Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 057, 18 pages      arXiv:1402.0072      https://doi.org/10.3842/SIGMA.2014.057
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel

Induced Representations and Hypergroupoids

Jean Renault
Université d'Orléans et CNRS (UMR 7349 et FR2964), Département de Mathématiques, F-45067 Orléans Cedex 2, France

Received February 01, 2014, in final form May 26, 2014; Published online June 03, 2014

Abstract
We review various notions of correspondences for locally compact groupoids with Haar systems, in particular a recent definition due to R.D. Holkar. We give the construction of the representations induced by such a correspondence. Finally, we extend the construction of induced representations to hypergroupoids.

Key words: groupoids; $C^*$-algebras; correspondences; induced representations; hypergroups.

pdf (411 kb)   tex (26 kb)

References

  1. Anantharaman-Delaroche C., Renault J., Amenable groupoids, Monographies de L'Enseignement Mathématique, Vol. 36, L'Enseignement Mathématique, Geneva, 2000.
  2. Bloom W.R., Heyer H., Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics, Vol. 20, Walter de Gruyter & Co., Berlin, 1995.
  3. Bourbaki N., Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, Paris, 1963.
  4. Buneci M., Stachura P., Morphisms of locally compact groupoids endowed with Haar systems, math.OA/0511613.
  5. Dunkl C.F., The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331-348.
  6. Hauenschild W., Kaniuth E., Kumar A., Harmonic analysis on central hypergroups and induced representations, Pacific J. Math. 110 (1984), 83-112.
  7. Hermann P., Induced representations of hypergroups, Math. Z. 211 (1992), 687-699.
  8. Hermann P., Representations of double coset hypergroups and induced representations, Manuscripta Math. 88 (1995), 1-24.
  9. Hilsum M., Skandalis G., Morphismes $K$-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov (d'après une conjecture d'A. Connes), Ann. Sci. École Norm. Sup. (4) 20 (1987), 325-390.
  10. Holkar R.D., Topological construction of $C^{\ast}$-correspondences for groupoid $C^{\ast}$-algebras, Ph.D. thesis, Göttingen University, in preparation.
  11. Holkar R.D., Renault J., Hypergroupoids and $C^*$-algebras, C. R. Math. Acad. Sci. Paris 351 (2013), 911-914, arXiv:1403.3424.
  12. Jewett R.I., Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1-101.
  13. Kalyuzhnyi A.A., Podkolzin G.B., Chapovsky Yu.A., Harmonic analysis on a locally compact hypergroup, Methods Funct. Anal. Topology 16 (2010), 304-332.
  14. Landsman N.P., Operator algebras and Poisson manifolds associated to groupoids, Comm. Math. Phys. 222 (2001), 97-116.
  15. Macho Stadler M., O'uchi M., Correspondence of groupoid $C^\ast$-algebras, J. Operator Theory 42 (1999), 103-119.
  16. Mackey G.W., Induced representations of locally compact groups. I, Ann. of Math. 55 (1952), 101-139.
  17. Mrčun J., Functoriality of the bimodule associated to a Hilsum-Skandalis map, $K$-Theory 18 (1999), 235-253.
  18. Muhly P.S., Renault J., Williams D.P., Equivalence and isomorphism for groupoid $C^\ast$-algebras, J. Operator Theory 17 (1987), 3-22.
  19. Ramsay A., Topologies on measured groupoids, J. Funct. Anal. 47 (1982), 314-343.
  20. Ramsay A., The Mackey-Glimm dichotomy for foliations and other Polish groupoids, J. Funct. Anal. 94 (1990), 358-374.
  21. Renault J., A groupoid approach to $C^{\ast}$-algebras, Lecture Notes in Mathematics, Vol. 793, Springer, Berlin, 1980.
  22. Renault J., Strong Morita equivalence of groupoid $C^*$-algebras, Talk given in the Operator Algebras Section of the Annual Summer Meeting of the Canadian Mathematical Society (Halifax, May 27-30, 1981).
  23. Renault J., $C^{\ast} $-algebras of groupoids and foliations, in Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., Vol. 38, Amer. Math. Soc., Providence, R.I., 1982, 339-350.
  24. Renault J., Représentation des produits croisés d'algèbres de groupoï des, J. Operator Theory 18 (1987), 67-97.
  25. Renault J., The ideal structure of groupoid crossed product $C^\ast$-algebras, J. Operator Theory 25 (1991), 3-36.
  26. Rieffel M.A., Induced representations of $C^{\ast} $-algebras, Adv. Math. 13 (1974), 176-257.
  27. Rieffel M.A., Applications of strong Morita equivalence to transformation group $C^{\ast}$-algebras, in Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., Vol. 38, Amer. Math. Soc., Providence, R.I., 1982, 299-310.
  28. Spector R., Aperçu de la théorie des hypergroupes, in Analyse harmonique sur les groupes de Lie (Sém. Nancy-Strasbourg, 1973-75), Lecture Notes in Math., Vol. 497, Springer, Berlin, 1975, 643-673.
  29. Tu J.-L., Non-Hausdorff groupoids, proper actions and $K$-theory, Doc. Math. 9 (2004), 565-597, math.OA/0403071.

Previous article  Next article   Contents of Volume 10 (2014)