Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 069, 15 pages      arXiv:1310.2006      https://doi.org/10.3842/SIGMA.2014.069

Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)

Kazuo Kaneko
Seki Kowa Institute of Mathematics, Yokkaichi University, Kayaucho, Yokkaichi, Mie, 512-8512, Japan

Received October 24, 2013, in final form June 14, 2014; Published online July 05, 2014

Abstract
We have classified special solutions around the origin for the two-dimensional degenerate Garnier system G(1112) with generic values of complex parameters, whose linear monodromy can be calculated explicitly.

Key words: two-dimensional degenerate Garnier system; monodromy data.

pdf (349 kb)   tex (16 kb)

References

  1. Appell P., Sur les polynômes se rattachant à l'équation différentielle $y''=6y^2+x$, Bull. Soc. Math. France 45 (1917), 150-153.
  2. Bolibruch A.A., On isomonodromic confluences of Fuchsian singularities, Proc. Steklov Inst. Math. 221 (1998), 117-132.
  3. Briot C., Bouquet J.C., Recherches sur les propriétés des fonctions définies par des équations différentielles, J. de l'Ecole Polytechnique 21 (1856), 133-198.
  4. Garnier R., Étude de l'intégrale générale de l'équation VI de M. Painlevé dans le voisinage de ses singularités transcendantes, Ann. Sci. École Norm. Sup. (3) 34 (1917), 239-353.
  5. Gérard R., Sibuya Y., Étude de certains systèmes de Pfaff au voisinage d'une singularité, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), A57-A60.
  6. Heading J., The Stokes phenomenon and the Whittaker function, J. London Math. Soc. 37 (1962), 195-208.
  7. Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
  8. Jimbo M., Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci. 18 (1982), 1137-1161.
  9. Kaneko K., A new solution of the fourth Painlevé equation with a solvable monodromy, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 75-79.
  10. Kaneko K., Local expansion of Painlevé VI transcendents around a fixed singularity, J. Math. Phys. 50 (2009), 013531, 24 pages.
  11. Kaneko K., Ohyama Y., Fifth Painlevé transcendents which are analytic at the origin, Funkcial. Ekvac. 50 (2007), 187-212.
  12. Kaneko K., Ohyama Y., Meromorphic Painlevé transcendents at a fixed singularity, Math. Nachr. 286 (2013), 861-875.
  13. Kimura H., The degeneration of the two-dimensional Garnier system and the polynomial Hamiltonian structure, Ann. Mat. Pura Appl. (4) 155 (1989), 25-74.
  14. Kitaev A.V., Symmetric solutions for the first and the second Painlevé equation, J. Math. Sci. 73 (1995), 494-499.
  15. Kohno M., Global analysis in linear differential equations, Mathematics and its Applications, Vol. 471, Kluwer Academic Publishers, Dordrecht, 1999.
  16. Okamoto K., Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 575-618.

Previous article  Next article   Contents of Volume 10 (2014)