Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 062, 14 pages      arXiv:1406.2422      https://doi.org/10.3842/SIGMA.2014.062
Contribution to the Special Issue on Deformations of Space-Time and its Symmetries

Deformations of the Canonical Commutation Relations and Metric Structures

Francesco D'Andrea a, c, Fedele Lizzi b, c, d and Pierre Martinetti b, c
a) Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Italy
b) Dipartimento di Fisica, Università di Napoli Federico II, Italy
c) I.N.F.N. - Sezione di Napoli, Italy
d) Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Spain

Received March 02, 2014, in final form June 01, 2014; Published online June 10, 2014

Abstract
Using Connes distance formula in noncommutative geometry, it is possible to retrieve the Euclidean distance from the canonical commutation relations of quantum mechanics. In this note, we study modifications of the distance induced by a deformation of the position-momentum commutation relations. We first consider the deformation coming from a cut-off in momentum space, then the one obtained by replacing the usual derivative on the real line with the $h$- and $q$-derivatives, respectively. In these various examples, some points turn out to be at infinite distance. We then show (on both the real line and the circle) how to approximate points by extended distributions that remain at finite distance. On the circle, this provides an explicit example of computation of the Wasserstein distance.

Key words: noncommutative geometry; Heisenberg relations; spectral distance.

pdf (444 kb)   tex (55 kb)

References

  1. Amati D., Ciafaloni M., Veneziano G., Can spacetime be probed below the string size?, Phys. Lett. B 216 (1989), 41-47.
  2. Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., The principle of relative locality, Phys. Rev. D 84 (2011), 084010, 13 pages, arXiv:1101.0931.
  3. Amelino-Camelia G., Lukierski J., Nowicki A., $\kappa$-deformed covariant phase space and quantum-gravity uncertainty relations, Phys. Atomic Nuclei 61 (1998), 1811-1815, hep-th/9706031.
  4. Ardalan F., Arfaei H., Ghasemkhani M., Sadooghi N., Gauge invariant cutoff QED, Phys. Scr. 87 (2013), 035101, 12 pages, arXiv:1108.3215.
  5. Bronstein M., Quantum theory of weak gravitational fields, Gen. Relativity Gravitation 44 (2012), 267-283.
  6. Cabrelli C.A., Molter U.M., The Kantorovich metric for probability measures on the circle, J. Comput. Appl. Math. 57 (1995), 345-361.
  7. Cagnache E., D'Andrea F., Martinetti P., Wallet J.C., The spectral distance in the Moyal plane, J. Geom. Phys. 61 (2011), 1881-1897, arXiv:0912.0906.
  8. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  9. Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, Vol. 55, Amer. Math. Soc., Providence, RI, 2008.
  10. D'Andrea F., Lizzi F., Martinetti P., Spectral geometry with a cut-off: topological and metric aspects, J. Geom. Phys. 82 (2014), 18-45, arXiv:1305.2605.
  11. D'Andrea F., Martinetti P., A view on optimal transport from noncommutative geometry, SIGMA 6 (2010), 057, 24 pages, arXiv:0906.1267.
  12. Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172 (1995), 187-220, hep-th/0303037.
  13. Fichtmüller M., Lorek A., Wess J., $q$-deformed phase space and its lattice structure, Z. Phys. C 71 (1996), 533-537, hep-th/9511106.
  14. Gross D.J., Mende P.F., String theory beyond the Planck scale, Nuclear Phys. B 303 (1988), 407-454.
  15. Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002.
  16. Kadison R.V., Liu Z., The Heisenberg relation - mathematical formulations, SIGMA 10 (2014), 009, 40 pages, arXiv:1401.6507.
  17. Kempf A., Mangano G., Minimal length uncertainty relation and ultraviolet regularisation, Phys. Rev. D 55 (1997), 7909-7920, hep-th/9612084.
  18. Kempf A., Mangano G., Mann R.B., Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D 52 (1995), 1108-1118, hep-th/9412167.
  19. Koornwinder T.H., $q$-Special functions, an overview, math.CA/0511148.
  20. Lizzi F., Vitale P., Gauge and Poincaré invariant regularization and Hopf symmetries, Modern Phys. Lett. A 27 (2012), 1250097, 15 pages, arXiv:1202.1190.
  21. Martinetti P., Carnot-Carathéodory metric and gauge fluctuation in noncommutative geometry, Comm. Math. Phys. 265 (2006), 585-616, hep-th/0506147.
  22. Martinetti P., Spectral distance on the circle, J. Funct. Anal. 255 (2008), 1575-1612, math.OA/0703586.
  23. Martinetti P., Mercati F., Tomassini L., Minimal length in quantum space and integrations of the line element in noncommutative geometry, Rev. Math. Phys. 24 (2012), 1250010, 36 pages, arXiv:1106.0261.
  24. Martinetti P., Tomassini L., Length and distance on a quantum space, PoS Proc. Sci. (2011), PoS(CORFU2011), 042, 30 pages, arXiv:1205.2908.
  25. Martinetti P., Tomassini L., Noncommutative geometry of the Moyal plane: translation isometries, Connes' distance on coherent states, Pythagoras equality, Comm. Math. Phys. 323 (2013), 107-141, arXiv:1110.6164.
  26. Piacitelli G., Quantum spacetime: a disambiguation, SIGMA 6 (2010), 073, 43 pages, arXiv:1004.5261.
  27. Rabin J., Delon J., Gousseau Y., Transportation distances on the circle, J. Math. Imaging Vision 41 (2011), 147-167, arXiv:0906.5499.
  28. Rennie A., Varilly J.C., Reconstruction of manifolds in noncommutative geometry, math.OA/0610418.
  29. Rieffel M.A., Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215-229, math.OA/9807084.
  30. Rieffel M.A., Metrics on state spaces, Doc. Math. 4 (1999), 559-600, math.OA/9906151.
  31. Rieffel M.A., Standard deviation is a strongly Leibniz seminorm, New York J. Math. 20 (2014), 35-56, arXiv:1208.4072.
  32. Rovelli C., Smolin L., Discreteness of area and volume in quantum gravity, Nuclear Phys. B 442 (1995), 593-619, gr-qc/9411005.
  33. Voigt C., Bornological quantum groups, Pacific J. Math. 235 (2008), 93-135, math.QA/0511195.

Previous article  Next article   Contents of Volume 10 (2014)