Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 065, 16 pages      arXiv:1312.4018      https://doi.org/10.3842/SIGMA.2014.065

Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras

Ana-Loredana Agore a, b and Gigel Militaru c
a) Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
b) Department of Applied Mathematics, Bucharest University of Economic Studies, Piata Romana 6, RO-010374 Bucharest 1, Romania
c) Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, RO-010014 Bucharest 1, Romania

Received January 20, 2014, in final form June 10, 2014; Published online June 16, 2014

Abstract
For a perfect Lie algebra $\mathfrak{h}$ we classify all Lie algebras containing $\mathfrak{h}$ as a subalgebra of codimension $1$. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product $\mathfrak{h} \ltimes (k^* \times {\rm Aut}_{\rm Lie} (\mathfrak{h}))$. In the non-perfect case the classification of these Lie algebras is a difficult task. Let $\mathfrak{l} (2n+1, k)$ be the Lie algebra with the bracket $[E_i, G] = E_i$, $[G, F_i] = F_i$, for all $i = 1, \dots, n$. We explicitly describe all Lie algebras containing $\mathfrak{l} (2n+1, k)$ as a subalgebra of codimension $1$ by computing all possible bicrossed products $k \bowtie \mathfrak{l} (2n+1, k)$. They are parameterized by a set of matrices ${\rm M}_n (k)^4 \times k^{2n+2}$ which are explicitly determined. Several matched pair deformations of $\mathfrak{l} (2n+1, k)$ are described in order to compute the factorization index of some extensions of the type $k \subset k \bowtie \mathfrak{l} (2n+1, k)$. We provide an example of such extension having an infinite factorization index.

Key words: matched pairs of Lie algebras; bicrossed products; factorization index.

pdf (408 kb)   tex (24 kb)

References

  1. Agore A.L., Bontea C.G., Militaru G., Classifying bicrossed products of Hopf algebras, Algebr. Represent. Theory 17 (2014), 227-264, arXiv:1205.6110.
  2. Agore A.L., Militaru G., Classifying complements for groups. Applications, arXiv:1204.1805.
  3. Agore A.L., Militaru G., Classifying complements for Hopf algebras and Lie algebras, J. Algebra 391 (2013), 193-208, arXiv:1205.6564.
  4. Agore A.L., Militaru G., Extending structures for Lie algebras, Monatsh. Math. 174 (2014), 169-193, arXiv:1301.5442.
  5. Andrada A., Barberis M.L., Dotti I.G., Ovando G.P., Product structures on four dimensional solvable Lie algebras, Homology Homotopy Appl. 7 (2005), 9-37, math.RA/0402234.
  6. Andrada A., Salamon S., Complex product structures on Lie algebras, Forum Math. 17 (2005), 261-295, math.DG/0305102.
  7. Benayadi S., Structure of perfect Lie algebras without center and outer derivations, Ann. Fac. Sci. Toulouse Math. 5 (1996), 203-231.
  8. de Graaf W.A., Classification of solvable Lie algebras, Experiment. Math. 14 (2005), 15-25, math.RA/0404071.
  9. Erdmann K., Wildon M.J., Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006.
  10. Figueroa-O'Farrill J.M., Stanciu S., On the structure of symmetric self-dual Lie algebras, J. Math. Phys. 37 (1996), 4121-4134, hep-th/9506152.
  11. Fisher D.J., Gray R.J., Hydon P.E., Automorphisms of real Lie algebras of dimension five or less, J. Phys. A: Math. Theor. 46 (2013), 225204, 18 pages, arXiv:1303.3376.
  12. Hofmann K.H., Lie algebras with subalgebras of co-dimension one, Illinois J. Math. 9 (1965), 636-643.
  13. Humphreys J.E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York - Berlin, 1972.
  14. Jiang C.P., Meng D.J., Zhang S.Q., Some complete Lie algebras, J. Algebra 186 (1996), 807-817.
  15. Lu J.H., Weinstein A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), 501-526.
  16. Majid S., Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130 (1990), 17-64.
  17. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  18. Medina A., Revoy P., Algèbres de Lie et produit scalaire invariant, Ann. Sci. École Norm. Sup. 18 (1985), 553-561.
  19. Michor P.W., Knit products of graded Lie algebras and groups, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 171-175, math.GR/9204220.
  20. Pelc O., A new family of solvable self-dual Lie algebras, J. Math. Phys. 38 (1997), 3832-3840, physics/9709009.
  21. Popovych R.O., Boyko V.M., Nesterenko M.O., Lutfullin M.W., Realizations of real low-dimensional Lie algebras, J. Phys. A: Math. Gen. 36 (2003), 7337-7360, math-ph/0301029.
  22. Su Y., Zhu L., Derivation algebras of centerless perfect Lie algebras are complete, J. Algebra 285 (2005), 508-515, math.QA/0511550.

Previous article  Next article   Contents of Volume 10 (2014)