Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 033, 13 pages      arXiv:1309.0357      https://doi.org/10.3842/SIGMA.2014.033
Contribution to the Special Issue on Progress in Twistor Theory

Hyperkähler Manifolds of Curves in Twistor Spaces

Roger Bielawski
Institut für Differentialgeometrie, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

Received November 06, 2013, in final form March 19, 2014; Published online March 28, 2014

Abstract
We discuss hypercomplex and hyperkähler structures obtained from higher degree curves in complex spaces fibring over ${\mathbb{P}}^1$.

Key words: hyperkähler metrics; hypercomplex structures; twistor methods; projective curves.

pdf (392 kb)   tex (22 kb)

References

  1. Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988.
  2. Beauville A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755-782.
  3. Bielawski R., Line bundles on spectral curves and the generalised Legendre transform construction of hyperkähler metrics, J. Geom. Phys. 59 (2009), 374-390, arXiv:0806.0510.
  4. Bielawski R., Schwachhöfer L., Hypercomplex limits of pluricomplex structures and the Euclidean limit of hyperbolic monopoles, Ann. Global Anal. Geom. 44 (2013), 245-256, arXiv:1201.0781.
  5. Cherkis S.A., Hitchin N.J., Gravitational instantons of type $D_k$, Comm. Math. Phys. 260 (2005), 299-317, hep-th/0310084.
  6. Douady A., Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), 1-95.
  7. Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.
  8. Eisenbud D., Van de Ven A., On the normal bundles of smooth rational space curves, Math. Ann. 256 (1981), 453-463.
  9. Ellia Ph., Exemples de courbes de ${\bf P}^{3}$ à fibré normal semi-stable, stable, Math. Ann. 264 (1983), 389-396.
  10. Ellingsrud G., Hirschowitz A., Sur le fibré normal des courbes gauches, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 245-248.
  11. Gantmacher F.R., The theory of matrices, Vols. 1, 2, Chelsea Publishing Co., New York, 1959.
  12. Ghione F., Sacchiero G., Normal bundles of rational curves in ${\bf P}^{3}$, Manuscripta Math. 33 (1980), 111-128.
  13. Grauert H., Peternell Th., Remmert R. (Editors), Several complex variables. VII. Sheaf-theoretical methods in complex analysis, Encyclopaedia of Mathematical Sciences, Vol. 74, Springer-Verlag, Berlin, 1994.
  14. Hartshorne R., Deformation theory, Graduate Texts in Mathematics, Vol. 257, Springer, New York, 2010.
  15. Hitchin N.J., Karlhede A., Lindström U., Rocek M., Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
  16. Huggett S.A., Merkulov S.A., Twistor transform of vector bundles, Math. Scand. 85 (1999), 219-244.
  17. Lindström U., Rocek M., New hyper-Kähler metrics and new supermultiplets, Comm. Math. Phys. 115 (1988), 21-29.
  18. Manin Yu.I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, Vol. 289, 2nd ed., Springer-Verlag, Berlin, 1997.
  19. Nash O., A new approach to monopole moduli spaces, Nonlinearity 20 (2007), 1645-1675.
  20. Pourcin G., Théorème de Douady au-dessus de $S$, Ann. Scuola Norm. Sup. Pisa 23 (1969), 451-459.
  21. Salamon S.M., Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. (4) 19 (1986), 31-55.
  22. Ward R.S., On self-dual gauge fields, Phys. Lett. A 61 (1977), 81-82.

Previous article  Next article   Contents of Volume 10 (2014)