Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 045, 10 pages      arXiv:1312.6976      https://doi.org/10.3842/SIGMA.2014.045

Bäcklund-Darboux Transformations and Discretizations of Super KdV Equation

Ling-Ling Xue and Qing Ping Liu
Department of Mathematics, China University of Mining and Technology, Beijing 100083, P. R. China

Received January 02, 2014, in final form April 10, 2014; Published online April 17, 2014

Abstract
For a generalized super KdV equation, three Darboux transformations and the corresponding Bäcklund transformations are constructed. The compatibility of these Darboux transformations leads to three discrete systems and their Lax representations. The reduction of one of the Bäcklund-Darboux transformations and the corresponding discrete system are considered for Kupershmidt's super KdV equation. When all the odd variables vanish, a nonlinear superposition formula is obtained for Levi's Bäcklund transformation for the KdV equation.

Key words: super integrable systems; KdV; Bäcklund-Darboux transformations; discrete integrable systems.

pdf (271 kb)   tex (14 kb)

References

  1. Ablowitz M.J., Clarkson P.A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge, 1991.
  2. Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, nlin.SI/0202024.
  3. Cieśliński J.L., Algebraic construction of the Darboux matrix revisited, J. Phys. A: Math. Theor. 42 (2009), 404003, 40 pages, arXiv:0904.3987.
  4. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095-1097.
  5. Grahovski G.G., Mikhailov A.V., Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras, Phys. Lett. A 377 (2013), 3254-3259, arXiv:1303.1853.
  6. Holod P.I., Pakuliak S.Z., On the superextension of the Kadomtsev-Petviashvili equation and finite-gap solutions of Korteweg-de Vries superequations, in Problems of Modern Quantum Field Theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 107-116.
  7. Kupershmidt B.A., A super Korteweg-de Vries equation: an integrable system, Phys. Lett. A 102 (1984), 213-215.
  8. Levi D., Nonlinear differential-difference equations as Bäcklund transformations, J. Phys. A: Math. Gen. 14 (1981), 1083-1098.
  9. Levi D., On a new Darboux transformation for the construction of exact solutions of the Schrödinger equation, Inverse Problems 4 (1988), 165-172.
  10. Levi D., Benguria R., Bäcklund transformations and nonlinear differential difference equations, Proc. Nat. Acad. Sci. USA 77 (1980), 5025-5027.
  11. Manin Yu.I., Radul A.O., A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy, Comm. Math. Phys. 98 (1985), 65-77.
  12. Mathieu P., Superconformal algebra and supersymmetric Korteweg-de Vries equation, Phys. Lett. B 203 (1988), 287-291.
  13. Mathieu P., Supersymmetric extension of the Korteweg-de Vries equation, J. Math. Phys. 29 (1988), 2499-2506.
  14. Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
  15. Nijhoff F.W., Discrete systems and integrability, Math3491/5491 Lecture Notes, University of Leeds, 2010.
  16. Nimmo J.J.C., Darboux transformations from reductions of the KP hierarchy, in Nonlinear Evolution Equations & Dynamical Systems: NEEDS'94 (Los Alamos, NM), World Sci. Publ., River Edge, NJ, 1995, 168-177, solv-int/9410001.
  17. Roelofs G.H.M., Kersten P.H.M., Supersymmetric extensions of the nonlinear Schrödinger equation: symmetries and coverings, J. Math. Phys. 33 (1992), 2185-2206.
  18. Suris Yu.B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, Vol. 219, Birkhäuser Verlag, Basel, 2003.
  19. Xue L.L., Levi D., Liu Q.P., Supersymmetric KdV equation: Darboux transformation and discrete systems, J. Phys. A: Math. Theor. 46 (2013), 502001, 11 pages, arXiv:1311.0152.
  20. Zhou R.G., Private communication, 2013.

Previous article  Next article   Contents of Volume 10 (2014)