Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 029, 14 pages      arXiv:1103.6054      https://doi.org/10.3842/SIGMA.2014.029
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel

On Projections in the Noncommutative 2-Torus Algebra

Michał Eckstein
Faculty of Mathematics and Computer Science, Jagellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland

Received December 09, 2013, in final form March 16, 2014; Published online March 23, 2014

Abstract
We investigate a set of functional equations defining a projection in the noncommutative 2-torus algebra $A_{\theta}$. The exact solutions of these provide various generalisations of the Powers-Rieffel projection. By identifying the corresponding $K_0(A_{\theta})$ classes we get an insight into the structure of projections in $A_{\theta}$.

Key words: noncommutative torus; projections; noncommutative solitons.

pdf (464 kb)   tex (85 kb)

References

  1. Bars I., Kajiura H., Matsuo Y., Takayanagi T., Tachyon condensation on a noncommutative torus, Phys. Rev. D 63 (2001), 086001, 8 pages, hep-th/0010101.
  2. Boca F.P., Projections in rotation algebras and theta functions, Comm. Math. Phys. 202 (1999), 325-357, math.OA/9803134.
  3. Connes A., $C^*$ algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A599-A604, hep-th/0101093.
  4. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  5. Connes A., Douglas M.R., Schwarz A., Noncommutative geometry and matrix theory: compactification on tori, J. High Energy Phys. 1998 (1998), no. 2, 003, 35 pages, hep-th/9711162.
  6. Eckstein M., Anomalies in noncommutative geometry, Master's Thesis, Jagellonian University, 2010.
  7. Elliott G.A., Evans D.E., The structure of the irrational rotation $C^*$-algebra, Ann. of Math. 138 (1993), 477-501.
  8. Exel R., Loring T.A., Invariants of almost commuting unitaries, J. Funct. Anal. 95 (1991), 364-376.
  9. Frohman C., Gelca R., Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000), 4877-4888, math.QA/9806107.
  10. Gracia-Bondía J.M., Várilly J.C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts, Birkhäuser Boston, Inc., Boston, MA, 2001.
  11. Khalkhali M., Basic noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2009.
  12. Krajewski T., Schnabl M., Exact solitons on non-commutative tori, J. High Energy Phys. 2001 (2001), no. 8, 002, 22 pages, hep-th/0104090.
  13. Landi G., Lizzi F., Szabo R.J., Matrix quantum mechanics and soliton regularization of noncommutative field theory, Adv. Theor. Math. Phys. 8 (2004), 1-82, hep-th/0401072.
  14. Luef F., Projections in noncommutative tori and Gabor frames, Proc. Amer. Math. Soc. 139 (2011), 571-582, arXiv:1003.3719.
  15. Perrot D., Anomalies and noncommutative index theory, in Geometric and Topological Methods for Quantum Field Theory, Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 125-160, hep-th/0603209.
  16. Pimsner M., Voiculescu D., Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^*$-algebras, J. Operator Theory 4 (1980), 93-118.
  17. Rieffel M.A., $C^*$-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429.
  18. Rieffel M.A., The cancellation theorem for projective modules over irrational rotation $C^*$-algebras, Proc. London Math. Soc. 47 (1983), 285-302.
  19. Rieffel M.A., Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40 (1988), 257-338.
  20. Seiberg N., Witten E., String theory and noncommutative geometry, J. High Energy Phys. 1999 (1999), no. 9, 032, 93 pages, hep-th/9908142.
  21. Várilly J.C., An introduction to noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006.

Previous article  Next article   Contents of Volume 10 (2014)