathieu R., Ogasawara T., Yamada H., Kawasaki M., Tokura Y., Terakura K., The anomalous Hall effect and magnetic monopoles in momentum space, Science 302 (2003), 92-95, cond-mat/0310232.
  23. Fiore G., Deforming maps for Lie group covariant creation and annihilation operators, J. Math. Phys. 39 (1998), 3437-3452, q-alg/9610005.
  24. Fiore G., On second quantization on noncommutative spaces with twisted symmetries, J. Phys. A: Math. Theor. 43 (2010), 155401, 39 pages, arXiv:0811.0773.
  25. Fiore G., Schupp P., Identical particles and quantum symmetries, Nuclear Phys. B 470 (1996), 211-235, hep-th/9508047.
  26. Fiore G., Wess J., Full twisted Poincaré symmetry and quantum field theory on Moyal-Weyl spaces, Phys. Rev. D 75 (2007), 105022, 13 pages, hep-th/0701078.
  27. Greiner M., Regal C.A., Jin D.S., Emergence of a molecular Bose-Einstein condensate from a Fermi gas, Nature 426 (2003), 537-540.
  28. Khan S., Chakraborty B., Scholtz F.G., Role of twisted statistics in the noncommutative degenerate electron gas, Phys. Rev. D 78 (2008), 025024, 10 pages, arXiv:0707.4410.
  29. Lifshitz E.M., Pitaevskiǐ L.P., Course of theoretical physics. Vol. 9. Statistical physics. Part 2. Theory of the condensed state, Pergamon Press, Oxford-Elmsford, N.Y., 1980.
  30. Loftus T., Regal C.A., Ticknor C., Bohn J.L., Jin D.S., Resonant control of elastic collisions in an optically trapped Fermi gas of atoms, Phys. Rev. Lett. 88 (2002), 173201, 4 pages, cond-mat/0111571.
  31. Moyal J.E., Quantum mechanics as a statistical theory, Math. Proc. Cambridge Philos. Soc. 45 (1949), 99-124.
  32. Regal C.A., Greiner M., Jin D.S., Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92 (2004), 040403, 4 pages, cond-mat/0401554.
  33. Scholtz F.G., Chakraborty B., Spectral triplets, statistical mechanics and emergent geometry in non-commutative quantum mechanics, J. Phys. A: Math. Theor. 46 (2013), 085204, 16 pages, arXiv:1206.5119.
  34. Seiberg N., Witten E., String theory and noncommutative geometry, J. High Energy Phys. 1999 (1999), no. 9, 032, 93 pages, hep-th/9908142.
  35. Szabo R.J., Quantum field theory on noncommutative spaces, Phys. Rep. 378 (2003), 207-299, hep-th/0106048.
  36. Tureanu A., Twist and spin-statistics relation in noncommutative quantum field theory, Phys. Lett. B 638 (2006), 296-301, hep-th/0603219.
  37. Wess J., Deformed coordinate spaces; derivatives, hep-th/0408080.
  38. Xiao D., Chang M.-C., Niu Q., Berry phase effects on electronic properties, Rev. Modern Phys. 82 (2010), 1959-2007, arXiv:0907.2021.
  39. Xiao D., Shi J., Niu Q., Berry phase correction to electron density of states in solids, Phys. Rev. Lett. 95 (2005), 137204, 4 pages, cond-mat/0502340.
  40. Xiao D., Shi J., Niu Q., Reply to Comment on “Berry phase correction to electron density of states in solids'', Phys. Rev. Lett. 96 (2006), 099702, 1 page, cond-mat/0604215.
  41. Zwierlein M.W., Stan C.A., Schunck C.H., Raupach S.M.F., Kerman A.J., Ketterle W., Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett. 92 (2004), 120403, 4 pages, cond-mat/0403049.

Previous article  Next article   Contents of Volume 10 (2014)