Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 071, 41 pages      arXiv:1312.0909      https://doi.org/10.3842/SIGMA.2014.071

Spherical Functions of Fundamental $K$-Types Associated with the $n$-Dimensional Sphere

Juan Alfredo Tirao and Ignacio Nahuel Zurrián
CIEM-FaMAF, Universidad Nacional de Córdoba, Argentina

Received December 20, 2013, in final form June 20, 2014; Published online July 07, 2014

Abstract
In this paper, we describe the irreducible spherical functions of fundamental $K$-types associated with the pair $(G,K)=({\mathrm{SO}}(n+1),{\mathrm{SO}}(n))$ in terms of matrix hypergeometric functions. The output of this description is that the irreducible spherical functions of the same $K$-fundamental type are encoded in new examples of classical sequences of matrix-valued orthogonal polynomials, of size $2$ and $3$, with respect to a matrix-weight $W$ supported on $[0,1]$. Moreover, we show that $W$ has a second order symmetric hypergeometric operator $D$.

Key words: matrix-valued spherical functions; matrix orthogonal polynomials; the matrix hypergeometric operator; $n$-dimensional sphere.

pdf (599 kb)   tex (37 kb)

References

  1. Cooper A., The classifying ring of groups whose classifying ring is commutative, Ph.D. Thesis, Massachusetts Institute of Technology, 1975.
  2. Duran A.J., Matrix inner product having a matrix symmetric second order differential operator, Rocky Mountain J. Math. 27 (1997), 585-600.
  3. Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.
  4. Gangolli R., Varadarajan V.S., Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 101, Springer-Verlag, Berlin, 1988.
  5. Grünbaum F.A., Pacharoni I., Tirao J., Matrix valued spherical functions associated to the complex projective plane, J. Funct. Anal. 188 (2002), 350-441, math.RT/0108042.
  6. Grünbaum F.A., Pacharoni I., Tirao J., Matrix valued spherical functions associated to the three dimensional hyperbolic space, Internat. J. Math. 13 (2002), 727-784, math.RT/0203211.
  7. Grünbaum F.A., Pacharoni I., Tirao J., Matrix valued orthogonal polynomials of the Jacobi type, Indag. Math. (N.S.) 14 (2003), 353-366.
  8. Grünbaum F.A., Pacharoni I., Tirao J., Matrix valued orthogonal polynomials of Jacobi type: the role of group representation theory, Ann. Inst. Fourier (Grenoble) 55 (2005), 2051-2068.
  9. Grünbaum F.A., Tirao J., The algebra of differential operators associated to a weight matrix, Integral Equations Operator Theory 58 (2007), 449-475.
  10. Heckman G., van Pruijssen M., Matrix valued orthogonal polynomials for Gelfand pairs of rank one, arXiv:1310.5134.
  11. Helgason S., Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. 12, Academic Press, New York - London, 1962.
  12. Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, Vol. 83, Amer. Math. Soc., Providence, RI, 2000.
  13. Knop F., Der Zentralisator einer Liealgebra in einer einhüllenden Algebra, J. Reine Angew. Math. 406 (1990), 5-9.
  14. Koelink E., van Pruijssen M., Román P., Matrix-valued orthogonal polynomials related to $({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$, Int. Math. Res. Not. 2012 (2012), 5673-5730, arXiv:1012.2719.
  15. Koelink E., van Pruijssen M., Román P., Matrix-valued orthogonal polynomials related to $({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$, II, Publ. Res. Inst. Math. Sci. 49 (2013), 271-312, arXiv:1203.0041.
  16. Pacharoni I., Román P., A sequence of matrix valued orthogonal polynomials associated to spherical functions, Constr. Approx. 28 (2008), 127-147, math.RT/0702494.
  17. Pacharoni I., Tirao J., Three term recursion relation for spherical functions associated to the complex projective plane, Math. Phys. Anal. Geom. 7 (2004), 193-221.
  18. Pacharoni I., Tirao J., Matrix valued orthogonal polynomials arising from the complex projective space, Constr. Approx. 25 (2007), 177-192.
  19. Pacharoni I., Tirao J., One-step spherical functions of the pair $({\rm SU}(n+1),{\rm U}(n))$, in Lie groups: structure, actions, and representations, Progr. Math., Vol. 306, Birkhäuser/Springer, New York, 2013, 309-354, arXiv:1209.4500.
  20. Pacharoni I., Zurrián I., Matrix ultraspherical polynomials: the $2\times 2$ fundamental cases, arXiv:1309.6902.
  21. Tirao J., Spherical functions, Rev. Un. Mat. Argentina 28 (1977), 75-98.
  22. Tirao J., The matrix-valued hypergeometric equation, Proc. Natl. Acad. Sci. USA 100 (2003), 8138-8141.
  23. Tirao J., Zurrián I., Spherical functions: the spheres vs. the projective spaces, J. Lie Theory 24 (2014), 147-157, arXiv:1207.0024.
  24. Vilenkin N.J., Klimyk A.U., Representation of Lie groups and special functions. Vol. 3. Classical and quantum groups and special functions, Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht, 1992.
  25. Zurrián I., Funciones Esféricas Matriciales Asociadas a las Esferas y a los Espacios Proyectivos Reales, Ph.D. Thesis, Universidad Nacional de Córdoba, 2013, available at http://www2.famaf.unc.edu.ar/publicaciones/documents/serie_d/DMat76.pdf, arXiv:1306.6581.

Previous article  Next article   Contents of Volume 10 (2014)